Enhancing ‘Mirlo Rojo’ Apricot (Prunus armeniaca L.) Quality Through Regulated Deficit Irrigation: Effects on Antioxidant Activity, Fatty Acid Profile, and Volatile Compounds
<p>Evolution of reference evapotranspiration (ET₀, mm d⁻<sup>1</sup>), daily mean vapor pressure deficit (VPDm, kPa), daily mean temperature (Tₘ, °C), and rainfall (mm) during the study period.</p> "> Figure 2
<p>‘Mirlo Rojo’ apricot fruits under different irrigation treatments. TA = irrigation 100% of ETc; TB = irrigation 60% of ETc; TC = irrigation 33% of ETc; TD = irrigation 0% of ETc.</p> "> Figure 3
<p>Fruit quality parameters in ‘Mirlo Rojo’ apricots under different irrigation treatments. Values (means) followed by the same letter are not significantly different (Kruskal–Wallis <span class="html-italic">p</span> < 0.05; Dunn test <span class="html-italic">p</span> < 0.05) (<span class="html-italic">n</span> = 6). TSS = total soluble solids; MI = maturity index; TA = irrigation 100% of ETc; TB = irrigation 60% of ETc; TC = irrigation 33% of ETc; TD = irrigation 0% of ETc.</p> "> Figure 4
<p>Antioxidant activity (mM Trolox DM) and total polyphenol content (TPC) [mg gallic acid equivalent (GAE) 100 g<sup>−1</sup> DM] in ‘Mirlo Rojo’ apricots under different irrigation treatments. Values (means) followed by the same letter are not significantly different (Kruskal–Wallis <span class="html-italic">p</span> < 0.05; Dunn test <span class="html-italic">p</span> < 0.05) (<span class="html-italic">n</span> = 4). TPC = total polyphenols content; TA = irrigation 100% of ETc; TB = irrigation 60% of ETc; TC = irrigation 33% of ETc; TD = irrigation 0% of ETc.</p> "> Figure 5
<p>Main chemical families of volatile compounds quantified in ‘Mirlo Rojo’ apricots under different irrigation treatments. Values (means) followed by the same letter are not significantly different (Kruskal–Wallis <span class="html-italic">p</span> < 0.05; Dunn test <span class="html-italic">p</span> < 0.05) (<span class="html-italic">n</span> = 9). TA = irrigation 100% of ETc; TB = irrigation 60% of ETc; TC = irrigation 33% of ETc; TD = irrigation 0% of ETc.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material, Growing Conditions, and Experimental Design
- i.
- TA (control), in which trees were irrigated to 100% of the ETc.
- ii.
- TB, in which trees were irrigated to 66% of the ETc.
- iii.
- TC, in which trees were irrigated to 33% of the ETc.
- iv.
- TD, in which trees were irrigated to 0% of the ETc.
2.2. Physicochemical Quality Parameters
2.3. Organic Acids and Sugars
2.4. Determination of Antioxidant Activity (AA) and Total Polyphenols Content (TPC)
2.5. Volatile Compounds Profile
2.6. Fatty Acid Profile
2.7. Statistical Analysis
3. Results
3.1. Physicochemical Quality Parameters
3.2. Organic Acids and Sugars
3.3. Antioxidant Activity (AA) and Total Polyphenols Content (TPC)
3.4. Volatile Compounds Profile
3.5. Fatty Acid Profile
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Berbel, J.; Esteban, E. Droughts as a catalyst for water policy change. Analysis of Spain, Australia (MDB), and California. Glob. Environ. Chang. 2019, 58, 101969. [Google Scholar] [CrossRef]
- García-Tejero, I.F.; Duran-Zuazo, V.H. Water Scarcity and Sustainable Agriculture in Semiarid Environment: Tools, Strategies and Challenges for Woody Crops; Academic Press: Cambridge, MA, USA, 2018. [Google Scholar]
- Torrecillas, A.; Domingo, R.; Galego, R.; Ruiz-Sánchez, M. Apricot tree response to withholding irrigation at different phenological periods. Sci. Hortic. 2000, 85, 201–215. [Google Scholar] [CrossRef]
- FAO. El Estado de los Recursos de Tierras y Aguas del Mundo Para la Alimentación y la Agricultura: Sistemas al Límite (SOLAW 2021); Organización de las Naciones Unidas para la Alimentación y la Agricultura: Rome, Italy, 2021; Available online: https://www.fao.org/land-water/solaw2021/es/ (accessed on 17 November 2024).
