Synthesis of a Novel Magnetic Biochar from Lemon Peels via Impregnation-Pyrolysis for the Removal of Methyl Orange from Wastewater
<p>MLPB and LP’s FT-IR spectrum.</p> "> Figure 2
<p>SEM images of (<b>a</b>) LP, (<b>b</b>) MLPB, and (<b>c</b>–<b>e</b>) C, O, and Fe; elemental distribution over the same region mapped per each element.</p> "> Figure 3
<p>XRD patterns of MLPB.</p> "> Figure 4
<p>TGA curves of LP and MLPB.</p> "> Figure 5
<p>The MLPB sample’s (<b>a</b>) N<sub>2</sub> absorption/desorption isotherms and (<b>b</b>) pore size distribution plot.</p> "> Figure 6
<p>Impact of initial pH solution on MO’s ability to adsorb onto MLPB (20 mg/L starting Mo concentration, 0.1 g adsorbent dosage).</p> "> Figure 7
<p>The impact of the MLPB dosage on the MO adsorption capacity at pH 3 and the starting Mo concentration of 20 mg/L.</p> "> Figure 8
<p>Effect of initial dye concentration of adsorption of MO dye unto MPLB at pH 3, 25 °C, and 0.1 g adsorbent dose.</p> "> Figure 9
<p>Impact of initial dye concentration and contact duration on MO dye adsorption onto MPLB at pH 3, 25 °C, and 0.1 g adsorbent dosage.</p> "> Figure 10
<p>(<b>a</b>) Pseudo-first-order, (<b>b</b>) pseudo-second-order, and (<b>c</b>) Intraparticle diffusion kinetics plots at different initial MO concentrations.</p> "> Figure 11
<p>(<b>a</b>) Langmuir, (<b>b</b>) for Freundlich, and (<b>c</b>) Dubinin–Radushkevich (D–R) isotherms plots.</p> "> Figure 12
<p>Recycling of MLPB for multiple adsorption-desorption of MO.</p> "> Figure 13
<p>Breakthrough for MO at initial concentrations of 20, 50, and 80 mg/L.</p> "> Figure 14
<p>MLPB’s FTIR before and after MO adsorption.</p> "> Figure 15
<p>Suggested mechanism for adsorption of MO on MLPB.</p> ">
Abstract
:1. Introduction
2. Methodology
2.1. Chemical
2.2. Synthesis of Magnetic Biochar
2.3. Instrument Analysis
2.4. Experimental Procedures
3. Results and Discussions
3.1. Characterizations
3.1.1. FTIR Analysis
3.1.2. SEM Analysis
3.1.3. XRD Analysis
3.1.4. TGA Analysis
3.1.5. BET Analysis
3.2. Adsorption Studies
3.2.1. Effect of Adsorbent Type on MO Uptake
3.2.2. Influence of pH
3.2.3. Effect of Dosage of Adsorbent
3.2.4. Influence of Initial Concentration
3.2.5. Evaluation of Adsorption Kinetics
3.2.6. Adsorption Isotherms
3.2.7. Recycling Test
3.2.8. Column Study
3.2.9. Post-Adsorption Characterization
3.2.10. Suggested Mechanism of the Adsorption of MO onto MLPB
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dutta, S.; Gupta, B.; Srivastava, S.K.; Gupta, A.K. Recent advances on the removal of dyes from wastewater using various adsorbents: A critical review. Mater. Adv. 2021, 2, 4497–4531. [Google Scholar] [CrossRef]
- Mohan, D.; Singh, K.P.; Singh, G.; Kumar, K. Removal of dyes from wastewater using flyash, a low-cost adsorbent. Ind. Eng. Chem. Res. 2002, 41, 3688–3695. [Google Scholar] [CrossRef]
