Proposing Optimized Random Forest Models for Predicting Compressive Strength of Geopolymer Composites
<p>Various phases in HHO algorithm.</p> "> Figure 2
<p>Flowchart of HHO algorithm.</p> "> Figure 3
<p>The method of updating an answer towards or away from the optimal option.</p> "> Figure 4
<p>The sine and cosine declining patterns.</p> "> Figure 5
<p>Architecture of RF algorithm.</p> "> Figure 6
<p>Violin plot of CoSGePC parameters: (<b>a</b>) Ni2SiO3, (<b>b</b>) Gravel 4/10, (<b>c</b>) GGBS, (<b>d</b>) Gravel 10/20, (<b>e</b>) FAg, (<b>f</b>) FA, (<b>g</b>) WS, (<b>h</b>) NaOH, (<b>i</b>) NaOH molarity, and (<b>j</b>) CoSGePC.</p> "> Figure 6 Cont.
<p>Violin plot of CoSGePC parameters: (<b>a</b>) Ni2SiO3, (<b>b</b>) Gravel 4/10, (<b>c</b>) GGBS, (<b>d</b>) Gravel 10/20, (<b>e</b>) FAg, (<b>f</b>) FA, (<b>g</b>) WS, (<b>h</b>) NaOH, (<b>i</b>) NaOH molarity, and (<b>j</b>) CoSGePC.</p> "> Figure 7
<p>Heatmap of CoSGePC parameters.</p> "> Figure 8
<p>Convergence plot of HHO-RF model.</p> "> Figure 9
<p>Convergence plot of SCA-RF model.</p> "> Figure 10
<p>Prediction error analysis of the models.</p> "> Figure 10 Cont.
<p>Prediction error analysis of the models.</p> "> Figure 11
<p>Comprehensive rankings of CoSGePC estimation techniques.</p> "> Figure 12
<p>Taylor diagram to show performance of developed models in training (<b>above</b>) and testing (<b>below</b>) phases.</p> "> Figure 12 Cont.
<p>Taylor diagram to show performance of developed models in training (<b>above</b>) and testing (<b>below</b>) phases.</p> "> Figure 13
<p>The effective parameters and their importance.</p> ">
Abstract
:1. Introduction
2. Research Methodology
2.1. Harris Hawks Optimizer (HHO)
- Search phase
- The progression of growth and search
- Phase of growth
Algorithm 1. Pseudo-code of HHO | |
1 | Initialize the parameters popsize, MaxFes |
2 | Initialize a set of search agents (solutions) (X) |
3 | While(t ≤ MaxFes) |
4 | Calculate each of the search hawks by the objective function; |
5 | Update Xrabbit(best loaction) and best fitness |
6 | For i = 1 to popsize |
7 | Update the E by Equation (3); |
8 | Update the J; |
9 | If (│E│ ≥ 1). |
10 | Update the position of search agents using Equation (1) |
11 | End If. |
12 | If (│E│ < 1). |
13 | If (0.5 ≤ │E│ < 1 and r ≥ 0.5). |
14 | Update the position of search agents using Equation (4); |
15 | End If. |
16 | If (│E│ < 0.5 and r ≥ 0.5). |
17 | Update the position of search agents using Equation (5); |
18 | End If. |
19 | If (0.5 ≤ │E│ < 1 and r < 0.5). |
20 | Update the position of search agents using Equations (6)–(8); |
21 | End If. |
22 | If (│E│ < 0.5 and r < 0.5). |
23 | Update the position of search agents using Equations (9)–(11); |
24 | End If. |
25 | End If. |
26 | End For. |
27 | End While. |
28 | Return Xrabbit and best fitness. |
- Strengthened hierarchies
2.2. Sine Cosine Algorithm (SCA)
Algorithm 2. Pseudo-code of SCA. |
Random initialization of population of search agents (solutions) (X) |
Solution evaluation by the objective function |
P = the optimal solution found so far. |
while (k < K) do |
Update r1, r2, r3 and r4 |
for each search agent in the population do |
if (r4 < 0.5) then |
| |
else if (r4 ≥ 0.5) then |
Estimate the value of objective function for each search agent. |
Update P |
k = k + 1. |
return P |
2.3. Random Forest (RF) Algorithm
3. Data Presentation
4. Evaluations and Verifications of the Models
Hybrid RF Model and Background
- In line with the Pareto principle, the database was first randomly split into two sets: the training set consisted of eighty percent of the total and the testing set consisted of twenty percent of the total. This division procedure was conducted based on the literature suggestions [130]. In order to construct the prediction models and assess the efficacy of the models that were already in place, it was required to follow these stages. The training-set-to-testing-set ratio is 4:1, and it is often used because it has a high degree of prediction efficiency [131,132]. In the phases that follow, which are discussed in more depth, this ratio is described.
- In order to reduce the effect of input variables having varying scales in the database and to save unnecessary computation costs, all datasets were normalized within the range of 0 and 1 [133].
- Both the total number of trees (ntree) and the number of features used to construct each tree (mtree) are ideal hyperparameters in the RF algorithm. The best RF models were found after searching for them using HHO and SCA.
- The next stage was to assess the accuracy of the predictions made by the RF models that had been constructed by comparing them to both the training set and the testing set. This was achieved with the use of a Taylor graph and four evaluation metrics, which were as follows: the mean absolute error (MAE), root mean square error (RMSE), variance adjusted for (VAF), and R2.
5. Results and Discussions
5.1. Developed RF Model
5.2. Comparison with Other AI Techniques
5.3. Comparison with Literature Models
5.4. Sensitivity Analysis
5.5. Limitations
6. Conclusions and Future Works
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Chen, Y.; Liu, P.; Sha, F.; Yu, Z.; He, S.; Xu, W.; Lv, M. Effects of Type and Content of Fibers, Water-to-Cement Ratio, and Cementitious Materials on the Shrinkage and Creep of Ultra-High Performance Concrete. Polymers 2022, 14, 1956. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.; Cao, M.; Hussain, A.; Chu, S.H. Effect of Silica-Fume Content on Performance of CaCO3 Whisker and Basalt Fiber at Matrix Interface in Cement-Based Composites. Constr. Build. Mater. 2021, 300, 124046. [Google Scholar] [CrossRef]
- Khan, M.; Cao, M.; Chaopeng, X.; Ali, M. Experimental and Analytical Study of Hybrid Fiber Reinforced Concrete Prepared with Basalt Fiber under High Temperature. Fire Mater. 2022, 46, 205–226. [Google Scholar] [CrossRef]
- Biricik, H.; Kırgız, M.S.; Galdino, A.G.d.S.; Kenai, S.; Mirza, J.; Kinuthia, J.; Ashteyat, A.; Khitab, A.; Khatib, J. Activation of Slag through a Combination of NaOH/NaS Alkali for Transforming It into Geopolymer Slag Binder Mortar—Assessment the Effects of Two Different Blaine Fines and Three Different Curing Conditions. J. Mater. Res. Technol. 2021, 14, 1569–1584. [Google Scholar] [CrossRef]
- Mahmood, A.; Noman, M.T.; Pechočiaková, M.; Amor, N.; Petrů, M.; Abdelkader, M.; Militký, J.; Sozcu, S.; Ul Hassan, S.Z. Geopolymers and Fiber-reinforced Concrete Composites in Civil Engineering. Polymers 2021, 13, 2099. [Google Scholar] [CrossRef]