- MeteoSangonera. Available online: https://www.meteosangonera.es/2023regiondemurcia/#:~:text=La%20precipitaci%C3%B3n%20media%20del%202023,y%20Desarrollo%20Agrario%20y%20Medioambiental (accessed on 9 September 2024).
- Pérez-Pastor, A.; Ruiz-Sánchez, M.C.; Domingo, R. Effects of timing and intensity of deficit irrigation on vegetative and fruit growth of apricot trees. Agric. Water Manag. 2014, 134, 110–118. [Google Scholar] [CrossRef]
- Morote-Seguido, Á.F.; Rico-Amorós, A.M. Perspectivas de funcionamiento del Trasvase Tajo-Segura (España): Efectos de las nuevas reglas de explotación e impulso de la desalinización como recurso sustitutivo. Boletín Asoc. Geógrafos Españoles 2018, 79, 2754. [Google Scholar] [CrossRef]
- FAO (Food and Agriculture Organization of the United Nations). Data from Apricot Producing Nations. 2023. Available online: http://www.fao.org/faostat/en/#data/ (accessed on 5 September 2024).
- MAPA (Ministerio de Agricultura, Pesca y Alimentación). Anuario de Estadística (2023). Análisis Provincial de Superficie, Árboles Diseminados, Rendimiento y Producción; Ministerio de Agricultura, Pesca y Alimentación: Madrid, Spain, 2022. [Google Scholar]
- CEBASfruit®. Ficha técnica ‘Mirlo Rojo’. Available online: https://cebasfruit.com/mirlo-rojo/ (accessed on 9 September 2024).
- Baldicchi, A.; Farinelli, D.; Micheli, M.; Di Vaio, C.; Moscatello, S.; Battistelli, A.; Walker, R.; Famiani, F. Analysis of seed growth, fruit growth and composition and phospoenolpyruvate carboxykinase (PEPCK) occurrence in apricot (Prunus armeniaca L.). Sci. Hortic. 2015, 186, 38–46. [Google Scholar] [CrossRef]
- Pérez-Pastor, A.; Ruiz-Sánchez, M.C.; Domingo, R.; Torrecillas, A. Growth and phenological stages of Búlida apricot trees in south-east Spain. Agronomie 2004, 24, 93–100. [Google Scholar] [CrossRef]
- Westwood, M.N. Temperate-Zone Pomology; Timber Press: Portland, ME, USA, 1993. [Google Scholar]
- Cano-Lamadrid, M.; Girón, I.; Pleite, R.; Burló, F.; Corell, M.; Moriana, A.; Carbonell-Barrachina, Á. Quality attributes of table olives as affected by regulated deficit irrigation. LWT 2015, 62, 19–26. [Google Scholar] [CrossRef]
- Carbonell-Barrachina, Á.A.; Memmi, H.; Noguera-Artiaga, L.; Del Carmen Gijón-López, M.; Ciapa, R.; Pérez-López, D. Quality attributes of pistachio nuts as affected by rootstock and deficit irrigation. J. Sci. Food Agric. 2015, 95, 2866–2873. [Google Scholar] [CrossRef]
- Lipan, L.; Rodríguez, L.S.; González, J.C.; Sendra, E.; Burló, F.; Hernández, F.; Vodnar, D.; Carbonell-Barrachina, Á.C. Sustainability of the Legal Endowments of Water in Almond Trees and a New Generation of High Quality Hydrosustainable Almonds. Bull. Univ. Agric. Sci. Vet. Med. Cluj-Napoca Food Sci. Technol. 2018, 75, 97. [Google Scholar] [CrossRef]
