Stabilization of the Interface between a PEO-Based Lithium Solid Polymer Electrolyte and a 4-Volt Class Cathode, LiCoO2, by the Addition of LiPF6 as a Lithium Salt
<p>Temperature dependence of the electrical conductivity for PEO<sub>18</sub>(100-x)LiTFSI-xLiPF<sub>6</sub> for various x (wt%).</p> "> Figure 2
<p>CV curves for (<b>a</b>) Li/ PEO-LiTFSI-LiPF<sub>6</sub>/Au and (<b>b</b>) Li/PEO-LiTFSI-LiPF<sub>6</sub>/Al in the second potential sweep from 2.5 V to 5.0 V vs. Li/Li<sup>+</sup> at 80 °C.</p> "> Figure 3
<p>(<b>a</b>) Schematic pattern of the impedance measurement combined with constant current-constant voltage charging. In this example, the cell was charged to 4.2 V vs. Li/Li<sup>+</sup> by constant current, maintained for 2 h at the voltage (constant voltage charge), and open-circuited, and then, the impedance was measured. The process was repeated 20 times. (<b>b</b>) Assumed equivalent circuit. (<b>c</b>) Time dependence of the impedance spectra for the Li/PEO(LiTFSI 100 wt%)/LiCoO<sub>2</sub> cell at 4.2 V vs. Li/Li<sup>+</sup>. (<b>d</b>) Time dependence of the impedance spectra for the Li/PEO(LiTFSI 80 wt%+LiPF<sub>6</sub> 20 wt%)/LiCoO<sub>2</sub> cell at 4.2 V vs. Li/Li<sup>+</sup>.</p> "> Figure 4
<p>Variation in interfacial resistance, <span class="html-italic">R</span><sub>LiCoO<sub>2</sub></sub>, with time under various applied potentials for SPEs (<b>a</b>) without LiPF<sub>6</sub> and (<b>b</b>) with LiPF<sub>6</sub>.</p> "> Figure 5
<p>Charge–discharge curves for the Li/PEO-LiTFSI-LiPF<sub>6</sub>/LiCoO<sub>2</sub> cells with the addition of (<b>a</b>) 0 wt%, (<b>b</b>) 25 wt%, and (<b>c</b>) 100 wt% LiPF<sub>6</sub>, and (<b>d</b>) the cycle performance with cut-off voltages of 2.5 V and 4.4 V with 0.1 C rate at 80 °C. The red lines show the first charge–discharge curves. In the case of PEO:LiPF<sub>6</sub> = 18:1 (<b>c</b>), imperfect penetration of the SPE into the electrode caused a decrease in the first charge capacity because of the low fluent SPE characteristic due to the high concentration of LiPF<sub>6</sub>.</p> "> Figure 6
<p>Charge–discharge curves for (<b>a</b>) Li/PEO-LiTFSI/LiCoO<sub>2</sub> and (<b>b</b>) Li/PEO-LiPF<sub>6</sub>/LiCoO<sub>2</sub> cells, and (<b>c</b>) the cycle performance. The red lines in (<b>a</b>,<b>b</b>) show the first charge-discharge curves. The cut-off voltage was 2.5–4.5 V with a rate of 0.1 C at 80 °C.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wright, P.V. Electrical conductivity in ionic complexes of poly(ethylene oxide). Br. Polym. J. 1975, 7, 319–327. [Google Scholar] [CrossRef]
- Armand, M.B.; Choquette, J.M.; Duclot, M. In Extend Abstract. In Proceedings of the 2nd International Meeting on Solid Electrolytes, St. Andrews, UK, 20 September 1978. [Google Scholar]
- Gray, P.M. Solid Polymer Electrolyte; VHC: Weinhim, Germany, 1991; p. 2. [Google Scholar]
- Berthier, C.; Gorecki, W.; Minier, M.; Armand, M.; Chabagno, J.; Rigaud, P. Microscopic investigation of ionic conductivity in alkali metal salts-poly(ethylene oxide) adducts. Solid State Ionics 1983, 11, 91–95. [Google Scholar] [CrossRef]
- Reiche, A.; Steurich, T.; Sandner, B.; Lobitz, P.; Fleischer, G. Ion transport in gel electrolytes. Electrochim. Acta 1995, 40, 2153–2157. [Google Scholar] [CrossRef]
- Appetecchi, G.B.; Croce, F.; Mastragostino, M.; Scrosati, B.; Soavi, F.; Zanelli, A. Composite Polymer Electrolytes with Improved Lithium Metal Electrode Interfacial Properties: II. Application in Rechargeable Batteries. J. Electrochem. Soc. 1998, 145, 4133–4135. [Google Scholar] [CrossRef]
