Network-Compatible Unconditionally Secured Classical Key Distribution via Quantum Superposition-Induced Deterministic Randomness
<p>A schematic of NC-USCC. LD, Laser diode; OM, Optical modulator; <math display="inline"><semantics> <mrow> <mi mathvariant="sans-serif">Φ</mi> <mn>1</mn> <mo>,</mo> <mrow> <mo> </mo> <mi mathvariant="sans-serif">Φ</mi> </mrow> <mn>2</mn> <mo>,</mo> <mi mathvariant="sans-serif">Ψ</mi> <mn>1</mn> <mo>,</mo> <mi mathvariant="sans-serif">Ψ</mi> <mn>2</mn> </mrow> </semantics></math>, Phase shifter; <math display="inline"><semantics> <mrow> <msub> <mi>A</mi> <mn>1</mn> </msub> <mo>~</mo> <msub> <mi>A</mi> <mn>4</mn> </msub> <mo>,</mo> <mo> </mo> <msub> <mi>B</mi> <mn>1</mn> </msub> <mo>,</mo> <msub> <mi>B</mi> <mn>3</mn> </msub> <mo>,</mo> <msub> <mi>B</mi> <mn>4</mn> </msub> </mrow> </semantics></math>, Photodetector, OD, Optical delay, M, Mirror, E<sub>i</sub>, Light i. The distance between Bob and Alice depends on the MZI stability which can be in the order of 10 km. For the whole network configuration, refer to <a href="#app1-cryptography-06-00004" class="html-app">Section C of the Supplementary Information</a>.</p> "> Figure 2
<p>Numerical calculations for the transmission directionality in MZI. Visibility V<sub>5,6</sub> (solid) and Interference IN<sub>5,6</sub> (dotted) for (<b>a</b>) <math display="inline"><semantics> <mrow> <msub> <mi mathvariant="sans-serif">φ</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math> and (<b>b</b>) <math display="inline"><semantics> <mrow> <msub> <mi mathvariant="sans-serif">φ</mi> <mn>2</mn> </msub> <mo>=</mo> <mi mathvariant="sans-serif">π</mi> <mo>/</mo> <mn>3</mn> </mrow> </semantics></math>. (<b>c</b>) V<sub>5,6</sub> and (<b>d</b>) IN<sub>5,6</sub>. <math display="inline"><semantics> <mrow> <msub> <mi>V</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>j</mi> </mrow> </msub> <mo>=</mo> <mrow> <mo>(</mo> <mrow> <mfrac> <mrow> <msub> <mi>I</mi> <mi>j</mi> </msub> <mo>−</mo> <msub> <mi>I</mi> <mi>i</mi> </msub> </mrow> <mrow> <msub> <mi>I</mi> <mi>i</mi> </msub> <mo>+</mo> <msub> <mi>I</mi> <mi>j</mi> </msub> </mrow> </mfrac> </mrow> <mo>)</mo> </mrow> </mrow> </semantics></math>, where <math display="inline"><semantics> <mrow> <msub> <mi>I</mi> <mi>i</mi> </msub> </mrow> </semantics></math> is intensity of <math display="inline"><semantics> <mrow> <msub> <mi>E</mi> <mi>i</mi> </msub> </mrow> </semantics></math>. <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>IN</mi> </mrow> <mrow> <mn>5</mn> <mo>,</mo> <mn>6</mn> </mrow> </msub> <mo>=</mo> <mrow> <mo>(</mo> <mrow> <msub> <mi>E</mi> <mn>5</mn> </msub> <mo>+</mo> <msub> <mi>E</mi> <mn>6</mn> </msub> </mrow> <mo>)</mo> </mrow> <msup> <mrow> <mrow> <mo>(</mo> <mrow> <msub> <mi>E</mi> <mn>5</mn> </msub> <mo>+</mo> <msub> <mi>E</mi> <mn>6</mn> </msub> </mrow> <mo>)</mo> </mrow> </mrow> <mo>∗</mo> </msup> </mrow> </semantics></math>.</p> "> Figure 3