- Farooq, F.; Jin, X.; Javed, M.F.; Akbar, A.; Shah, M.I.; Aslam, F.; Alyousef, R. Geopolymer Concrete as Sustainable Material: A State of the Art Review. Constr. Build. Mater. 2021, 306, 124762. [Google Scholar] [CrossRef]
- Ahmed, M.; Bashar, I.; Alam, S.T.; Wasi, A.I.; Jerin, I.; Khatun, S.; Rahman, M. An Overview of Asian Cement Industry: Environmental Impacts, Research Methodologies and Mitigation Measures. Sustain. Prod. Consum. 2021, 28, 1018–1039. [Google Scholar] [CrossRef]
- Tariq, H.; Siddique, R.M.A.; Shah, S.A.R.; Azab, M.; Attiq-Ur-rehman; Qadeer, R.; Ullah, M.K.; Iqbal, F. Mechanical Performance of Polymeric ARGF-Based Fly Ash-Concrete Composites: A Study for Eco-Friendly Circular Economy Application. Polymers 2022, 14, 1774. [Google Scholar] [CrossRef]
- Alhazmi, H.; Shah, S.A.R.; Anwar, M.K.; Raza, A.; Ullah, M.K.; Iqbal, F. Utilization of Polymer Concrete Composites for a Circular Economy: A Comparative Review for Assessment of Recycling and Waste Utilization. Polymers 2021, 13, 2135. [Google Scholar] [CrossRef]
- Khan, M.; Rehman, A.; Ali, M. Efficiency of Silica-Fume Content in Plain and Natural Fiber Reinforced Concrete for Concrete Road. Constr. Build. Mater. 2020, 244, 118382. [Google Scholar] [CrossRef]
- Ahmad, W.; Ahmad, A.; Ostrowski, K.A.; Aslam, F.; Joyklad, P.; Zajdel, P. Sustainable Approach of Using Sugarcane Bagasse Ash in Cement-Based Composites: A Systematic Review. Case Stud. Constr. Mater. 2021, 15, e00698. [Google Scholar] [CrossRef]
- Snoeck, D.; Jensen, O.M.; De Belie, N. The Influence of Superabsorbent Polymers on the Autogenous Shrinkage Properties of Cement Pastes with Supplementary Cementitious Materials. Cem. Concr. Res. 2015, 74, 59–67. [Google Scholar] [CrossRef]
- Thomas, B.S.; Yang, J.; Bahurudeen, A.; Abdalla, J.A.; Hawileh, R.A.; Hamada, H.M.; Nazar, S.; Jittin, V.; Ashish, D.K. Sugarcane Bagasse Ash as Supplementary Cementitious Material in Concrete—A Review. Mater. Today Sustain. 2021, 15, 100086. [Google Scholar] [CrossRef]
- Hefni, Y.; Zaher, Y.A.E.; Wahab, M.A. Influence of Activation of Fly Ash on the Mechanical Properties of Concrete. Constr. Build. Mater. 2018, 172, 728–734. [Google Scholar] [CrossRef]
- Zaghloul, M.M.Y.; Mohamed, Y.S.; El-Gamal, H. Fatigue and Tensile Behaviors of Fiber-Reinforced Thermosetting Composites Embedded with Nanoparticles. J. Compos. Mater. 2019, 53, 709–718. [Google Scholar] [CrossRef]
- Mahmoud Zaghloul, M.Y.; Yousry Zaghloul, M.M.; Yousry Zaghloul, M.M. Developments in Polyester Composite Materials—An in-Depth Review on Natural Fibres and Nano Fillers. Compos. Struct. 2021, 278, 114698. [Google Scholar] [CrossRef]
- Han, X.; Yang, J.; Feng, J.; Zhou, C.; Wang, X. Research on Hydration Mechanism of Ultrafine Fly Ash and Cement Composite. Constr. Build. Mater. 2019, 227, 116697. [Google Scholar] [CrossRef]
- Zhou, Z.; Sofi, M.; Liu, J.; Li, S.; Zhong, A.; Mendis, P. Nano-CSH Modified High Volume Fly Ash Concrete: Early-Age Properties and Environmental Impact Analysis. J. Clean. Prod. 2021, 286, 124924. [Google Scholar] [CrossRef]
- Pacheco-Torgal, F.; Castro-Gomes, J.; Jalali, S. Alkali-Activated Binders: A Review. Part 1. Historical Background, Terminology, Reaction Mechanisms and Hydration Products. Constr. Build. Mater. 2008, 22, 1305–1314. [Google Scholar] [CrossRef]
- Mohamed, O.A. A Review of Durability and Strength Characteristics of Alkali-Activated Slag Concrete. Materials 2019, 12, 1198. [Google Scholar] [CrossRef]
- Peng, Y.; Unluer, C. Analyzing the Mechanical Performance of Fly Ash-Based Geopolymer Concrete with Different Machine Learning Techniques. Constr. Build. Mater. 2022, 316, 125785. [Google Scholar] [CrossRef]
- Algaifi, H.A.; Mohamed, A.M.; Alsuhaibani, E.; Shahidan, S.; Alrshoudi, F.; Huseien, G.F.; Bakar, S.A. Optimisation of Gbfs, Fly Ash, and Nano-Silica Contents in Alkali-Activated Mortars. Polymers 2021, 13, 2750. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, A.; Ahmad, W.; Aslam, F.; Joyklad, P. Compressive Strength Prediction of Fly Ash-Based Geopolymer Concrete via Advanced Machine Learning Techniques. Case Stud. Constr. Mater. 2022, 16, e00840. [Google Scholar] [CrossRef]
- Wong, L.S. Durability Performance of Geopolymer Concrete: A Review. Polymers 2022, 14, 868. [Google Scholar] [CrossRef] [PubMed]
- Okoye, F.N. Geopolymer Binder: A Veritable Alternative to Portland Cement. Mater. Today Proc. 2017, 4, 5599–5604. [Google Scholar] [CrossRef]
- Komnitsas, K.; Zaharaki, D. Geopolymerisation: A Review and Prospects for the Minerals Industry. Miner. Eng. 2007, 20, 1261–1277. [Google Scholar] [CrossRef]
- Cao, M.; Mao, Y.; Khan, M.; Si, W.; Shen, S. Different Testing Methods for Assessing the Synthetic Fiber Distribution in Cement-Based Composites. Constr. Build. Mater. 2018, 184, 128–142. [Google Scholar] [CrossRef]
- Sadrmomtazi, A.; Sobhani, J.; Mirgozar, M.A. Modeling Compressive Strength of EPS Lightweight Concrete Using Regression, Neural Network and ANFIS. Constr. Build. Mater. 2013, 42, 205–216. [Google Scholar] [CrossRef]
- Nafees, A.; Amin, M.N.; Khan, K.; Nazir, K.; Ali, M.; Javed, M.F.; Aslam, F.; Musarat, M.A.; Vatin, N.I. Modeling of Mechanical Properties of Silica Fume-Based Green Concrete Using Machine Learning Techniques. Polymers 2022, 14, 30. [Google Scholar] [CrossRef]
- Nafees, A.; Khan, S.; Javed, M.F.; Alrowais, R.; Mohamed, A.M.; Mohamed, A.; Vatin, N.I. Forecasting the Mechanical Properties of Plastic Concrete Employing Experimental Data Using Machine Learning Algorithms: DT, MLPNN, SVM, and RF. Polymers 2022, 14, 1583. [Google Scholar] [CrossRef]
- Ilyas, I.; Zafar, A.; Afzal, M.T.; Javed, M.F.; Alrowais, R.; Althoey, F.; Mohamed, A.M.; Mohamed, A.; Vatin, N.I. Advanced Machine Learning Modeling Approach for Prediction of Compressive Strength of FRP Confined Concrete Using Multiphysics Genetic Expression Programming. Polymers 2022, 14, 1789. [Google Scholar] [CrossRef] [PubMed]
- Wu, M.; Qi, C.; Derrible, S.; Choi, Y.; Fourie, A.; Ok, Y.S. Regional and Global Hotspots of Arsenic Contamination of Topsoil Identified by Deep Learning. Commun. Earth Environ. 2024, 5, 10. [Google Scholar] [CrossRef]
- Qi, C.; Wu, M.; Liu, H.; Liang, Y.; Liu, X.; Lin, Z. Machine Learning Exploration of the Mobility and Environmental Assessment of Toxic Elements in Mining-Associated Solid Wastes. J. Clean. Prod. 2023, 401, 136771. [Google Scholar] [CrossRef]
- Zhou, M.; Hu, T.; Wu, M.; Ma, C.; Qi, C. Rapid Estimation of Soil Mn Content by Machine Learning and Soil Spectra in Large-Scale. Ecol. Inform. 2024, 81, 102615. [Google Scholar] [CrossRef]