- Lipan, L.; Martín-Palomo, M.J.; Sánchez-Rodríguez, L.; Cano-Lamadrid, M.; Sendra, E.; Hernández, F.; Burló, F.; Vázquez-Araújo, L.; Andreu, L.; Carbonell-Barrachina, Á.A. Almond fruit quality can be improved by means of deficit irrigation strategies. Agric. Water Manag. 2019, 217, 236–242. [Google Scholar] [CrossRef]
- Noguera-Artiaga, L.; Lipan, L.; Vázquez-Araújo, L.; Barber, X.; Pérez-López, D.; Carbonell-Barrachina, Á.A. Opinion of Spanish Consumers on Hydrosustainable Pistachios. J. Food Sci. 2016, 81, S2559–S2565. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Rodríguez, L.; Corell, M.; Hernández, F.; Sendra, E.; Moriana, A.; Carbonell-Barrachina, Á.A. Effect of Spanish-style processing on the quality attributes of HydroSOStainable green olives. J. Sci. Food Agric. 2018, 99, 1804–1811. [Google Scholar] [CrossRef] [PubMed]
- Galindo, A.; Collado-González, J.; Griñán, I.; Corell, M.; Centeno, A.; Martín-Palomo, M.; Girón, I.; Rodríguez, P.; Cruz, Z.; Memmi, H.; et al. Deficit irrigation and emerging fruit crops as a strategy to save water in Mediterranean semiarid agrosystems. Agric. Water Manag. 2017, 202, 311–324. [Google Scholar] [CrossRef]
- Horner, J.D. Nonlinear effects of water deficits on foliar tannin concentration. Biochem. Syst. Ecol. 1990, 18, 211–213. [Google Scholar] [CrossRef]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration. Guidelines for Computing Crop Water Requirements; FAO Irrigation and Drainage Paper 56; FAO: Rome, Italy, 1998. [Google Scholar]
- Abrisqueta, J.M.; Ruiz, A.; Franco, J.A. Water balance of apricot trees (Prunus armeniaca L. cv. ‘Búlida’) under drip irrigation. Agric. Water Manag. 2001, 50, 211–227. [Google Scholar] [CrossRef]
- Fereres, E.; Goldhamer, D.A. Deciduous fruit and nut trees. In Irrigation of Agricultural Crops; Stewart, B.A., Nielsen, D.R., Eds.; ASA, CSSA, SSSA: Madison, WI, USA, 1990; Volume 30, pp. 987–1017. [Google Scholar]
- Batool, M.; Bashir, O.; Amin, T.; Wani, S.M.; Masoodi, F.; Jan, N.; Bhat, S.A.; Gul, A. Effect of oxalic acid and salicylic acid treatments on the post-harvest life of temperate grown apricot varieties (Prunus armeniaca) during controlled atmosphere storage. Food Sci. Technol. Int. 2021, 28, 557–569. [Google Scholar] [CrossRef]
- Hernández, F.; Noguera-Artiaga, L.; Burló, F.; Wojdyło, A.; Carbonell-Barrachina, Á.A.; Legua, P. Physico-chemical, nutritional, and volatile composition and sensory profile of Spanish jujube (Ziziphus jujuba Mill.) fruits. J. Sci. Food Agric. 2015, 96, 2682–2691. [Google Scholar] [CrossRef]
- Keutgen, A.; Pawelzik, E. Modifications of taste-relevant compounds in strawberry fruit under NaCl salinity. Food Chem. 2007, 105, 1487–1494. [Google Scholar] [CrossRef]
- Wojdyło, A.; Oszmiański, J.; Laskowski, P. Polyphenolic Compounds and Antioxidant Activity of New and Old Apple Varieties. J. Agric. Food Chem. 2008, 56, 6520–6530. [Google Scholar] [CrossRef]