- Fauteux, D.; Massucco, A.; McLin, M.; Van Buren, M.; Shi, J. Lithium polymer electrolyte rechargeable battery. Electrochimica Acta 1995, 40, 2185–2190. [Google Scholar] [CrossRef]
- Xie, Y.; Tatsumi, K.; Fujieda, T.; Prosini, P.P.; Sakai, T. Solid−State Lithium−Polymer Batteries Using Lithiated MnO2 Cathodes. J. Electrochem. Soc. 2000, 147, 2050–2056. [Google Scholar] [CrossRef]
- Appetecchi, G.B.; Croce, F.; Dautzenberg, G.; Mastragostino, M.; Ronci, F.; Scrosati, B.; Soavi, F.; Zanelli, A.; Alessandrini, F.; Prosini, P.P. Composite Polymer Electrolytes with Improved Lithium Metal Electrode Interfacial Properties: I. Elechtrochemical Properties of Dry PEO−LiX Systems. J. Electrochem. Soc. 1998, 145, 4126–4132. [Google Scholar] [CrossRef]
- Osaka, T.; Homma, T.; Momma, T.; Yarimura, H. In situ observation of lithium deposition processes in solid polymer and gel electrolytes. J. Electroanal. Chem. 1997, 421, 153–156. [Google Scholar] [CrossRef]
- Brissot, C.; Rosso, M.; Chazalviel, J.-N.; Lascaud, S. Dendritic growth mechanisms in lithium/polymer cells. J. Power Sources 1999, 81–82, 925–929. [Google Scholar] [CrossRef]
- Liu, S.; Wang, H.; Imanishi, N.; Zhang, T.; Hirano, A.; Yamamoto, O.; Yang, J.; Takeda, Y. Effect of co-doping nano-silica filler and N-methyl-N-propylpiperidinium bis(trifluoromethanesulfonyl)imide into polymer electrolyte on Li dendrite formation in Li/poly(ethylene oxide)-Li(CF3SO2)2N/Li. J. Power Sources 2011, 196, 7681–7686. [Google Scholar] [CrossRef]
- Imanishi, N.; Ono, Y.; Hanai, K.; Uchiyama, R.; Liu, Y.; Hirano, A.; Takeda, Y.; Yamamoto, O. Surface-modified meso-carbon microbeads anode for dry polymer lithium-ion batteries. J. Power Sources 2008, 178, 744–750. [Google Scholar] [CrossRef]
- Kawakubo, M.; Takeda, Y.; Yamamoto, O.; Imanishi, N. High capacity carbon anode for dry polymer lithium-ion batteries. J. Power Sources 2013, 225, 187–191. [Google Scholar] [CrossRef]
- Fergus, J.W. Ceramic and polymeric solid electrolytes for lithium-ion batteries. J. Power Sources 2010, 195, 4554–4569. [Google Scholar] [CrossRef]
- Kim, J.G.; Son, B.; Mukherjee, S.; Schuppert, N.; Bates, A.; Kwon, O.; Choi, M.J.; Chung, H.Y.; Park, S. A review of lithium and non-lithium based solid state batteries. J. Power Sources 2015, 282, 299–322. [Google Scholar] [CrossRef]
- Mindemark, J.; Lacey, M.J.; Bowden, T.; Brandell, D. Beyond PEO—Alternative host materials for Li+ -conducting solid polymer electrolytes. Prog. Polym. Sci. 2018, 81, 114–143. [Google Scholar] [CrossRef]
- Strauss, E.; Menkin, S.; Golodnitsky, D. On the way to high-conductivity single lithium-ion conductors. J. Solid State Electrochem. 2017, 21, 1879–1905. [Google Scholar] [CrossRef]
- Jung, Y.-C.; Park, M.-S.; Kim, D.-H.; Ue, M.; Eftekhari, A.; Kim, D.-W. Room-Temperature Performance of Poly(Ethylene Ether Carbonate)- Based Solid Polymer Electrolytes for All Solid State Lithium Batteries. Sci. Rep. 2017, 7, 17482. [Google Scholar] [CrossRef]
- Li, Z.; Li, A.; Zhang, H.; Lin, R.; Jin, T.; Cheng, Q.; Xiao, X.; Lee, W.K.; Ge, M.; Zhang, H.; et al. Interfacial engineering for stabilizing polymer electrolytes with 4 V cathodes in lithium metal batteries at elevated temperature. Nano Energy 2020, 72, 104655. [Google Scholar] [CrossRef]
- Li, Q.; Takeda, Y.; Imanishi, N.; Yang, J.; Sun, H.Y.; Yamamoto, O. Cycling performances and interfacial properties of a Li/PEO−Li(CF3SO2)2N−ceramic filler/LiNi0.8Co0.2O2 cell. J. Power Sources 2001, 97–98, 795–797. [Google Scholar] [CrossRef]