- Xu, X.; Qi, C.; Aretxabaleta, X.M.; Ma, C.; Spagnoli, D.; Manzano, H. The Initial Stages of Cement Hydration at the Molecular Level. Nat. Commun. 2024, 15, 2731. [Google Scholar] [CrossRef]
- Jiskani, I.M.; Yasli, F.; Hosseini, S.; Rehman, A.U.; Uddin, S. Improved Z-Number Based Fuzzy Fault Tree Approach to Analyze Health and Safety Risks in Surface Mines. Resour. Policy 2022, 76, 102591. [Google Scholar] [CrossRef]
- Jiskani, I.M.; Zhou, W.; Hosseini, S.; Wang, Z. Mining 4.0 and Climate Neutrality: A Unified and Reliable Decision System for Safe, Intelligent, and Green & Climate-Smart Mining. J. Clean. Prod. 2023, 410, 137313. [Google Scholar] [CrossRef]
- Zhang, Z.; Hosseini, S.; Monjezi, M.; Yari, M. Extension of Reliability Information of Z-Numbers and Fuzzy Cognitive Map: Development of Causality-Weighted Rock Engineering System to Predict and Risk Assessment of Blast-Induced Rock Size Distribution. Int. J. Rock Mech. Min. Sci. 2024, 178, 105779. [Google Scholar] [CrossRef]
- Öztaş, A.; Pala, M.; Özbay, E.; Kanca, E.; Çaǧlar, N.; Bhatti, M.A. Predicting the Compressive Strength and Slump of High Strength Concrete Using Neural Network. Constr. Build. Mater. 2006, 20, 769–775. [Google Scholar] [CrossRef]
- Sobhani, J.; Najimi, M.; Pourkhorshidi, A.R.; Parhizkar, T. Prediction of the Compressive Strength of No-Slump Concrete: A Comparative Study of Regression, Neural Network and ANFIS Models. Constr. Build. Mater. 2010, 24, 709–718. [Google Scholar] [CrossRef]
- Awoyera, P.O.; Kirgiz, M.S.; Viloria, A.; Ovallos-Gazabon, D. Estimating Strength Properties of Geopolymer Self-Compacting Concrete Using Machine Learning Techniques. J. Mater. Res. Technol. 2020, 9, 9016–9028. [Google Scholar] [CrossRef]
- Hodhod, O.A.; Ahmed, H.I. Modeling the Corrosion Initiation Time of Slag Concrete Using the Artificial Neural Network. HBRC J. 2014, 10, 231–234. [Google Scholar] [CrossRef]
- Chou, J.S.; Tsai, C.F.; Pham, A.D.; Lu, Y.H. Machine Learning in Concrete Strength Simulations: Multi-Nation Data Analytics. Constr. Build. Mater. 2014, 73, 771–780. [Google Scholar] [CrossRef]
- Kabiru, O.A.; Owolabi, T.O.; Ssennoga, T.; Olatunji, S.O. Performance Comparison of SVM and ANN in Predicting Compressive Strength of Concrete. IOSR J. Comput. Eng. 2014, 16, 88–94. [Google Scholar]
- Yeh, I.C.; Lien, L.C. Knowledge Discovery of Concrete Material Using Genetic Operation Trees. Expert Syst. Appl. 2009, 36, 5807–5812. [Google Scholar] [CrossRef]
- Mustapha, I.B.; Abdulkareem, M.; Jassam, T.M.; AlAteah, A.H.; Al-Sodani, K.A.A.; Al-Tholaia, M.M.H.; Nabus, H.; Alih, S.C.; Abdulkareem, Z.; Ganiyu, A. Comparative Analysis of Gradient-Boosting Ensembles for Estimation of Compressive Strength of Quaternary Blend Concrete. Int. J. Concr. Struct. Mater. 2024, 18, 20. [Google Scholar] [CrossRef]
- Alhakeem, Z.M.; Jebur, Y.M.; Henedy, S.N.; Imran, H.; Bernardo, L.F.A.; Hussein, H.M. Prediction of Ecofriendly Concrete Compressive Strength Using Gradient Boosting Regression Tree Combined with GridSearchCV Hyperparameter-Optimization Techniques. Materials 2022, 15, 7432. [Google Scholar] [CrossRef]
- Faraz, M.I.; Arifeen, S.U.; Amin, M.N.; Nafees, A.; Althoey, F.; Niaz, A. A Comprehensive GEP and MEP Analysis of a Cement-Based Concrete Containing Metakaolin. Structures 2023, 53, 937–948. [Google Scholar] [CrossRef]
- Shah, S.; Houda, M.; Khan, S.; Althoey, F.; Abuhussain, M.; Abuhussain, M.A.; Ali, M.; Alaskar, A.; Javed, M.F. Mechanical Behaviour of E-Waste Aggregate Concrete Using a Novel Machine Learning Algorithm: Multi Expression Programming (MEP). J. Mater. Res. Technol. 2023, 25, 5720–5740. [Google Scholar] [CrossRef]
- Dey, A.; Rumman, R.; Wakjira, T.G.; Jindal, A.; Bediwy, A.G.; Islam, M.S.; Alam, M.S.; Al Martini, S.; Sabouni, R. Towards Net-Zero Emission: A Case Study Investigating Sustainability Potential of Geopolymer Concrete with Recycled Glass Powder and Gold Mine Tailings. J. Build. Eng. 2024, 86, 108683. [Google Scholar] [CrossRef]
- Al Martini, S.; Sabouni, R.; Khartabil, A.; Wakjira, T.G.; Alam, M.S. Development and Strength Prediction of Sustainable Concrete Having Binary and Ternary Cementitious Blends and Incorporating Recycled Aggregates from Demolished UAE Buildings: Experimental and Machine Learning-Based Studies. Constr. Build. Mater. 2023, 380, 131278. [Google Scholar] [CrossRef]
- Wakjira, T.G.; Kutty, A.A.; Alam, M.S. A Novel Framework for Developing Environmentally Sustainable and Cost-Effective Ultra-High-Performance Concrete (UHPC) Using Advanced Machine Learning and Multi-Objective Optimization Techniques. Constr. Build. Mater. 2024, 416, 135114. [Google Scholar] [CrossRef]
- Wakjira, T.G.; Alam, M.S. Performance-Based Seismic Design of Ultra-High-Performance Concrete (UHPC) Bridge Columns with Design Example–Powered by Explainable Machine Learning Model. Eng. Struct. 2024, 314, 118346. [Google Scholar] [CrossRef]
- Huang, J.; Sun, Y.; Zhang, J. Reduction of Computational Error by Optimizing SVR Kernel Coefficients to Simulate Concrete Compressive Strength through the Use of a Human Learning Optimization Algorithm. Eng. Comput. 2022, 38, 3151–3168. [Google Scholar] [CrossRef]
- Sarir, P.; Chen, J.; Asteris, P.G.; Armaghani, D.J.; Tahir, M.M. Developing GEP Tree-Based, Neuro-Swarm, and Whale Optimization Models for Evaluation of Bearing Capacity of Concrete-Filled Steel Tube Columns. Eng. Comput. 2021, 37, 1–19. [Google Scholar] [CrossRef]
- Balf, F.R.; Kordkheili, H.M.; Kordkheili, A.M. A New Method for Predicting the Ingredients of Self-Compacting Concrete (SCC) Including Fly Ash (FA) Using Data Envelopment Analysis (DEA). Arab. J. Sci. Eng. 2021, 46, 4439–4460. [Google Scholar] [CrossRef]
- Ahmad, A.; Farooq, F.; Ostrowski, K.A.; Śliwa-Wieczorek, K.; Czarnecki, S. Application of Novel Machine Learning Techniques for Predicting the Surface Chloride Concentration in Concrete Containing Waste Material. Materials 2021, 14, 2297. [Google Scholar] [CrossRef]
- Azimi-Pour, M.; Eskandari-Naddaf, H.; Pakzad, A. Linear and Non-Linear SVM Prediction for Fresh Properties and Compressive Strength of High Volume Fly Ash Self-Compacting Concrete. Constr. Build. Mater. 2020, 230, 117021. [Google Scholar] [CrossRef]
- Saha, P.; Debnath, P.; Thomas, P. Prediction of Fresh and Hardened Properties of Self-Compacting Concrete Using Support Vector Regression Approach. Neural Comput. Appl. 2020, 32, 7995–8010. [Google Scholar] [CrossRef]