- Bilal, M.; Ihsanullah, I.; Shah, M.U.; Reddy, A.V.; Aminabhavi, T.M. Recent advances in the removal of dyes from wastewater using low-cost adsorbents. J. Environ. Manag. 2022, 321, 115981. [Google Scholar] [CrossRef] [PubMed]
- Singh, P.K.; Singh, R.L. Bio-removal of azo dyes: A review. Int. J. Appl. Sci. Biotechnol. 2017, 5, 108–126. [Google Scholar] [CrossRef]
- Mittal, A.; Malviya, A.; Kaur, D.; Mittal, J.; Kurup, L. Studies on the adsorption kinetics and isotherms for the removal and recovery of Methyl Orange from wastewaters using waste materials. J. Hazard. Mater. 2007, 148, 229–240. [Google Scholar] [CrossRef]
- Wang, S.S.; Yan, Y.M.; Hsu, C.H.; Lin, H.P. Waste bamboo-derived biochar and multiporous carbon as adsorbents for methyl orange removal. J. Chin. Chem. Soc. 2023, 70, 1628–1635. [Google Scholar] [CrossRef]
- Hambisa, A.A.; Regasa, M.B.; Ejigu, H.G.; Senbeto, C.B. Adsorption studies of methyl orange dye removal from aqueous solution using Anchote peel-based agricultural waste adsorbent. Appl. Water Sci. 2023, 13, 24. [Google Scholar] [CrossRef]
- Zhao, F.; Shan, R.; Li, S.; Yuan, H.; Chen, Y. Characterization and Co-adsorption mechanism of magnetic clay-biochar composite for de-risking Cd(II) and methyl orange contaminated water. Int. J. Mol. Sci. 2023, 24, 5755. [Google Scholar] [CrossRef]
- Al-Kazragi, M.A.; Al-Heetimi, D.T.; Wilson, L.D. Adsorption of methyl orange on low-cost adsorbent natural materials and modified natural materials: A review. Int. J. Phytoremed. 2024, 26, 639–668. [Google Scholar] [CrossRef]
- Taktak, F.; Gökçe, S. Ultrasound-assisted synthesis of biodegradable graphene oxide-based hydrogel nanocomposites for highly efficient and cost-effective removal of methyl orange from aqueous media. J. Water Process Eng. 2024, 58, 104837. [Google Scholar] [CrossRef]
- Ren, Z.; Chen, F.; Wang, B.; Song, Z.; Zhou, Z.; Ren, D. Magnetic biochar from alkali-activated rice straw for removal of rhodamine B from aqueous solution. Environ. Eng. Res. 2020, 25, 536–544. [Google Scholar] [CrossRef]
- Reddy, D.H.K.; Lee, S. Magnetic biochar composite: Facile synthesis, characterization, and application for heavy metal removal. Colloids Surf. A 2014, 454, 96–103. [Google Scholar] [CrossRef]
- Feng, Z.; Yuan, R.; Wang, F.; Chen, Z.; Zhou, B.; Chen, H. Preparation of magnetic biochar and its application in catalytic degradation of organic pollutants: A review. Sci. Total Environ. 2021, 765, 142673. [Google Scholar] [CrossRef]
- Mohan, D.; Kumar, H.; Sarswat, A.; Alexandre-Franco, M.; Pittman, C.U. Cadmium and lead remediation using magnetic oak wood and oak bark fast pyrolysis bio-chars. Chem. Eng. J. 2014, 236, 513–528. [Google Scholar] [CrossRef]
- Nodeh, H.R.; Ibrahim, W.A.W.; Ali, I.; Sanagi, M.M. Development of magnetic graphene oxide adsorbent for the removal and preconcentration of As (III) and As (V) species from environmental water samples. Environ. Sci. Pollut. R 2016, 23, 9759–9773. [Google Scholar] [CrossRef] [PubMed]