- Brand-Williams, W.; Cuvelier, M.; Berset, C. Use of a free radical method to evaluate antioxidant activity. LWT 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Benzie, I.F.; Strain, J. The Ferric Reducing Ability of Plasma (FRAP) as a Measure of “Antioxidant Power”: The FRAP Assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef] [PubMed]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolourization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef] [PubMed]
- Singleton, V.L.; Orthofer, R.; Lamuela-Raventós, R.M. Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. In Methods Enzymology; Academic Press: Cambridge, MA, USA, 1999; Volume 299, pp. 152–178. [Google Scholar]
- Teruel-Andreu, C.; Issa-Issa, H.; Noguera-Artiaga, L.; Sendra, E.; Hernández, F.; Cano-Lamadrid, M. Volatile profile of breba and fig fruits (peel and pulp) from different Ficus carica L. varieties. Sci. Hortic. 2024, 328, 112892. [Google Scholar] [CrossRef]
- Oliveira, A.P.; Silva, L.R.; De Pinho, P.G.; Gil-Izquierdo, A.; Valentão, P.; Silva, B.M.; Pereira, J.A.; Andrade, P.B. Volatile profiling of Ficus carica varieties by HS-SPME and GC–IT-MS. Food Chem. 2010, 123, 548–557. [Google Scholar] [CrossRef]
- NIST, National Institute of Standards and Technology. Available online: https://webbook.nist.gov/chemistry/ (accessed on 19 June 2023). [CrossRef]
- ISO-12966-2; Animal and Vegetable Fats and Oils—Gas Chromatography of Fatty Acid Methyl Esters—Part 2: Preparation of Methyl Esters of Fatty Acids. International Organization for Standardization: Geneva, Switzerland, 2017.
- Trigueros, L.; Barber, X.; Sendra, E. Conjugated linoleic acid content in fermented goat milk as affected by the starter culture and the presence of free linoleic acid. Int. J. Dairy Technol. 2015, 68, 198–206. [Google Scholar] [CrossRef]
- García-Garví, J.M.; Sánchez-Bravo, P.; Hernández, F.; Sendra, E.; Corell, M.; Moriana, A.; Burgos-Hernández, A.; Carbonell-Barrachina, Á.A. Effect of Regulated Deficit Irrigation on the Quality of ‘Arbequina’ Extra Virgin Olive Oil Produced on a Super-High-Intensive Orchard. Agronomy 2022, 12, 1892. [Google Scholar] [CrossRef]
- Ulbricht, T.L.V.; Southgate, D.A.T. Coronary heart disease: Seven dietary factors. Lancet 1991, 338, 985–992. [Google Scholar] [CrossRef]
- Chen, J.; Liu, H. Nutritional Indices for Assessing Fatty Acids: A Mini-Review. Int. J. Mol. Sci. 2020, 21, 5695. [Google Scholar] [CrossRef]
- Addinsoft, S.A.R.L. XLSTAT Software; Addinsoft: Barcelona, Spain, 2010. [Google Scholar]
- Barrett, D.M.; Beaulieu, J.C.; Shewfelt, R. Colour, Flavor, Texture, and Nutritional Quality of Fresh-Cut Fruits and Vegetables: Desirable Levels, Instrumental and Sensory Measurement, and the Effects of Processing. Crit. Rev. Food Sci. Nutr. 2010, 50, 369–389. [Google Scholar] [CrossRef]
- SAFC. Flavors and Fragrances; SAFC Specialities: Madrid, Spain, 2012. [Google Scholar]
- FEMA. Flavors Extracts Manufacturers Association. Available online: https://www.femaflavor.org/ (accessed on 9 April 2024).