- Shahmansouri, A.A.; Akbarzadeh Bengar, H.; Jahani, E. Predicting Compressive Strength and Electrical Resistivity of Eco-Friendly Concrete Containing Natural Zeolite via GEP Algorithm. Constr. Build. Mater. 2019, 229, 116883. [Google Scholar] [CrossRef]
- Aslam, F.; Farooq, F.; Amin, M.N.; Khan, K.; Waheed, A.; Akbar, A.; Javed, M.F.; Alyousef, R.; Alabdulijabbar, H. Applications of Gene Expression Programming for Estimating Compressive Strength of High-Strength Concrete. Adv. Civ. Eng. 2020, 2020, 8850535. [Google Scholar] [CrossRef]
- Farooq, F.; Amin, M.N.; Khan, K.; Sadiq, M.R.; Javed, M.F.; Aslam, F.; Alyousef, R. A Comparative Study of Random Forest and Genetic Engineering Programming for the Prediction of Compressive Strength of High Strength Concrete (HSC). Appl. Sci. 2020, 10, 7330. [Google Scholar] [CrossRef]
- Asteris, P.G.; Kolovos, K.G. Self-Compacting Concrete Strength Prediction Using Surrogate Models. Neural Comput. Appl. 2019, 31, 409–424. [Google Scholar] [CrossRef]
- Selvaraj, S.; Sivaraman, S. Prediction Model for Optimized Self-Compacting Concrete with Fly Ash Using Response Surface Method Based on Fuzzy Classification. Neural Comput. Appl. 2019, 31, 1365–1373. [Google Scholar] [CrossRef]
- Zhang, J.; Ma, G.; Huang, Y.; sun, J.; Aslani, F.; Nener, B. Modelling Uniaxial Compressive Strength of Lightweight Self-Compacting Concrete Using Random Forest Regression. Constr. Build. Mater. 2019, 210, 713–719. [Google Scholar] [CrossRef]
- Kaveh, A.; Bakhshpoori, T.; Hamze-Ziabari, S.M. M5’ and Mars Based Prediction Models for Properties of Selfcompacting Concrete Containing Fly Ash. Period. Polytech. Civ. Eng. 2018, 62, 281–294. [Google Scholar] [CrossRef]
- Sathyan, D.; Anand, K.B.; Prakash, A.J.; Premjith, B. Modeling the Fresh and Hardened Stage Properties of Self-Compacting Concrete Using Random Kitchen Sink Algorithm. Int. J. Concr. Struct. Mater. 2018, 12, 24. [Google Scholar] [CrossRef]
- Vakhshouri, B.; Nejadi, S. Prediction of Compressive Strength of Self-Compacting Concrete by ANFIS Models. Neurocomputing 2018, 280, 13–22. [Google Scholar] [CrossRef]
- Belalia Douma, O.; Boukhatem, B.; Ghrici, M.; Tagnit-Hamou, A. Prediction of Properties of Self-Compacting Concrete Containing Fly Ash Using Artificial Neural Network. Neural Comput. Appl. 2017, 28, 707–718. [Google Scholar] [CrossRef]
- Abu Yaman, M.; Abd Elaty, M.; Taman, M. Predicting the Ingredients of Self Compacting Concrete Using Artificial Neural Network. Alexandria Eng. J. 2017, 56, 523–532. [Google Scholar] [CrossRef]
- Ahmad, A.; Farooq, F.; Niewiadomski, P.; Ostrowski, K.; Akbar, A.; Aslam, F.; Alyousef, R. Prediction of Compressive Strength of Fly Ash Based Concrete Using Individual and Ensemble Algorithm. Materials 2021, 14, 794. [Google Scholar] [CrossRef] [PubMed]
- Farooq, F.; Ahmed, W.; Akbar, A.; Aslam, F.; Alyousef, R. Predictive Modeling for Sustainable High-Performance Concrete from Industrial Wastes: A Comparison and Optimization of Models Using Ensemble Learners. J. Clean. Prod. 2021, 292, 126032. [Google Scholar] [CrossRef]
- Bušić, R.; Benšić, M.; Miličević, I.; Strukar, K. Prediction Models for the Mechanical Properties of Self-Compacting Concrete with Recycled Rubber and Silica Fume. Materials 2020, 13, 1821. [Google Scholar] [CrossRef] [PubMed]
- Javed, M.F.; Farooq, F.; Memon, S.A.; Akbar, A.; Khan, M.A.; Aslam, F.; Alyousef, R.; Alabduljabbar, H.; Rehman, S.K.U. New Prediction Model for the Ultimate Axial Capacity of Concrete-Filled Steel Tubes: An Evolutionary Approach. Crystals 2020, 10, 741. [Google Scholar] [CrossRef]
- Nematzadeh, M.; Shahmansouri, A.A.; Fakoor, M. Post-Fire Compressive Strength of Recycled PET Aggregate Concrete Reinforced with Steel Fibers: Optimization and Prediction via RSM and GEP. Constr. Build. Mater. 2020, 252, 119057. [Google Scholar] [CrossRef]
- Güçlüer, K.; Özbeyaz, A.; Göymen, S.; Günaydın, O. A Comparative Investigation Using Machine Learning Methods for Concrete Compressive Strength Estimation. Mater. Today Commun. 2021, 27, 102278. [Google Scholar] [CrossRef]
- Ahmad, A.; Ostrowski, K.A.; Maślak, M.; Farooq, F.; Mehmood, I.; Nafees, A. Comparative Study of Supervised Machine Learning Algorithms for Predicting the Compressive Strength of Concrete at High Temperature. Materials 2021, 14, 4222. [Google Scholar] [CrossRef]
- Asteris, P.G.; Skentou, A.D.; Bardhan, A.; Samui, P.; Pilakoutas, K. Predicting Concrete Compressive Strength Using Hybrid Ensembling of Surrogate Machine Learning Models. Cem. Concr. Res. 2021, 145, 106449. [Google Scholar] [CrossRef]
- Emad, W.; Mohammed, A.S.; Kurda, R.; Ghafor, K.; Cavaleri, L.; Qaidi, S.M.A.; Hassan, A.M.T.; Asteris, P.G. Prediction of Concrete Materials Compressive Strength Using Surrogate Models. Structures 2022, 46, 1243–1267. [Google Scholar] [CrossRef]
- Shen, Z.; Deifalla, A.F.; Kamiński, P.; Dyczko, A. Compressive Strength Evaluation of Ultra-High-Strength Concrete by Machine Learning. Materials 2022, 15, 3523. [Google Scholar] [CrossRef]
- Kumar, A.; Arora, H.C.; Kapoor, N.R.; Mohammed, M.A.; Kumar, K.; Majumdar, A.; Thinnukool, O. Compressive Strength Prediction of Lightweight Concrete: Machine Learning Models. Sustainability 2022, 14, 2404. [Google Scholar] [CrossRef]
- Jaf, D.K.I.; Abdulrahman, P.I.; Mohammed, A.S.; Kurda, R.; Qaidi, S.M.A.; Asteris, P.G. Machine Learning Techniques and Multi-Scale Models to Evaluate the Impact of Silicon Dioxide (SiO2) and Calcium Oxide (CaO) in Fly Ash on the Compressive Strength of Green Concrete. Constr. Build. Mater. 2023, 400, 132604. [Google Scholar]
- Mahmood, W.; Mohammed, A.S.; Asteris, P.G.; Ahmed, H. Soft Computing Technics to Predict the Early-Age Compressive Strength of Flowable Ordinary Portland Cement. Soft Comput. 2023, 27, 3133–3150. [Google Scholar] [CrossRef]
- Ali, R.; Muayad, M.; Mohammed, A.S.; Asteris, P.G. Analysis and Prediction of the Effect of Nanosilica on the Compressive Strength of Concrete with Different Mix Proportions and Specimen Sizes Using Various Numerical Approaches. Struct. Concr. 2023, 24, 4161–4184. [Google Scholar] [CrossRef]
- Mirjalili, S. SCA: A Sine Cosine Algorithm for Solving Optimization Problems. Knowl.-Based Syst. 2016, 96, 120–133. [Google Scholar] [CrossRef]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Sufian, M.; Ullah, S.; Ostrowski, K.A.; Ahmad, A.; Zia, A.; Sliwa-Wieczorek, K.; Siddiq, M.; Awan, A.A. An Experimental and Empirical Study on the Use of Waste Marble Powder in Construction Material. Materials 2021, 14, 3829. [Google Scholar] [CrossRef]