- Gan, Q.; Hou, H.; Liang, S.; Qiu, J.; Tao, S.; Yang, L.; Yu, W.; Xiao, K.; Liu, B.; Hu, J.; et al. Sludge-derived biochar with multivalent iron as an efficient Fenton catalyst for degradation of 4-Chlorophenol. Sci. Total Environ. 2020, 725, 138299. [Google Scholar] [CrossRef]
- Bai, S.; Li, R.; Su, G.; Duan, X.; Wang, S.; Ren, N.Q.; Ho, S.H. Magnetic biochar catalysts from anaerobic digested sludge: Production, application and environment impact. Environ. Int. 2019, 126, 302–308. [Google Scholar]
- Jones, T.C. State of nature: The politics of water in the making of Saudi Arabia. In Water on Sand: Environmental Histories of the Middle East and North Africa; Oxford University Press: New York, NY, USA, 2013; pp. 231–250. [Google Scholar]
- Jitjamnong, J.; Thunyaratchatanon, C.; Luengnaruemitchai, A.; Kongrit, N.; Kasetsomboon, N.; Sopajarn, A.; Chuaykarn, N.; Khantikulanon, N. Response surface optimization of biodiesel synthesis over a novel biochar-based heterogeneous catalyst from cultivated (Musa sapientum) banana peels. Biomass Convers. Biorefinery 2021, 11, 2795–2811. [Google Scholar] [CrossRef]
- Amin, M.T.; Alazba, A.A.; Shafiq, M. Removal of copper and lead using banana biochar in batch adsorption systems: Isotherms and kinetic studies. Arab. J. Sci. Eng. 2018, 43, 5711–5722. [Google Scholar] [CrossRef]
- Luo, X.; Deng, Z.; Lin, X.; Zhang, C. Fixed-bed column study for Cu2+ removal from solution using expanding rice husk. J. Hazard. Mater. 2011, 187, 182–189. [Google Scholar] [CrossRef]
- Zhang, W.; Thompson, K.E.; Reed, A.H.; Beenken, L. Relationship between packing structure and porosity in fixed beds of equilateral cylindrical particles. Chem. Eng. Sci. 2006, 61, 8060–8074. [Google Scholar] [CrossRef]
- Ahmad, M.A.; Ahmad, N.; Bello, O.S. Adsorption kinetic studies for the removal of synthetic dye using durian seed activated carbon. J. Dispers. Sci. Technol. 2015, 36, 670–684. [Google Scholar] [CrossRef]
- Urgel, J.J.; Briones, J.M.; Diaz, E.B., Jr.; Dimaculangan, K.M.; Rangel, K.L.; Lopez, E.C. Removal of diesel oil from water using biochar derived from waste banana peels as adsorbent. Carbon Res. 2024, 3, 13. [Google Scholar] [CrossRef]
- Sheng, Z.; Shen, Y.; Dai, H.; Pan, S.; Ai, B.; Zheng, L.; Zheng, X.; Xu, Z. Physicochemical characterization of raw and modified banana pseudostem fibers and their adsorption capacities for heavy metal Pb2+ and Cd2+ in water. Polym. Compos. 2018, 39, 1869–1877. [Google Scholar] [CrossRef]
- Park, J.H.; Wang, J.J.; Meng, Y.; Wei, Z.; DeLaune, R.D.; Seo, D.C. Adsorption/desorption behavior of cationic and anionic dyes by biochars prepared at normal and high pyrolysis temperatures. Colloids Surf. A 2019, 572, 274–282. [Google Scholar] [CrossRef]
- Chaukura, N.; Murimba, E.C.; Gwenzi, W. Synthesis, characterisation and methyl orange adsorption capacity of ferric oxide–biochar nano-composites derived from pulp and paper sludge. Appl. Water Sci. 2017, 7, 2175–2186. [Google Scholar] [CrossRef]