- Valero, D.; Serrano, M. Postharvest Biology and Technology for Preserving Fruit Quality; CRC-Taylor and Francis: Boca Raton, FL, USA, 2010; pp. 35–230. ISBN 9781439802663. [Google Scholar]
- Pérez-Pastor, A.; Domingo, R.; Torrecillas, A.; Ruiz-Sánchez, M.C. Response of apricot trees to deficit irrigation strategies. Irrig. Sci. 2009, 27, 231–242. [Google Scholar] [CrossRef]
- Pérez-Pastor, A.; Ruiz-Sánchez, M.C.; Martínez, J.A.; Nortes, P.A.; Artés, F.; Domingo, R. Effect of deficit irrigation on apricot fruit quality at harvest and during storage. J. Sci. Food Agric. 2007, 87, 2409–2415. [Google Scholar] [CrossRef]
- Pérez-Sarmiento, F.; Mirás-Avalos, J.M.; Alcobendas, R.; Alarcón, J.J.; Mounzer, O.; Nicolas, E. Effects of regulated deficit irrigation on physiology, yield and fruit quality in apricot trees under Mediterranean conditions. Span. J. Agric. Res. 2016, 14, e1205. [Google Scholar] [CrossRef]
- Arzani, K.; Wood, D.; Lawes, G.S. Influence of first season application of paclobutrazol, root-pruning and regulated deficit irrigation on second season flowering and fruiting of mature “sundrop” apricot trees. Acta Hortic. 2000, 516, 75–82. [Google Scholar] [CrossRef]
- Stanley, J.; Feng, J.; Olsson, S. Crop load and harvest maturity effects on consumer preferences for apricots. J. Sci. Food Agric. 2014, 95, 752–763. [Google Scholar] [CrossRef] [PubMed]
- Crisosto, C.H. Apricots. In Postharvest Technology of Horticultural Crops; Kader, A.A., Ed.; University of California: Oakland, CA, USA, 2002; pp. 351–352. [Google Scholar]
- Stanley, J.; Prakash, R.; Marshall, R.; Schröder, R. Effect of harvest maturity and cold storage on correlations between fruit properties during ripening of apricot (Prunus armeniaca). Postharvest Biol. Technol. 2013, 82, 39–50. [Google Scholar] [CrossRef]
- Kaya, S.; Evren, S.; Dasci, E.; Adiguzel, M.C. Effects of different irrigation regimes on vegetative growth, fruit yield, and quality of drip-irrigated apricot trees. Afr. J. Biotechnol. 2010, 9, 5902–5907. [Google Scholar]
- Temnani, A.; Berríos, P.; Zapata-García, S.; Espinosa, P.J.; Pérez-Pastor, A. Threshold values of plant water status for scheduling deficit irrigation in early apricot trees. Agronomy 2023, 13, 2344. [Google Scholar] [CrossRef]
- Díaz-Mula, H.M. Bioactive Compounds, Antioxidant Activity and Quality of Plum and Sweet Cherry Cultivars as Affected by Ripening On-Tree, Cold Storage and Postharvest Treatments. Ph.D. Thesis, Universidad Miguel Hernández de Elche, Elche, Spain, 2011. [Google Scholar]
- Kaya, S.; Evren, S.; Dasci, E.; Adiguzel, M.C. Fruit physical characteristics responses of young apricot trees to different irrigation regimes and yield, quality, vegetative growth, and evapotranspiration relations. Int. J. Phys. Sci. 2011, 6, 3134–3142. [Google Scholar]
- Kumar, P.; Thakur, J.; Agrawal, G. Evaluation of regulated deficit drip irrigation strategies in apricot. J. Plant Nutr. 2022, 45, 3109–3117. [Google Scholar] [CrossRef]
- Zhou, H.; Zhang, F.; Roger, K.; Wu, L.; Gong, D.; Zhao, N.; Yin, D.; Xiang, Y.; Li, Z. Peach yield and fruit quality is maintained under mild deficit irrigation in semi-arid China. J. Integr. Agric. 2017, 16, 1173–1183. [Google Scholar] [CrossRef]
- Akin, E.B.; Karabulut, I.; Topcu, A. Some compositional properties of main Malatya apricot (Prunus armeniaca L.) varieties. Food Chem. 2008, 107, 939–948. [Google Scholar] [CrossRef]