<p>Numerical calculations of visibility V<sub>B</sub> for OKD. Visibility V<sub>B</sub> (<b>a</b>,<b>b</b>) for <math display="inline"><semantics> <mrow> <msub> <mi>ψ</mi> <mn>2</mn> </msub> <mo>=</mo> <msub> <mi>φ</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>2</mn> <mi>π</mi> <mo>/</mo> <mn>5</mn> </mrow> </semantics></math>, and (<b>c</b>,<b>d</b>) for <math display="inline"><semantics> <mrow> <msub> <mi>ψ</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>0</mn> <mo> </mo> <mi>and</mi> <mo> </mo> <msub> <mi>φ</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>2</mn> <mi>π</mi> <mo>/</mo> <mn>5</mn> </mrow> </semantics></math>. Calculations are based on Equation (1). <math display="inline"><semantics> <mrow> <msub> <mi>V</mi> <mi>B</mi> </msub> <mo>=</mo> <mrow> <mo>(</mo> <mrow> <mfrac> <mrow> <msub> <mi>I</mi> <mrow> <mn>10</mn> </mrow> </msub> <mo>−</mo> <msub> <mi>I</mi> <mn>9</mn> </msub> </mrow> <mrow> <msub> <mi>I</mi> <mrow> <mn>10</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>I</mi> <mn>9</mn> </msub> </mrow> </mfrac> </mrow> <mo>)</mo> </mrow> </mrow> </semantics></math>: <span class="html-italic">I<sub>i</sub></span> is the intensity of <span class="html-italic">E<sub>i</sub></span>.</p> "> Figure 4
<p>Numerical calculations of interference IN<sub>7,8</sub> and visibility V<sub>7,8</sub> for <a href="#cryptography-06-00004-f001" class="html-fig">Figure 1</a>. (<b>a</b>) IN<sub>7,8</sub> and (<b>b</b>) V<sub>7,8</sub> for <math display="inline"><semantics> <mrow> <msub> <mi>ψ</mi> <mn>2</mn> </msub> <mo>=</mo> <msub> <mi>φ</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>2</mn> <mi>π</mi> <mo>/</mo> <mn>5</mn> </mrow> </semantics></math>. (<b>c</b>) IN<sub>7,8</sub> and (<b>d</b>) V<sub>7,8</sub> for <math display="inline"><semantics> <mrow> <msub> <mi>ψ</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>0</mn> <mo> </mo> <mi>and</mi> <mo> </mo> <msub> <mi>φ</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>2</mn> <mi>π</mi> <mo>/</mo> <mn>5</mn> </mrow> </semantics></math>. The keys are denoted by dots: <math display="inline"><semantics> <mrow> <msub> <mi>φ</mi> <mn>1</mn> </msub> <mo>=</mo> <msub> <mi>ψ</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>0</mn> <mo> </mo> <mrow> <mo>(</mo> <mrow> <mi>blue</mi> </mrow> <mo>)</mo> </mrow> <mo>;</mo> <mo> </mo> <msub> <mi>φ</mi> <mn>1</mn> </msub> <mo>=</mo> <msub> <mi>ψ</mi> <mn>1</mn> </msub> <mo>=</mo> <mrow> <mi mathvariant="sans-serif">π</mi> <mo> </mo> </mrow> <mrow> <mo>(</mo> <mrow> <mi>red</mi> </mrow> <mo>)</mo> </mrow> </mrow> </semantics></math>. <math display="inline"><semantics> <mrow> <mi>I</mi> <msub> <mi>N</mi> <mrow> <mn>7</mn> <mo>,</mo> <mn>8</mn> </mrow> </msub> <mo>=</mo> <mrow> <mo>(</mo> <mrow> <msub> <mi>E</mi> <mn>7</mn> </msub> <mo>+</mo> <msub> <mi>E</mi> <mn>8</mn> </msub> </mrow> <mo>)</mo> </mrow> <msup> <mrow> <mrow> <mo>(</mo> <mrow> <msub> <mi>E</mi> <mn>7</mn> </msub> <mo>+</mo> <msub> <mi>E</mi> <mn>8</mn> </msub> </mrow> <mo>)</mo> </mrow> </mrow> <mo>∗</mo> </msup> </mrow> </semantics></math>; <math display="inline"><semantics> <mrow> <msub> <mi>V</mi> <mrow> <mn>7</mn> <mo>,</mo> <mn>8</mn> </mrow> </msub> <mo>=</mo> <mrow> <mo>(</mo> <mrow> <mfrac> <mrow> <msub> <mi>I</mi> <mn>8</mn> </msub> <mo>−</mo> <msub> <mi>I</mi> <mn>7</mn> </msub> </mrow> <mrow> <msub> <mi>I</mi> <mn>7</mn> </msub> <mo>+</mo> <msub> <mi>I</mi> <mn>8</mn> </msub> </mrow> </mfrac> </mrow> <mo>)</mo> </mrow> </mrow> </semantics></math>.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Network Initialization: Network Addressing and Authentication
- Sequence
- 0.