- Aihara, Y.; Kuratomi, J.; Bando, T.; Iguchi, T.; Yoshida, H.; Ono, T.; Kuwana, K. Investigation on solvent-free solid polymer electrolytes for advanced lithium batteries and their performance. J. Power Sources 2003, 114, 96–104. [Google Scholar] [CrossRef]
- Kobayashi, Y.; Seki, S.; Yamanaka, A.; Miyashiro, H.; Mita, Y.; Iwahori, T. Development of high-voltage and high-capacity all-solid-state lithium secondary batteries. J. Power Sources 2005, 146, 719–722. [Google Scholar] [CrossRef]
- Seki, S.; Kobayashi, Y.; Miyashiro, H.; Mita, Y.; Iwahori, T. Fabrication of High-Voltage, High-Capacity All-Solid-State Lithium Polymer Secondary Batteries by Application of the Polymer Electrolyte/Inorganic Electrolyte Composite Concept. Chem. Mater. 2005, 17, 2041–2045. [Google Scholar] [CrossRef]
- Li, Q.; Imanishi, N.; Hirano, A.; Takeda, Y.; Yamamoto, O. Four volts class solid lithium polymer batteries with a composite polymer electrolyte. J. Power Sources 2002, 110, 38–45. [Google Scholar] [CrossRef]
- Yang, H.; Kwon, K.; Devine, T.M.; Evans, J.W. Aluminum Corrosion in Lithium Batteries An Investigation Using the Electrochemical Quartz Crystal Microbalance. J. Electrochem. Soc. 2000, 147, 4399–4407. [Google Scholar] [CrossRef]
- Morita, M.; Shibata, T.; Yoshimoto, N.; Ishikawa, M. Anodic behavior of aluminum in organic solutions with different electrolytic salts for lithium ion batteries. Electrochimica Acta 2002, 47, 2787–2793. [Google Scholar] [CrossRef]
- Vallée, A.; Besner, S.; Prud’homme, J. Comparative study of poly(ethylene oxide) electrolytes made with LiN(CF3SO2)2, LiCF3SO3 and LiClO4: Thermal properties and conductivity behavior. Electrochim. Acta 1992, 37, 1579–1583. [Google Scholar] [CrossRef]
- Lascaud, S.; Perrier, M.; Vallee, A.; Besner, S.; Prud’Homme, J.; Armand, M. Phase Diagrams and Conductivity Behavior of Poly(ethylene oxide)-Molten Salt Rubbery Electrolytes. Macromolecules 1994, 27, 7469–7477. [Google Scholar] [CrossRef]
- Labrèche, C.; Lévesque, I.; Prud’homme, J. An Appraisal of Tetraethylsulfamide as Plasticizer for Poly(ethylene oxide)−LiN(CF3SO2)2 Rubbery Electrolytes. Macromolecules 1996, 29, 7795–7801. [Google Scholar] [CrossRef]
- Dias, F.B.; Plomp, L.; Veldhuis, J.B. Trends in polymer electrolytes for secondary lithium batteries. J. Power Sources 2000, 88, 169–191. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Taminato, S.; Tsuka, A.; Sobue, K.; Mori, D.; Takeda, Y.; Yamamoto, O.; Imanishi, N. Stabilization of the Interface between a PEO-Based Lithium Solid Polymer Electrolyte and a 4-Volt Class Cathode, LiCoO2, by the Addition of LiPF6 as a Lithium Salt. Batteries 2024, 10, 140. https://doi.org/10.3390/batteries10040140
Taminato S, Tsuka A, Sobue K, Mori D, Takeda Y, Yamamoto O, Imanishi N. Stabilization of the Interface between a PEO-Based Lithium Solid Polymer Electrolyte and a 4-Volt Class Cathode, LiCoO2, by the Addition of LiPF6 as a Lithium Salt. Batteries. 2024; 10(4):140. https://doi.org/10.3390/batteries10040140
Chicago/Turabian StyleTaminato, Sou, Akino Tsuka, Kento Sobue, Daisuke Mori, Yasuo Takeda, Osamu Yamamoto, and Nobuyuki Imanishi. 2024. "Stabilization of the Interface between a PEO-Based Lithium Solid Polymer Electrolyte and a 4-Volt Class Cathode, LiCoO2, by the Addition of LiPF6 as a Lithium Salt" Batteries 10, no. 4: 140. https://doi.org/10.3390/batteries10040140
APA StyleTaminato, S., Tsuka, A., Sobue, K., Mori, D., Takeda, Y., Yamamoto, O., & Imanishi, N. (2024). Stabilization of the Interface between a PEO-Based Lithium Solid Polymer Electrolyte and a 4-Volt Class Cathode, LiCoO2, by the Addition of LiPF6 as a Lithium Salt. Batteries, 10(4), 140. https://doi.org/10.3390/batteries10040140