- Mittal, H.; Mishra, S.B. Gum ghatti and Fe3O4 magnetic nanoparticles based nanocomposites for the effective adsorption of rhodamine B. Carbohydr. Polym. 2014, 101, 1255–1264. [Google Scholar] [CrossRef]
- Jia, Y.; Zhang, Y.; Fu, J.; Yuan, L.; Li, Z.; Liu, C.; Zhao, D.; Wang, X. A novel magnetic biochar/MgFe-layered double hydroxides composite removing Pb2+ from aqueous solution: Isotherms, kinetics and thermodynamics. Colloids Surf. A Physicochem. Eng. Asp. 2019, 567, 278–287. [Google Scholar] [CrossRef]
- Devi, S.; Sharma, V.; Chahal, S.; Goel, P.; Singh, S.; Kumar, A.; Kumar, P. Phase transformation and structural evolution in iron oxide nanostructures. Mater. Sci. Eng. B 2021, 272, 115329. [Google Scholar]
- Dewage, N.B.; Liyanage, A.S.; Pittman, C.U., Jr.; Mohan, D.; Mlsna, T. Fast nitrate and fluoride adsorption and magnetic separation from water on α-Fe2O3 and Fe3O4 dispersed on Douglas fir biochar. Bioresour. Technol. 2018, 263, 258–265. [Google Scholar] [CrossRef]
- Zhang, M.; Gao, B.; Varnoosfaderani, S.; Hebard, A.; Yao, Y.; Inyang, M. Preparation and characterization of a novel magnetic biochar for arsenic removal. Bioresour. Technol. 2013, 130, 457–462. [Google Scholar] [CrossRef] [PubMed]
- Cheng, W.; Tang, K.; Qi, Y.; Sheng, J.; Liu, Z. One-step synthesis of superparamagnetic monodisperse porous Fe3O4 hollow and core-shell spheres. J. Mater. Chem. 2010, 20, 1799–1805. [Google Scholar] [CrossRef]
- Hosny, M.; Fawzy, M.; Eltaweil, A.S. Green synthesis of bimetallic Ag/ZnO@Biohar nanocomposite for photocatalytic degradation of tetracycline, antibacterial and antioxidant activities. Sci. Rep. 2022, 12, 7316. [Google Scholar] [CrossRef]
- Hossain, N.; Nizamuddin, S.; Griffin, G.; Selvakannan, P.; Mubarak, N.M.; Mahlia, T.M. Synthesis and characterization of rice husk biochar via hydrothermal carbonization for wastewater treatment and biofuel production. Sci. Rep. 2020, 10, 18851. [Google Scholar] [CrossRef]
- Lowell, S.; Shields, J.E.; Thomas, M.A.; Thommes, M. Characterization of Porous Solids and Powders: Surface Area, Pore Size and Density; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2006. [Google Scholar]
- Hameed, B.H.; Ahmad, A.A.; Aziz, N. Isotherms, kinetics and thermodynamics of acid dye adsorption on activated palm ash. Chem. Eng. J. 2007, 133, 195–203. [Google Scholar] [CrossRef]
- Cordova Estrada, A.K.; Cordova Lozano, F.; Lara Díaz, R.A. Thermodynamics and kinetic studies for the adsorption process of methyl orange by magnetic activated carbons. Air Soil Water Res. 2021, 14, 11786221211013336. [Google Scholar] [CrossRef]
- Yao, Y.; Bing, H.; Feifei, X.; Xiaofeng, C. Equilibrium and kinetic studies of methyl orange adsorption on multiwalled carbon nanotubes. Chem. Eng. J. 2011, 170, 82–89. [Google Scholar] [CrossRef]