- (Network preparation) Initially Alice resets the MZI network by disturbing the MZI with her phase controller and scans until she gets for the test bits provided by Bob. The is a phase variable added to her phase basis . Then, Alice gives a cue to Bob.
- 1.
- Bob randomly selects his phase basis , encodes his light with , and sends it to Alice.
- 2.
- Alice measures VA, publicly announces the result, and returns the -set light to Bob after encoding it with .
- 3.
- Bob measures VB and publicly announces whether Alice’s result is correct (O) or not (X).
- 4.
- Alice resets her phase basis to either or depending on the Bob’s announcement: end of network initialization.
3.2. Key Distribution Protocol
- Sequence
- 0.
- The network initialization is performed for both network addressing and authentication: see Table 1.
- 1.
- Bob randomly selects his phase basis to prepare a key and sends it to Alice.
- 2.
- Bob converts the chosen basis into a key for his key record x: x , if , x = 0; if , x = 1. The is not influenced by the network initialization process.
- 3.
- Alice measures her visibility VA and keeps the record.
- 4.
- Alice copies the Bob’s key for her record y via MZI directionality: if VA = 1, y = 0; if , y = 1; if , y = VA (error).
- 5.
- Alice randomly selects her phase basis , encodes the return light, and sends it back to Bob. Here, the is a corrected value as a result of the network initialization process: see Table 1.
- 6.
- Alice converts the chosen basis into a key record z:; if , z = 0; if , z = 1.
- 7.
- Alice compares y and z for the raw key mA: . If , (error).
- 8.
- Bob measures his visibility VB and keeps the record.
- 9.
- Bob sets the raw key mB via MZI determinacy: if , ; , . If , .
- 10.
- Alice and Bob publicly announce their error bits and remove them from their raw keys to set the shared final key, .
4. Discussion
Coherence-Based Memory Attack
5. Conclusions
Supplementary Materials
Funding
Data Availability Statement:
Conflicts of Interest
References
- Matsuoka, S. Ultrahigh-speed ultrahigh-capacity transport network technology for cost-effective core and metro networks. NTT Tech. Rev. 2011, 9, 1–7. [Google Scholar]
- Arora, S.; Barak, B. Computational Complexity; Cambridge University Press: Cambridge, UK, 2009. [Google Scholar]
- Swenson, C. Modern Cryptanalysis; Wiley: Indianapolis, IN, USA, 2008. [Google Scholar]
- Scarani, V.; Bechmann-Pasquinucci, H.; Cerf, N.J.; Dušek, M.; Lütkenhaus, N.; Peev, M. The security of practical quantum key distribution. Rev. Mod. Phys. 2009, 81, 1301–1350. [Google Scholar] [CrossRef] [Green Version]
- Pljonkin, A.; Petrov, D.; Sabantina, L.; Dakhkilgova, K. Nonclassical Attack on a Quantum Key Distribution System. Entropy 2021, 23, 509. [Google Scholar] [CrossRef] [PubMed]
- Pljonkin, A.P. Vulnerability of the Synchronization Process in the Quantum Key Distribution System in Research Anthology on Advancements in Quantum Technology; IGI Global Commerce: Commerce, CA, USA, 2021. [Google Scholar]
- Rivest, R.; Shamir, A.; Adleman, L. A method for obtaining digital signatures and public-key cryptosystems. Commun. ACM 1978, 21, 120–126. [Google Scholar] [CrossRef]
- Barker, E.B.; Dang, Q.H. Recommendation for Key Management Part 3: Application-Specific Key Management Guidance. NIST Spec. Publ. 2015, 800, 57. [Google Scholar]
- Papernot, N.; McDaniel, P.; Sinha, A.; Wellman, M. SoK: Towards the science of security and privacy in machine learning. arXiv 2016, arXiv:1611.03814. [Google Scholar]