- Bondar, D.; Nanukuttan, S.; Provis, J.L.; Soutsos, M. Efficient Mix Design of Alkali Activated Slag Concretes Based on Packing Fraction of Ingredients and Paste Thickness. J. Clean. Prod. 2019, 218, 438–449. [Google Scholar] [CrossRef]
- Babaee, S.M. Corrosion of Reinforcement In Alkali-Activated Materials. Ph.D. Thesis, UNSW Sydney, Kensington, Australia, 2018. [Google Scholar]
- Kar, A. Characterizations of Concretes with Alkali-Activated Binder and Correlating Their Properties from Micro- to Specimen Level. Ph.D. Thesis, West Virginia University, Morgantown, WV, USA, 2013. [Google Scholar]
- Phoo-Ngernkham, T.; Phiangphimai, C.; Damrongwiriyanupap, N.; Hanjitsuwan, S.; Thumrongvut, J.; Chindaprasirt, P. A Mix Design Procedure for Alkali-Activated High-Calcium Fly Ash Concrete Cured at Ambient Temperature. Adv. Mater. Sci. Eng. 2018, 2018, 2460403. [Google Scholar] [CrossRef]
- Madhuri, G.M.; Rao, K.S. Engineering Properties of Alkali Activated Slag Concrete Under Ambient And Heat Curing. Int. J. Eng. Trends Technol. 2017, 50, 161–166. [Google Scholar] [CrossRef]
- Gu, L.; Visintin, P.; Bennett, T. Evaluation of Accelerated Degradation Test Methods for Cementitious Composites Subject to Sulfuric Acid Attack; Application to Conventional and Alkali-Activated Concretes. Cem. Concr. Compos. 2018, 87, 187–204. [Google Scholar] [CrossRef]
- K, N.V.; Babu, D.L.V. Assessing the Performance of Molarity and Alkaline Activator Ratio on Engineering Properties of Self-Compacting Alkaline Activated Concrete at Ambient Temperature. J. Build. Eng. 2018, 20, 137–155. [Google Scholar] [CrossRef]
- Shahrajabian, F.; Behfarnia, K. The Effects of Nano Particles on Freeze and Thaw Resistance of Alkali-Activated Slag Concrete. Constr. Build. Mater. 2018, 176, 172–178. [Google Scholar] [CrossRef]
- Alzeebaree, R.; Çevik, A.; Nematollahi, B.; Sanjayan, J.; Mohammedameen, A.; Gülşan, M.E. Mechanical Properties and Durability of Unconfined and Confined Geopolymer Concrete with Fiber Reinforced Polymers Exposed to Sulfuric Acid. Constr. Build. Mater. 2019, 215, 1015–1032. [Google Scholar] [CrossRef]
- Bhardwaj, B.; Kumar, P. Comparative Study of Geopolymer and Alkali Activated Slag Concrete Comprising Waste Foundry Sand. Constr. Build. Mater. 2019, 209, 555–565. [Google Scholar] [CrossRef]
- Farhan, N.A.; Sheikh, M.N.; Hadi, M.N.S. Investigation of Engineering Properties of Normal and High Strength Fly Ash Based Geopolymer and Alkali-Activated Slag Concrete Compared to Ordinary Portland Cement Concrete. Constr. Build. Mater. 2019, 196, 26–42. [Google Scholar] [CrossRef]
- Gopalakrishnan, R.; Chinnaraju, K. Durability of Ambient Cured Alumina Silicate Concrete Based on Slag/Fly Ash Blends against Sulfate Environment. Constr. Build. Mater. 2019, 204, 70–83. [Google Scholar] [CrossRef]
- Deb, P.S.; Nath, P.; Sarker, P.K. The Effects of Ground Granulated Blast-Furnace Slag Blending with Fly Ash and Activator Content on the Workability and Strength Properties of Geopolymer Concrete Cured at Ambient Temperature. Mater. Des. 2014, 62, 32–39. [Google Scholar] [CrossRef]
- Gülşan, M.E.; Alzeebaree, R.; Rasheed, A.A.; Niş, A.; Kurtoğlu, A.E. Development of Fly Ash/Slag Based Self-Compacting Geopolymer Concrete Using Nano-Silica and Steel Fiber. Constr. Build. Mater. 2019, 211, 271–283. [Google Scholar] [CrossRef]
- Gunasekara, C.; Law, D.; Bhuiyan, S.; Setunge, S.; Ward, L. Chloride Induced Corrosion in Different Fly Ash Based Geopolymer Concretes. Constr. Build. Mater. 2019, 200, 502–513. [Google Scholar] [CrossRef]
- Okoye, F.N.; Durgaprasad, J.; Singh, N.B. Mechanical Properties of Alkali Activated Flyash/Kaolin Based Geopolymer Concrete. Constr. Build. Mater. 2015, 98, 685–691. [Google Scholar] [CrossRef]
- Shaikh, F.U.A. Mechanical and Durability Properties of Fly Ash Geopolymer Concrete Containing Recycled Coarse Aggregates. Int. J. Sustain. Built Environ. 2016, 5, 277–287. [Google Scholar] [CrossRef]
- Gunasekara, C.; Law, D.W.; Setunge, S. Long Term Permeation Properties of Different Fly Ash Geopolymer Concretes. Constr. Build. Mater. 2016, 124, 352–362. [Google Scholar] [CrossRef]
- Okoye, F.N.; Durgaprasad, J.; Singh, N.B. Fly Ash/Kaolin Based Geopolymer Green Concretes and Their Mechanical Properties. Data Brief 2015, 5, 739–744. [Google Scholar] [CrossRef] [PubMed]
- Xie, T.; Ozbakkaloglu, T. Behavior of Low-Calcium Fly and Bottom Ash-Based Geopolymer Concrete Cured at Ambient Temperature. Ceram. Int. 2015, 41, 5945–5958. [Google Scholar] [CrossRef]
- Ramagiri, K.K.; Chauhan, D.R.; Gupta, S.; Kar, A.; Adak, D.; Mukherjee, A. High-Temperature Performance of Ambient-Cured Alkali-Activated Binder Concrete. Innov. Infrastruct. Solut. 2021, 6, 71. [Google Scholar] [CrossRef]
- Humad, A.M.; Kothari, A.; Provis, J.L.; Cwirzen, A. The Effect of Blast Furnace Slag/Fly Ash Ratio on Setting, Strength, and Shrinkage of Alkali-Activated Pastes and Concretes. Front. Mater. 2019, 6, 9. [Google Scholar] [CrossRef]
- Farhan, N.A.; Sheikh, M.N.; Hadi, M.N.S. Engineering Properties of Ambient Cured Alkali-Activated Fly Ash–Slag Concrete Reinforced with Different Types of Steel Fiber. J. Mater. Civ. Eng. 2018, 30, 04018142. [Google Scholar] [CrossRef]
- Valencia Saavedra, W.G.; Angulo, D.E.; Mejía de Gutiérrez, R. Fly Ash Slag Geopolymer Concrete: Resistance to Sodium and Magnesium Sulfate Attack. J. Mater. Civ. Eng. 2016, 28, 04016148. [Google Scholar] [CrossRef]
- Orosz, K.; Humad, A.; Hedlund, H.; Cwirzen, A. Autogenous Deformation of Alkali-Activated Blast Furnace Slag Concrete Subjected to Variable Curing Temperatures. Adv. Civ. Eng. 2019, 2019, 6903725. [Google Scholar] [CrossRef]
- Aslani, F.; Asif, Z. Properties of Ambient-Cured Normal and Heavyweight Geopolymer Concrete Exposed to High Temperatures. Materials 2019, 12, 740. [Google Scholar] [CrossRef] [PubMed]
- Sathanandam, T.; Awoyera, P.O.; Vijayan, V.; Sathishkumar, K. Low Carbon Building: Experimental Insight on the Use of Fly Ash and Glass Fibre for Making Geopolymer Concrete. Sustain. Environ. Res. 2017, 27, 146–153. [Google Scholar] [CrossRef]
- Puertas, F.; González-Fonteboa, B.; González-Taboada, I.; Alonso, M.M.; Torres-Carrasco, M.; Rojo, G.; Martínez-Abella, F. Alkali-Activated Slag Concrete: Fresh and Hardened Behaviour. Cem. Concr. Compos. 2018, 85, 22–31. [Google Scholar] [CrossRef]
- Aliabdo, A.A.; Abd Elmoaty, A.E.M.; Emam, M.A. Factors Affecting the Mechanical Properties of Alkali Activated Ground Granulated Blast Furnace Slag Concrete. Constr. Build. Mater. 2019, 197, 339–355. [Google Scholar] [CrossRef]
- Thunuguntla, C.S.; Gunneswara Rao, T.D. Mix Design Procedure for Alkali-Activated Slag Concrete Using Particle Packing Theory. J. Mater. Civ. Eng. 2018, 30, 04018113. [Google Scholar] [CrossRef]