- Zhang, L.; Hu, P.; Wang, J.; Liu, Q.; Huang, R. Adsorption of methyl orange (MO) by Zr(IV)-immobilized cross-linked chitosan/bentonite composite. Int. J. Biol. Macromol. 2015, 81, 818–827. [Google Scholar] [CrossRef]
- Zhang, L.; Tu, L.Y.; Liang, Y.; Chen, Q.; Li, Z.S.; Li, C.H.; Wang, Z.H.; Li, W. Coconut-based activated carbon fibers for efficient adsorption of various organic dyes. RSC Adv. 2018, 8, 42280–42291. [Google Scholar] [CrossRef]
- Kubendiran, H.; Hui, D.; Pulimi, M.; Chandrasekaran, N.; Murthy, P.S.; Mukherjee, A. Removal of methyl orange from aqueous solution using SRB supported Bio-Pd/Fe NPs. Environ. Nanotechnol. Monit. Manag. 2021, 16, 100561. [Google Scholar] [CrossRef]
- Han, L.; Xue, S.; Zhao, S.; Yan, J.; Qian, L.; Chen, M. Biochar supported nanoscale iron particles for the efficient removal of methyl orange dye in aqueous solutions. PLoS ONE 2015, 10, e0132067. [Google Scholar] [CrossRef] [PubMed]
- El Maguana, Y.; Elhadiri, N.; Benchanaa, M.; Chikri, R. Adsorption Thermodynamic and Kinetic Studies of Methyl Orange onto Sugar Scum Powder as a Low-Cost Inorganic Adsorbent. J. Chem. 2020, 2020, 9165874. [Google Scholar] [CrossRef]
- Zhang, B.; Wu, Y.; Cha, L. Removal of methyl orange dye using activated biochar derived from pomelo peel wastes: Performance, isotherm, and kinetic studies. J. Dispers. Sci. Technol. 2020, 41, 125–136. [Google Scholar] [CrossRef]
- Bekhoukh, A.; Moulefera, I.; Zeggai, F.Z.; Benyoucef, A.; Bachari, K. Anionic methyl orange removal from aqueous solutions by activated carbon reinforced conducting polyaniline as adsorbent: Synthesis, characterization, adsorption behavior, regeneration and kinetics study. J. Polym. Environ. 2022, 30, 886–895. [Google Scholar] [CrossRef]
- Hussain, S.; Kamran, M.; Khan, S.A.; Shaheen, K.; Shah, Z.; Suo, H.; Khan, Q.; Shah, A.B.; Rehman, W.U.; Al-Ghamdi, Y.O.; et al. Adsorption, kinetics and thermodynamics studies of methyl orange dye sequestration through chitosan composites films. Int. J. Biol. Macromol. 2021, 168, 383–394. [Google Scholar] [CrossRef]
- Saadi, R.; Saadi, Z.; Fazaeli, R.; Fard, N.E. Monolayer and multilayer adsorption isotherm models for sorption from aqueous media. Korean J. Chem. Eng. 2015, 32, 787–799. [Google Scholar] [CrossRef]
- Annadurai, G.; Juang, R.S.; Lee, D.J. Use of cellulose-based wastes for adsorption of dyes from aqueous solutions. J. Hazard. Mater. 2002, 92, 263–274. [Google Scholar] [CrossRef]
- Zhang, Y.; Sun, X.; Yang, G.; Zhu, Y.; Si, H.; Zhang, J.; Li, Y. Preparation and characterization of bifunctional BiOClxIy solid solutions with excellent adsorption and photocatalytic abilities for removal of organic dyes. Mater. Sci. Semicond. Process. 2016, 41, 193–199. [Google Scholar] [CrossRef]
- Liu, Z.; Zhou, A.; Wang, G.; Zhao, X. Adsorption behavior of methyl orange onto modified ultrafine coal powder. Chin. J. Chem. Eng. 2009, 17, 942–948. [Google Scholar]