- Gisin, N.; Ribordy, G.; Tittle, W.; Zbinden, H. Quantum cryptography. Rev. Mod. Phys. 2002, 74, 145–195. [Google Scholar] [CrossRef] [Green Version]
- Bennett, C.H.; Brassard, G. Withdrawn: Quantum cryptography: Public key distribution and coin tossing. Theor. Comput. Sci. 2011, 175, 8. [Google Scholar] [CrossRef]
- Christensen, G.K.; McCusker, K.T.; Altepeter, J.; Calkins, B.; Gerrits, T.; Lita, A.; Miller, A.; Shalm, L.K.; Zhang, Y.; Nam, S.W.; et al. Detection-loophole-free test of quantum nonlocality and applications. Phys. Rev. Lett. 2013, 111, 130406. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, A.; Sun, S.-H.; Liu, Z.; Makarov, V. Quantum key distribution with distinguishable decoy states. Phys. Rev. A 2018, 98, 012330. [Google Scholar] [CrossRef] [Green Version]
- Sajeed, S.; Huang, A.; Sun, S.; Xu, F.; Makarov, V.; Curty, M. Insecurity of detector-device-independent quantum key distribution. Phys. Rev. Lett. 2016, 117, 250505. [Google Scholar] [CrossRef] [Green Version]
- Wootters, W.K.; Zurek, W.H. A single quantum cannot be cloned. Nature 1982, 299, 802–803. [Google Scholar] [CrossRef]
- Duan, L.-M.; Lukin, M.; Cirac, I.; Zoller, P. Long-distance quantum communication with atomic ensembles and linear optics. Nature 2001, 414, 413–418. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vernam, G.S. Secrete Signaling System. U.S. Patent 1,310,719, 22 June 1919. [Google Scholar]
- Epping, M.; Kampermann, H.; Macchiavello, C.; Bruß, D. Multi-partite entanglement can speed up quantum key distribution in networks. New J. Phys. 2017, 19, 093012. [Google Scholar] [CrossRef]
- Chen, K.; Lo, H.-K. Multi-partite quantum cryptographic protocols with noisy GHZ states. Quantum Inf. Comput. 2007, 7, 689–715. [Google Scholar] [CrossRef]
- Sasaki, M.; Fujiwara, M.; Ishizuka, H.; Klaus, W.; Wakui, K.; Takeoka, M.; Miki, S.; Yamashita, T.; Wang, Z.; Tanaka, A.; et al. Field test of quatum key distribution in the Tokyo QKD network. Opt. Exp. 2011, 19, 10387. [Google Scholar] [CrossRef]
- Zhang, Q.; Xu, F.; Chen, Y.-A.; Peng, C.-Z.; Pan, J.-W. Large scale quantum key distribution: Challenges and solutions [invited]. Opt. Exp. 2018, 26, 24260. [Google Scholar] [CrossRef] [Green Version]
- Liao, S.-K.; Cai, W.-Q.; Liu, W.-Y.; Zhang, L.; Li, Y.; Ren, J.-G.; Yin, J.; Shen, Q.; Cao, Y.; Li, Z.-P.; et al. Satellite-to-ground quantum key distribution. Nature 2017, 549, 43–47. [Google Scholar] [CrossRef] [Green Version]
- Ham, B.S. Unconditionally secured classical cryptography using quantum superposition and unitary transformation. Sci. Rep. 2020, 10, 11687. [Google Scholar] [CrossRef]
- Ham, B.S. Analysis of phase noise effects in a coupled Mach-Zhender interferometer for a much stabilized free-space optical link. Sci. Rep. 2021, 11, 1900. [Google Scholar] [CrossRef] [PubMed]
- Ham, B.S. The origin of anticorrelation for photon bunching on a beam splitter. Sci. Rep. 2020, 10, 7309. [Google Scholar] [CrossRef]
- Greenberger, D.M.; Horne, M.A.; Zeilinger, A. Multiparticle Interferometry and the Superposition Principle. Phys. Today 1993, 46, 22–29. [Google Scholar] [CrossRef] [Green Version]
- Xavier, G.; Von Der Weid, J.P. Stable single-photon interference in a 1 km fiber-optic Mach–Zehnder interferometer with continuous phase adjustment. Opt. Lett. 2011, 36, 1764–1766. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abbott, B.P.; Abbott, R.; Abbott, T.D.; Abernathy, M.R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, B.P.; et al. Observation of gravitational waves from binary black hole merger Phys. Rev. Lett. 2016, 116, 061102. [Google Scholar] [CrossRef]