- Wardhono, A. The Durability of Fly Ash Geopolymer and Alkali-Activated Slag Concretes. Ph.D. Thesis, RMIT University, Melbourne, Australia, 2015. [Google Scholar]
- Wardhono, A.; Law, D.W.; Sutikno; Dani, H. The Effect of Slag Addition on Strength Development of Class C Fly Ash Geopolymer Concrete at Normal Temperature. AIP Conf. Proc. 2017, 1887, 020030. [Google Scholar]
- Mithun, B.M.; Narasimhan, M.C. SELF-Cured Alkali Activated Slag Concrete Mixes-an Experimental Study. Int. J. Civ. Environ. Eng. 2014, 8, 477–482. [Google Scholar]
- Pilehvar, S.; Cao, V.D.; Szczotok, A.M.; Carmona, M.; Valentini, L.; Lanzón, M.; Pamies, R.; Kjøniksen, A.-L. Physical and Mechanical Properties of Fly Ash and Slag Geopolymer Concrete Containing Different Types of Micro-Encapsulated Phase Change Materials. Constr. Build. Mater. 2018, 173, 28–39. [Google Scholar] [CrossRef]
- Fang, G.; Ho, W.K.; Tu, W.; Zhang, M. Workability and Mechanical Properties of Alkali-Activated Fly Ash-Slag Concrete Cured at Ambient Temperature. Constr. Build. Mater. 2018, 172, 476–487. [Google Scholar] [CrossRef]
- Reddy, M.S.; Dinakar, P.; Rao, B.H. Mix Design Development of Fly Ash and Ground Granulated Blast Furnace Slag Based Geopolymer Concrete. J. Build. Eng. 2018, 20, 712–722. [Google Scholar] [CrossRef]
- Rafeet, A.; Vinai, R.; Soutsos, M.; Sha, W. Guidelines for Mix Proportioning of Fly Ash/GGBS Based Alkali Activated Concretes. Constr. Build. Mater. 2017, 147, 130–142. [Google Scholar] [CrossRef]
- Lee, N.K.; Lee, H.K. Setting and Mechanical Properties of Alkali-Activated Fly Ash/Slag Concrete Manufactured at Room Temperature. Constr. Build. Mater. 2013, 47, 1201–1209. [Google Scholar] [CrossRef]
- Nath, P.; Sarker, P.K. Effect of GGBFS on Setting, Workability and Early Strength Properties of Fly Ash Geopolymer Concrete Cured in Ambient Condition. Constr. Build. Mater. 2014, 66, 163–171. [Google Scholar] [CrossRef]
- Hosseini, S.; Mousavi, A.; Monjezi, M. Prediction of Blast-Induced Dust Emissions in Surface Mines Using Integration of Dimensional Analysis and Multivariate Regression Analysis. Arab. J. Geosci. 2022, 15, 163. [Google Scholar] [CrossRef]
- Kahraman, E.; Hosseini, S.; Taiwo, B.O.; Fissha, Y.; Jebutu, V.A.; Akinlabi, A.A.; Adachi, T. Fostering Sustainable Mining Practices in Rock Blasting: Assessment of Blast Toe Volume Prediction Using Comparative Analysis of Hybrid Ensemble Machine Learning Techniques. J. Saf. Sustain. 2024, 1, 75–88. [Google Scholar] [CrossRef]
- Taiwo, B.O.; Hosseini, S.; Fissha, Y.; Kilic, K.; Olusola, O.A.; Chandrahas, N.S.; Li, E.; Akinlabi, A.A.; Khan, N.M. Indirect Evaluation of the Influence of Rock Boulders in Blasting to the Geohazard: Unearthing Geologic Insights Fused with Tree Seed Based LSTM Algorithm. Geohazard Mech. 2024; in press. [Google Scholar]
- Hosseini, S.; Mousavi, A.; Monjezi, M.; Khandelwal, M. Mine-to-Crusher Policy: Planning of Mine Blasting Patterns for Environmentally Friendly and Optimum Fragmentation Using Monte Carlo Simulation-Based Multi-Objective Grey Wolf Optimization Approach. Resour. Policy 2022, 79, 103087. [Google Scholar] [CrossRef]
- Wei, W.; Li, X.; Liu, J.; Zhou, Y.; Li, L.; Zhou, J. Performance Evaluation of Hybrid Woa-svr and Hho-svr Models with Various Kernels to Predict Factor of Safety for Circular Failure Slope. Appl. Sci. 2021, 11, 1922. [Google Scholar] [CrossRef]
- Nguyen, H.; Drebenstedt, C.; Bui, X.-N.; Bui, D.T. Prediction of Blast-Induced Ground Vibration in an Open-Pit Mine by a Novel Hybrid Model Based on Clustering and Artificial Neural Network. Nat. Resour. Res. 2020, 29, 691–709. [Google Scholar] [CrossRef]
- Zhou, J.; Su, Z.; Hosseini, S.; Tian, Q.; Lu, Y.; Luo, H.; Xu, X.; Chen, C.; Huang, J. Decision Tree Models for the Estimation of Geo-Polymer Concrete Compressive Strength. Math. Biosci. Eng. 2024, 21, 1413–1444. [Google Scholar] [CrossRef]
- Taylor, K.E. Summarizing Multiple Aspects of Model Performance in a Single Diagram. J. Geophys. Res. Atmos. 2001, 106, 7183–7192. [Google Scholar] [CrossRef]
- Zhang, H.; Zhou, J.; Armaghani, D.J.; Tahir, M.M.; Pham, B.T.; Huynh, V. Van A Combination of Feature Selection and Random Forest Techniques to Solve a Problem Related to Blast-Induced Ground Vibration. Appl. Sci. 2020, 10, 869. [Google Scholar] [CrossRef]
- Zhao, J.; Hosseini, S.; Chen, Q.; Armaghani, D.J. Super Learner Ensemble Model: A Novel Approach for Predicting Monthly Copper Price in Future. Resour. Policy 2023, 85, 103903. [Google Scholar] [CrossRef]
Author | Year | Technique | Number of Data |
---|---|---|---|
Huang et al. [54] | 2021 | SVM | 114 |
Sarir et al. [55] | 2019 | GEP | 303 |
Balf et al. [56] | 2021 | DEA | 114 |
Ahmad et al. [57] | 2021 | GEP, ANN, DT | 642 |
Azimi-Pour et al. [58] | 2020 | SVM | - |
Saha et al. [59] | 2020 | SVM | 115 |
Hahmansouri et al. [60] | 2019 | GEP | 54 |
Aslam et al. [61] | 2020 | GEP | 357 |
Farooq et al. [62] | 2020 | RF and GEP | 357 |
Asteris and Kolovos [63] | 2019 | ANN | 205 |
Selvaraj and Sivaraman [64] | 2019 | IREMSVM-FR with RSM | 114 |
Zhang et al. [65] | 2019 | RF | 131 |
Kaveh et al. [66] | 2018 | M5MARS | 114 |
Sathyan et al. [67] | 2018 | RKSA | 40 |
Vakhshouri and Nejadi [68] | 2018 | ANFIS | 55 |
Belalia Douma et al. [69] | 2017 | ANN | 114 |
Abu Yaman et al. [70] | 2017 | ANN | 69 |
Ahmad et al. [71] | 2021 | GEP, DT, and Bagging | 270 |
Farooq et al. [72] | 2021 | ANN, bagging and boosting | 1030 |
Bušić et al. [73] | 2020 | MV | 21 |
Javad et al. [74] | 2020 | GEP | 277 |
Nematzadeh et al. [75] | 2020 | RSM, GEP | 108 |
Güçlüer et al. [76] | 2021 | ANN, SVM, DT | 100 |
Ahmad et al. [77] | 2021 | ANN, DT, GB | 207 |
Asteris et al. [78] | 2021 | ANN, GPR, MARS | 1030 |
Emad et al. [79] | 2022 | ANN, M5P, | 306 |
Shen et al. [80] | 2022 | XGBoost, AdaBoost, and Bagging | 372 |
Kuma et al. [81] | 2022 | GPR, SVMR | 194 |
Jaf et al. [82] | 2023 | NLR, MLR, ANN | 236 |
Mahmood et al. [83] | 2023 | NLR, M5P, ANN | 280 |
Ali et al. [84] | 2023 | LR, MLR, NLR, PQ, IA, FQ | 420 |
Parameter | Abbreviation | Unit | Mean | Median | Standard Deviation | Kurtosis | Skewness | Min | Maximum |
---|---|---|---|---|---|---|---|---|---|
Fly ash | FA | kg/m3 | 174.276 | 150.000 | 172.767 | −1.554 | 0.252 | 0.000 | 523.000 |
Ground granulated blast furnace slag | GGBS | kg/m3 | 213.449 | 233.000 | 162.307 | −1.603 | −0.013 | 0.000 | 450.000 |
Na2SiO3 | Na2SiO3 | kg/m3 | 102.224 | 99.500 | 41.653 | 6.873 | 1.596 | 18.000 | 342.000 |