- Lafi, R.; Abdellaoui, L.; Montasser, I.; Hafiane, A. Removal of methyl orange from aqueous solution onto modified extracted cellulose from Stipa tenacissima L. Int. J. Environ. Anal. Chem. 2022, 102, 8124–8140. [Google Scholar] [CrossRef]
- Matthew, E.; Roshelle, G.M. Simultaneous adsorption of acidic and basic dyes onto magnetized polypeptidylated-hemoglobin composites. Sep. Purif. Technol. 2021, 255, 117701. [Google Scholar]
- Tran, B.L.; Chin, H.Y.; Chang, B.K.; Chiang, A.S. Dye adsorption in ZIF-8: The importance of external surface area. Microporous Mesoporous Mater. 2019, 277, 149–153. [Google Scholar] [CrossRef]
- Alhaji, N.M.; Nathiya, D.; Kaviyarasu, K.; Meshram, M.; Ayeshamariam, A. A comparative study of structural and photocatalytic mechanism of AgGaO2 nanocomposites for equilibrium and kinetics evaluation of adsorption parameters. Surf. Interfaces 2019, 17, 100375. [Google Scholar] [CrossRef]
- Shang, Y.; Li, X.; Yang, Y.; Wang, N.; Zhuang, X.; Zhou, Z. Optimized photocatalytic regeneration of adsorption-photocatalysis bifunctional composite saturated with Methyl Orange. J. Environ. Sci. 2020, 94, 40–51. [Google Scholar] [CrossRef]
- Fallah, N.; Taghizadeh, M. Continuous fixed-bed adsorption of Mo (VI) from aqueous solutions by Mo (VI)-IIP: Breakthrough curves analysis and mathematical modeling. J. Environ. Chem. Eng. 2020, 8, 104079. [Google Scholar] [CrossRef]
- Zhang, W.; Yan, H.; Li, H.; Jiang, Z.; Dong, L.; Kan, X.; Yang, H.; Li, A.; Cheng, R. Removal of dyes from aqueous solutions by straw based adsorbents: Batch and column studies. Chem. Eng. J. 2011, 168, 1120–1127. [Google Scholar] [CrossRef]
- Wang, L.; Shi, C.; Pan, L.; Zhang, X.; Zou, J.J. Rational design, synthesis, adsorption principles and applications of metal oxide adsorbents: A review. Nanoscale 2020, 12, 4790–4815. [Google Scholar] [CrossRef]
- Alyasi, H.; Mackey, H.; McKay, G. Adsorption of methyl orange from water using chitosan bead-like materials. Molecules 2023, 28, 6561. [Google Scholar] [CrossRef]
- Allouche, F.N.; Yassaa, N.; Lounici, H. Sorption of methyl orange from aqueous solution on chitosan biomass. Procedia Earth Planet. Sci. 2015, 15, 596–601. [Google Scholar] [CrossRef]
- Al-Odayni, A.B.; Alsubaie, F.S.; Saeed, W.S. Nitrogen-rich polyaniline-based activated carbon for water treatment: Adsorption kinetics of anionic dye methyl orange. Polymers 2023, 15, 806. [Google Scholar] [CrossRef]
- El Hassani, K.; Beakou, B.H.; Kalnina, D.; Oukani, E.; Anouar, A. Effect of morphological properties of layered double hydroxides on adsorption of azo dye Methyl Orange: A comparative study. Appl. Clay Sci. 2017, 140, 124–131. [Google Scholar] [CrossRef]
- Wang, J.; Chen, W.; Zhang, M.; Zhou, R.; Li, J.; Zhao, W.; Wang, L. Optimize the preparation of Fe3O4-modified magnetic mesoporous biochar and its removal of methyl orange in wastewater. Environ. Monit. Assess. 2021, 193, 1–20. [Google Scholar] [CrossRef] [PubMed]
Assignment | Band Position (cm−1) | |
---|---|---|
LP | MLPB | |