- Fu, L.B.; Rochette, M.; Ta’eed, V.G.; Moss, D.J.; Eggleton, B.J. Investigation of self-phase modulation based optical regeneration in single mode As2Se3 chalcogenide glass fiber. Opt. Express. 2005, 13, 7639–7646. [Google Scholar] [CrossRef]
- Bennett, C.H. Quantum cryptography using any two nonorthogonal states. Phys. Rev. Lett. 1992, 68, 3121–3124. [Google Scholar] [CrossRef]
- Shannon, C.E. Communication Theory of Secrecy Systems. Bell Syst. Tech. J. 1949, 28, 656–715. [Google Scholar] [CrossRef]
- Zhu, B.; Fini, J.M.; Yan, M.F.; Liu, X.; Chandrasekhar, S.; Taunay, T.F.; Fishteyn, M.; Monberg, E.; DiMarcello, F.V. High-Capacity Space-Division-Multiplexed DWDM Transmissions Using Multicore Fiber. J. Light. Technol. 2011, 30, 486–492. [Google Scholar] [CrossRef]
- Black, E.D. An introduction to Pound–Drever–Hall laser frequency stabilization. Am. J. Phys. 2001, 69, 79–87. [Google Scholar] [CrossRef] [Green Version]
- Hou, D.; Ning, B.; Zhang, S.; Wu, J.; Zhao, J. Long-term stabilization of fiber laser using phase-locking technique with ul-tra-low phase noise and phase drift. IEEE J. Sel. Top. Quantum Elec. 2014, 20, 1101308. [Google Scholar]
Party | Order (N) | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Sequence | ||||||||||||
Alice | 2 | VA | 1 | −1 | −1 | 1 | −1 | 1 | 1 | 1 | −1 | 1 |
δ + π | δ | δ + π | δ + π | δ | δ + π | δ | δ + π | |||||
4 | Correctness | X | O | X | X | X | O | X | O | O | O | |
Bob | 1 | 0 | π | π | 0 | π | 0 | 0 | 0 | π | 0 | |
3 | VB | +1 | −1 | +1 | +1 | +1 | −1 | +1 | −1 | −1 | −1 |
Party | Order | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | set | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Sequence | |||||||||||||
Bob | 1 | 0 | 0 | π | 0 | π | π | 0 | π | 0 | π | ||
2 | Prepared key: | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 1 | 0 | 1 | ||
8 | VB | 1 | −1 | 0.9 | 1 | −1 | −1 | −1 | 1 | 1 | 1 | ||
9 | Raw key | 0 | 1 | X | 0 | 1 | 1 | 1 | 0 | 0 | 0 | ||
10 | Final key | 0 | 1 | X | 0 | 1 | X | 1 | 0 | 0 | 0 | ||
Alice | 3 | VA | 1 | 1 | −1 | 1 | −1 | −0.8 | 1 | −1 | 1 | −1 | |
4 | Copy x: y | 0 | 0 | 1 | 0 | 1 | −0.8 | 0 | 1 | 0 | 1 | ||
5 | π | 0 | 0 | π | π | π | 0 | 0 | π | 0 | |||
6 | 1 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 1 | 0 | |||
7 | Raw key | 0 | 1 | 0 | 0 | 1 | X | 1 | 0 | 0 | 0 | ||
10 | Final key | 0 | 1 | X | 0 | 1 | X | 1 | 0 | 0 | 0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ham, B.S. Network-Compatible Unconditionally Secured Classical Key Distribution via Quantum Superposition-Induced Deterministic Randomness. Cryptography 2022, 6, 4. https://doi.org/10.3390/cryptography6010004
Ham BS. Network-Compatible Unconditionally Secured Classical Key Distribution via Quantum Superposition-Induced Deterministic Randomness. Cryptography. 2022; 6(1):4. https://doi.org/10.3390/cryptography6010004
Chicago/Turabian StyleHam, Byoung S. 2022. "Network-Compatible Unconditionally Secured Classical Key Distribution via Quantum Superposition-Induced Deterministic Randomness" Cryptography 6, no. 1: 4. https://doi.org/10.3390/cryptography6010004
APA StyleHam, B. S. (2022). Network-Compatible Unconditionally Secured Classical Key Distribution via Quantum Superposition-Induced Deterministic Randomness. Cryptography, 6(1), 4. https://doi.org/10.3390/cryptography6010004