NaOH | NaOH | kg/m3 | 59.994 | 64.000 | 30.566 | −0.102 | 0.277 | 6.300 | 147.000 |
Fine aggregate | FAg | kg/m3 | 732.746 | 723.500 | 138.443 | 5.537 | 1.435 | 459.000 | 1360.000 |
Gravel 4/10 mm | Gravel 4/10 | kg/m3 | 332.472 | 307.500 | 372.807 | 0.470 | 1.137 | 0.000 | 1257.000 |
Gravel 10/20 mm | Gravel 10/20 | kg/m3 | 742.391 | 816.500 | 363.549 | 0.117 | −0.977 | 0.000 | 1298.000 |
Water/solids ratio | WS | - | 0.332 | 0.330 | 0.095 | 0.278 | 0.410 | 0.120 | 0.630 |
NaOH Molarity | NaOH Molarity | - | 8.103 | 9.600 | 4.569 | −1.150 | −0.018 | 1.000 | 20.000 |
Compressive strength of geopolymer concrete | CoSGePC | MPa | 44.691 | 43.000 | 18.012 | −0.783 | 0.303 | 10.000 | 86.080 |
Inputs | Output | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
FA | GGBS | Na2SiO3 | NaOH | FAg | Gravel 4/10 | Gravel 10/20 | WS | NaOH Molarity | CoSGePC | DOI |
391 | 0 | 92 | 75 | 721 | 450 | 661 | 0.35 | 10 | 22 | https://doi.org/10.1016/j.conbuildmat.2017.04.036 (accessed on 30 August 2017) |
350 | 150 | 120 | 80 | 628 | 693 | 314 | 0.21 | 14 | 66 | https://doi.org/10.1016/j.jobe.2018.09.010 (accessed on 1 November 2018) |
360 | 40 | 107 | 53 | 644 | 399 | 798 | 0.21 | 10 | 23 | https://doi.org/10.1016/j.conbuildmat.2018.04.008 (accessed on 30 May 2018) |
280.24 | 190.95 | 113.87 | 75.91 | 828.12 | 0 | 809.58 | 0.23 | 14 | 80 | https://doi.org/10.1016/j.conbuildmat.2018.04.016 (accessed on 10 June 2018) |
320 | 80 | 158.37 | 28.55 | 972.72 | 0 | 704.39 | 0.48 | 2.98 | 44.6 | https://doi.org/10.1061/(ASCE)MT.1943-5533.0001618 (accessed on 12 December 2016) |
360 | 40 | 114.3 | 45.7 | 651 | 446.4 | 762.6 | 0.21 | 14 | 40 | https://doi.org/10.1016/j.matdes.2014.05.001 (accessed on 1 October 2014) |
293 | 88 | 71.67 | 143.33 | 760 | 1005 | 0 | 0.36 | 6 | 37 | https://doi.org/10.1016/j.conbuildmat.2013.05.107 (accessed on 1 October 2013) |
400 | 0 | 114.3 | 45.7 | 651 | 1209 | 0 | 0.21 | 14 | 25 | https://doi.org/10.1016/j.conbuildmat.2014.05.080 (accessed on 15 September 2014) |
400 | 0 | 129.43 | 10.57 | 651 | 1209 | 0 | 0.22 | 12.67 | 27.7 | https://doi.org/10.33915/etd.165 (accessed on 2013) |
523 | 0 | 118 | 118 | 459 | 1124 | 0 | 0.26 | 10 | 36 | https://doi.org/10.1155/2018/2460403 (accessed on 15 April 2018) |
0 | 320 | 89.56 | 38.438 | 708.5 | 415.7 | 831.3 | 0.42 | 16 | 46.5 | https://doi.org/10.14445/22315381/IJETT-V50P225 (accessed on 2017) |
417 | 0 | 293 | 66 | 698 | 308 | 619 | 0.37 | 15 | 47 | https://doi.org/10.1016/j.conbuildmat.2018.12.168 (accessed on 10 March 2019) |
400 | 0 | 113 | 45 | 554 | 431 | 862 | 0.2 | 14 | 45 | https://doi.org/10.1016/j.conbuildmat.2015.08.009 (accessed on 15 November 2015) |
416 | 0 | 292 | 65 | 699 | 309 | 618 | 0.37 | 15 | 48.7 | https://doi.org/10.1016/j.conbuildmat.2016.07.121 (accessed on 15 October 2016) |
388 | 0 | 113 | 45 | 554 | 431 | 862 | 0.2 | 14 | 37.5 | https://doi.org/10.1016/j.dib.2015.10.029 (accessed on 1 December 2015) |
360 | 90 | 26.67 | 18.32 | 1247 | 415 | 0 | 0.16 | 2.42 | 64.5 | https://doi.org/10.3389/fmats.2019.00009 (accessed on 14 February 2019) |
225 | 225 | 112.5 | 45 | 627 | 0 | 1164 | 0.27 | 14 | 44.1 | https://doi.org/10.1061/(ASCE)MT.1943-5533.0002333 (accessed on 1 July 2018) |
90 | 360 | 81 | 22.77 | 1360 | 340 | 0 | 0.45 | 3.42 | 43 | http://www.diva-portal.org/smash/record.jsf?pid=diva2:1098704 (accessed on 2017) |
0 | 370 | 22.6 | 14.8 | 643 | 0 | 1217 | 0.43 | 2.39 | 36.2 | https://doi.org/10.5281/zenodo.1093468 (accessed on 1 June 2014) |
0 | 450 | 81.45 | 22.77 | 1332 | 331 | 0 | 0.45 | 3.42 | 50 | https://doi.org/10.1155/2019/6903725 (accessed on 28 April 2019) |
360 | 40 | 114.3 | 45.7 | 650 | 0 | 1210 | 0.29 | 14 | 21 | https://dx.doi.org/10.3390%2Fma12050740 (accessed on 4 March 2019) |
0 | 419 | 53 | 56 | 784 | 346 | 693 | 0.29 | 10 | 32.9 | https://researchrepository.rmit.edu.au/permalink/61RMIT_INST/1lek7c1/alma9921861379101341 (accessed on 2009) |
350 | 0 | 75.3 | 75.3 | 570 | 0 | 680 | 0.28 | 12 | 21.09 | https://doi.org/10.1016/j.serj.2017.03.005 (accessed on 1 May 2017) |
0 | 357 | 80.03 | 14.97 | 563 | 548 | 728 | 0.29 | 10 | 64 | https://doi.org/10.1016/j.cemconcomp.2017.10.003 (accessed on 1 January 2018) |
0 | 400 | 101.82 | 58.18 | 894 | 894 | 0 | 0.28 | 10 | 44.92 | https://doi.org/10.1016/j.conbuildmat.2018.11.086 (accessed on 10 February 2019) |
0 | 300 | 72 | 48 | 917 | 0 | 1090 | 0.25 | 1 | 16.69 | https://doi.org/10.1061/(asce)mt.1943-5533.0002296 (accessed on June 2018) |
467 | 0 | 234 | 147 | 784 | 346 | 693 | 0.22 | 10 | 22.37 | https://researchrepository.rmit.edu.au/permalink/61RMIT_INST/13r5bm8/alma9921864291801341 (accessed on 2014) |
400 | 0 | 96 | 64 | 651 | 446.4 | 726.6 | 0.21 | 14 | 12.62 | https://doi.org/10.1063/1.5003513 (accessed on 29 September 2017) |
360 | 40 | 114.3 | 45.7 | 651 | 446.4 | 726.6 | 0.2 | 14 | 40 | https://doi.org/10.1016/j.matdes.2014.05.001 (accessed on 1 October 2014) |
85 | 340 | 131.55 | 25.5 | 700.54 | 210.16 | 840.65 | 0.38 | 5 | 81.1 | https://www.concrete.org/publications/internationalconcreteabstractsportal.aspx?m=details&i=51701073 (accessed on 8 January 2017) |
349.2 | 38.8 | 138.7 | 19.96 | 620.8 | 0 | 1221.1 | 0.44 | 7.5 | 55.7 | https://www.unsworks.unsw.edu.au/permalink/f/5gm2j3/unsworks_49397 (accessed on 2018) |
0 | 300 | 18 | 12 | 822 | 247 | 986 | 0.44 | 2.39 | 39.54 | https://doi.org/10.1016/j.jclepro.2019.01.332 (accessed on 1 May 2019) |
Swarm Size | Training Phase | Testing Phase | ||||||
---|---|---|---|---|---|---|---|---|
R2 | RMSE | VAF | MAE | R2 | RMSE | VAF | MAE | |
10 | 0.9538 | 6.4831 | 92.91981 | 5.0884 | 0.9370 | 8.0403 | 92.1255 | 5.9976 |
20 | 0.9562 | 6.4819 | 93.2536 | 5.0874 | 0.9381 | 8.0177 | 92.1354 | 5.9882 |
30 | 0.9568 | 6.4810 | 93.3892 | 5.0873 | 0.9385 | 8.0120 | 92.1376 | 5.9856 |
40 | 0.9575 | 6.4745 | 93.6056 | 5.0863 | 0.9399 | 7.9476 | 92.1477 | 5.9768 |
50 | 0.9575 | 6.4742 | 93.8128 | 5.0860 | 0.9400 | 7.9439 | 92.1452 | 5.9767 |
60 | 0.9545 | 6.4823 | 93.1716 | 5.0880 | 0.9373 | 8.0249 | 92.1322 | 5.9900 |
70 | 0.9576 | 6.4738 | 93.8773 | 5.0854 | 0.9400 | 7.9145 | 92.1498 | 5.9655 |
80 | 0.9569 | 6.4796 | 93.5313 | 5.0871 | 0.9388 | 7.9491 | 92.1449 | 5.9842 |
90 | 0.9552 | 6.4822 | 93.2250 | 5.0874 | 0.9376 | 8.0178 | 92.1364 | 5.9891 |
100 | 0.9542 | 6.4829 | 93.0451 | 5.0882 | 0.9371 | 8.0295 | 92.1264 | 5.9962 |
Swarm Size | Training Phase | Testing Phase | Total Rate | Rank | ||||||
---|---|---|---|---|---|---|---|---|---|---|
R2 | RMSE | VAF | MAE | R2 | RMSE | VAF | MAE | |||
10 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 8 | 10 |
20 | 5 | 5 | 5 | 5 | 5 | 5 | 4 | 5 | 39 | 6 |