O–H stretching of hydroxyl group | 3292 | - |
C–H stretching vibration from hemicelluloses | 2920 | - |
C≡C stretching of alkyne group | 2088 | - |
C=O stretching of lactones, ketones, and carboxylic anhydrides | 1710 | - |
C=C aromatic ring vibrations from lignin | 1597 | 1547 |
C–O stretching | 1010 | 1105 |
Fe–O | - | 642 |
Adsorbents | Element Composition (%) | ||
---|---|---|---|
C | O | Fe | |
LP | 57.0 | 41.9 | - |
MLPB | 37.1 | 28.8 | 24.0 |
Initial MOCon. (mg/L) | Pseudo-First-Order Model | Pseudo-Second-Order Model | qe,exp (mg/g) | Intraparticle Diffusion Model | ||||||
---|---|---|---|---|---|---|---|---|---|---|
k1 (min−1) | qe,cal (mg/g) | R2 | k2 (g/mg min) | qcal (mg/g) | R2 | ki (g/mg min0.5) | C | R2 | ||
20 | 0.0623 | 1.08 | 0.8115 | 0.303 | 5.69 | 0.9998 | 5.70 | 0.079 | 5.097 | 0.9443 |
40 | 0.0502 | 3.38 | 0.8757 | 0.064 | 8.65 | 0.9975 | 8.59 | 0.2754 | 6.378 | 0.9728 |
60 | 0.0413 | 2.64 | 0.7578 | 0.101 | 9.78 | 0.9995 | 9.89 | 0.2121 | 8.123 | 0.9779 |
T (oC) | Langmuir Isotherm | Freundlich Isotherm | Radushkevich (D–R) Isotherm | |||||||
---|---|---|---|---|---|---|---|---|---|---|
25 | b (L/mg) | Qmax (mg/g) | R2 | 1/n | KF (mg/g (L/mg)1/n) | R2 | qm (mg/g) | β (mol2/kJ2) | E (kJ/mol) | R2 |
0.157 | 17.21 | 0.9986 | 0.637 | 2.13 | 0.9774 | 8.88 | 5 × 10−7 | 0.997 | 0.8531 |
Adsorbent | Qmax (mg/g) | Reference |
---|---|---|
Biofunctional BiOCl3I solid | 5.00 | [50] |
Modified ultrafine coal powder | 18.52 | [51] |
Cellulose from Stipa tenacissina L | 16.94 | [52] |
Magnetic Clay-Biochar | 18.80 | [8] |
Carbon nanotubes | 35.40 | [39] |
Fe2O3/polypeptidylated hemoglobin | 15.20 | [53] |
Surfactant-added ZIF-8 | 10.10 | [54] |
AgGaO2 nanocomposites | 11.39 | [55] |
Fe2O3/biochar | 16.05 | [56] |
MLBP | 17.21 | This study |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Daffalla, S.; Da’na, E.; Taha, A.; El-Aassar, M.R. Synthesis of a Novel Magnetic Biochar from Lemon Peels via Impregnation-Pyrolysis for the Removal of Methyl Orange from Wastewater. Magnetochemistry 2024, 10, 95. https://doi.org/10.3390/magnetochemistry10120095
Daffalla S, Da’na E, Taha A, El-Aassar MR. Synthesis of a Novel Magnetic Biochar from Lemon Peels via Impregnation-Pyrolysis for the Removal of Methyl Orange from Wastewater. Magnetochemistry. 2024; 10(12):95. https://doi.org/10.3390/magnetochemistry10120095
Chicago/Turabian StyleDaffalla, Samah, Enshirah Da’na, Amel Taha, and Mohamed R. El-Aassar. 2024. "Synthesis of a Novel Magnetic Biochar from Lemon Peels via Impregnation-Pyrolysis for the Removal of Methyl Orange from Wastewater" Magnetochemistry 10, no. 12: 95. https://doi.org/10.3390/magnetochemistry10120095
APA StyleDaffalla, S., Da’na, E., Taha, A., & El-Aassar, M. R. (2024). Synthesis of a Novel Magnetic Biochar from Lemon Peels via Impregnation-Pyrolysis for the Removal of Methyl Orange from Wastewater. Magnetochemistry, 10(12), 95. https://doi.org/10.3390/magnetochemistry10120095