30 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 48 | 5 |
40 | 8 | 8 | 8 | 8 | 8 | 8 | 9 | 8 | 65 | 3 |
50 | 9 | 9 | 9 | 9 | 9 | 9 | 8 | 9 | 71 | 2 |
60 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 24 | 8 |
70 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 80 | 1 |
80 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 56 | 4 |
90 | 4 | 4 | 4 | 4 | 4 | 4 | 5 | 4 | 33 | 7 |
100 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 16 | 9 |
Swarm Size | Training Phase | Testing Phase | ||||||
---|---|---|---|---|---|---|---|---|
R2 | RMSE | VAF | MAE | R2 | RMSE | VAF | MAE | |
10 | 0.9811 | 4.3900 | 96.7931 | 2.7650 | 0.9615 | 5.7078 | 95.0023 | 2.7649 |
20 | 0.9849 | 4.3511 | 96.8187 | 2.7620 | 0.9646 | 5.6707 | 95.0266 | 2.7610 |
30 | 0.9842 | 4.3606 | 96.8128 | 2.7637 | 0.9634 | 5.6765 | 95.0216 | 2.7619 |
40 | 0.9848 | 4.3591 | 96.8158 | 2.7626 | 0.9645 | 5.6733 | 95.0220 | 2.7613 |
50 | 0.9841 | 4.3614 | 96.7981 | 2.7639 | 0.9631 | 5.6836 | 95.0144 | 2.7625 |
60 | 0.9835 | 4.3678 | 96.8123 | 2.7640 | 0.9627 | 5.6883 | 95.0122 | 2.7626 |
70 | 0.9825 | 4.3764 | 96.7978 | 2.7640 | 0.9622 | 5.6991 | 95.0132 | 2.7634 |
80 | 0.9818 | 4.3798 | 96.7972 | 2.7645 | 0.9618 | 5.7027 | 95.0090 | 2.7637 |
90 | 0.9815 | 4.3888 | 96.7958 | 2.7648 | 0.9617 | 5.7063 | 95.0032 | 2.7640 |
100 | 0.9848 | 4.3591 | 96.8156 | 2.7629 | 0.9645 | 5.6765 | 95.0245 | 2.7614 |
Swarm Size | Training Phase | Testing Phase | Total Rate | Rank | ||||||
---|---|---|---|---|---|---|---|---|---|---|
R2 | RMSE | VAF | MAE | R2 | RMSE | VAF | MAE | |||
10 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 8 | 10 |
20 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 80 | 1 |
30 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 56 | 4 |
40 | 9 | 9 | 9 | 9 | 9 | 9 | 8 | 9 | 71 | 2 |
50 | 6 | 6 | 5 | 6 | 6 | 6 | 6 | 6 | 47 | 5 |
60 | 5 | 5 | 6 | 5 | 5 | 5 | 4 | 5 | 40 | 6 |
70 | 4 | 4 | 4 | 4 | 4 | 4 | 5 | 4 | 33 | 7 |
80 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 24 | 8 |
90 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 16 | 9 |
Model | Training | Testing | ||||||
---|---|---|---|---|---|---|---|---|
R2 | RMSE | VAF | MAE | R2 | RMSE | VAF | MAE | |
RF-SCA | 0.9825 | 4.3764 | 96.7978 | 2.7640 | 0.9622 | 5.6991 | 95.0132 | 3.7634 |
RF-HHO | 0.9576 | 6.4738 | 93.8773 | 5.0854 | 0.9400 | 7.9145 | 92.1498 | 5.9655 |
MLP | 0.9499 | 7.6078 | 92.8789 | 6.8854 | 0.9385 | 8.2455 | 91.1510 | 7.0455 |
CART | 0.9289 | 9.9218 | 90.8784 | 7.8654 | 0.9117 | 11.0925 | 87.1514 | 9.6755 |
LSSVM | 0.9519 | 6.9218 | 93.8790 | 5.6154 | 0.9314 | 9.0205 | 91.0509 | 8.2355 |
MARS | 0.9091 | 10.6518 | 87.8784 | 8.9254 | 0.8812 | 11.1365 | 86.1514 | 11.5055 |
ELM | 0.9228 | 9.9318 | 89.8785 | 8.4754 | 0.9115 | 12.0585 | 85.1509 | 12.2155 |
Model | Training | Testing | Total Rate | Rank | ||||||
---|---|---|---|---|---|---|---|---|---|---|
R2 | RMSE | VAF | MAE | R2 | RMSE | VAF | MAE | |||
RF-SCA | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 56 | 1 |
RF-HHO | 6 | 6 | 5 | 6 | 6 | 6 | 6 | 6 | 47 | 2 |
MLP | 4 | 4 | 4 | 4 | 5 | 5 | 5 | 5 | 36 | 4 |
CART | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 24 | 5 |
LSSVM | 5 | 5 | 6 | 5 | 4 | 4 | 4 | 4 | 37 | 3 |
MARS | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 11 | 7 |
ELM | 2 | 2 | 2 | 2 | 2 | 1 | 1 | 1 | 13 | 6 |
Author | Year | Technique | Number of Data | R2 |
---|---|---|---|---|
Huang et al. [54] | 2021 | SVM | 114 | 0.947 |
Sarir et al. [55] | 2019 | GEP | 303 | 0.939 |
Ahmad et al. [57] | 2021 | GEP, ANN, DT | 642 | 0.88 |
Azimi-Pour et al. [58] | 2020 | SVM | - | 0.9909 |
Saha et al. [59] | 2020 | SVM | 115 | 0.955 |
Hahmansouri et al. [60] | 2019 | GEP | 54 | 0.9071 |
Aslam et al. [61] | 2020 | GEP | 357 | 0.957 |
Farooq et al. [62] | 2020 | RF and GEP | 357 | 0.99 |
Belalia Douma et al. [69] | 2017 | ANN | 114 | 0.95 |
Javad et al. [74] | 2020 | GEP | 277 | 0.99 |
Güçlüer et al. [76] | 2021 | ANN, SVM, DT | 100 | 0.86 |
Emad et al. [79] | 2022 | ANN, M5P, | 306 | 0.966 |
Kuma et al. [81] | 2022 | GPR, SVMR | 194 | 0.9803 |
Jaf et al. [82] | 2023 | NLR, MLR, ANN | 236 | 0.987 |
Ali et al. [84] | 2023 | LR, MLR, NLR, PQ, IA, FQ | 420 | 0.96 |
Our Model | 2024 | RF-SCA, RF-HHO, MLP, CART, LSSVM, MARS, and ELM | 290 | 0.9825, 0.9576, 0.9499, 0.9289, 0.9519, 0.9091, and 0.9228 |
Aspect | Benefits | Limitations |
---|---|---|
Predictive accuracy | High predictive accuracy under optimal conditions. | Risk of overfitting if models are not properly validated. |
Complex relationships | Ability to capture complex relationships in data. | Complexity can reduce interpretability compared to simpler methods. |
Flexibility | Adaptable to various types of data and can be tailored for specific applications. | Performance highly dependent on the choice of hyperparameters and optimization algorithms. |
Model combinations | Hybrid models (SCA-RF and HHO-RF) can enhance prediction performance by combining strengths of multiple algorithms. | Increased complexity can hinder practical use and comprehension. |
Data utilization | Can handle nonlinear relationships effectively. | Limited by dataset quality and size; a modest dataset of 290 samples may impact generalizability. |
Robustness | Potential for robustness if adequately trained on diverse datasets. | Lack of extensive validation across different datasets may hinder robustness for varied applications. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bin, F.; Hosseini, S.; Chen, J.; Samui, P.; Fattahi, H.; Jahed Armaghani, D. Proposing Optimized Random Forest Models for Predicting Compressive Strength of Geopolymer Composites. Infrastructures 2024, 9, 181. https://doi.org/10.3390/infrastructures9100181
Bin F, Hosseini S, Chen J, Samui P, Fattahi H, Jahed Armaghani D. Proposing Optimized Random Forest Models for Predicting Compressive Strength of Geopolymer Composites. Infrastructures. 2024; 9(10):181. https://doi.org/10.3390/infrastructures9100181
Chicago/Turabian StyleBin, Feng, Shahab Hosseini, Jie Chen, Pijush Samui, Hadi Fattahi, and Danial Jahed Armaghani. 2024. "Proposing Optimized Random Forest Models for Predicting Compressive Strength of Geopolymer Composites" Infrastructures 9, no. 10: 181. https://doi.org/10.3390/infrastructures9100181
APA StyleBin, F., Hosseini, S., Chen, J., Samui, P., Fattahi, H., & Jahed Armaghani, D. (2024). Proposing Optimized Random Forest Models for Predicting Compressive Strength of Geopolymer Composites. Infrastructures, 9(10), 181. https://doi.org/10.3390/infrastructures9100181