- Fan, X.; Zhao, H.; Wang, X.; Cao, J.; Jiang, W. Sugar and organic acid composition of apricot and their contribution to sensory quality and consumer satisfaction. Sci. Hortic. 2017, 225, 553–560. [Google Scholar] [CrossRef]
- Su, C.; Zheng, X.; Zhang, D.; Chen, Y.; Xiao, J.; He, Y.; He, J.; Wang, B.; Shi, X. Investigation of sugars, organic acids, phenolic compounds, antioxidant activity and the aroma fingerprint of small white apricots grown in Xinjiang. J. Food Sci. 2020, 85, 4300–4311. [Google Scholar] [CrossRef] [PubMed]
- Alcobendas, R.; Mirás-Avalos, J.M.; Alarcón, J.J.; Nicolás, E. Effects of irrigation and fruit position on size, colour, firmness and sugar contents of fruits in a mid-late maturing peach cultivar. Sci. Hortic. 2013, 164, 340–347. [Google Scholar] [CrossRef]
- Toumi, I.; Zarrouk, O.; Ghrab, M.; Nagaz, K. Improving peach fruit quality traits using deficit irrigation strategies in southern Tunisia arid area. Plants 2022, 11, 1656. [Google Scholar] [CrossRef]
- Guizani, M.; Dabbou, S.; Maatallah, S.; Montevecchi, G.; Antonelli, A.; Serrano, M.; Hajlaoui, H.; Rezig, M.; Kilani-Jaziri, S. Evaluation of two water deficit models on phenolic profiles and antioxidant activities of different peach fruits parts. Chem. Biodivers. 2022, 19, e202100851. [Google Scholar] [CrossRef]
- Lipan, L.; Moriana, N.; Lluch, N.; Cano-Lamadrid, N.; Sendra, N.; Hernández, N.; Vázquez-Araújo, N.; Corell, N.; Carbonell-Barrachina, N. Nutrition quality parameters of almonds as affected by deficit irrigation strategies. Molecules 2019, 24, 2646. [Google Scholar] [CrossRef]
- Buendía, B.; Allende, A.; Nicolás, E.; Alarcón, J.J.; Gil, M.I. Effect of regulated deficit irrigation and crop load on the antioxidant compounds of peaches. J. Agric. Food Chem. 2008, 56, 3601–3608. [Google Scholar] [CrossRef]
- Feng, J.R.; Xi, W.P.; Li, W.H.; Liu, H.N.; Liu, X.F.; Lu, X.Y. Volatile characterization of major apricot cultivars of southern Xinjiang region of China. J. Am. Soc. Hortic. Sci. 2015, 140, 466–471. [Google Scholar] [CrossRef]
- Griñán, I.; Galindo, A.; Rodríguez, P.; Morales, D.; Corell, M.; Centeno, A.; Collado-González, J.; Torrecillas, A.; Carbonell-Barrachina, Á.; Hernández, F. Volatile composition and sensory and quality attributes of quince (Cydonia oblonga Mill.) fruits as affected by water stress. Sci. Hortic. 2018, 244, 68–74. [Google Scholar] [CrossRef]
- Mornar, A.; Sertić, M.; Nigović, B. High Performance Liquid Chromatography–An Effective Tool for Quality Control of Natural Cholesterol-Lowering Agents. In High-Performance Liquid Chromatography (HPLC): Principles, Practices and Procedures, 1st ed.; Woodhead Publishing: Cambridge, UK, 2014; pp. 87–128. [Google Scholar]
- Pintea, A.; Dulf, F.V.; Bunea, A.; Socaci, S.A.; Pop, E.A.; Opriță, V.; Giuffrida, D.; Cacciola, F.; Bartolomeo, G.; Mondello, L. Carotenoids, fatty acids, and volatile compounds in apricot cultivars from Romania—A chemometric approach. Antioxidants 2020, 9, 562. [Google Scholar] [CrossRef] [PubMed]
- Andreu-Coll, L.; Cano-Lamadrid, M.; Sendra, E.; Carbonell-Barrachina, Á.; Legua, P.; Hernández, F. Fatty acid profile of fruits (pulp and peel) and cladodes (young and old) of prickly pear (Opuntia ficus-indica L.) Mill. from six Spanish cultivars. J. Food Compos. Anal. 2019, 84, 103294. [Google Scholar] [CrossRef]
- Santos, M.P.L.D.; Santos, O.V.D.; da Conceição, L.R.V.; Teixeira-Costa, B.E.; Henriques Lourenço, L.F.; Sousa, C.L.L. Characterization of lipid extracts from different colours of peach palm fruits—Red, yellow, green, and white—Obtained through ultrasound-assisted green extraction. Foods 2024, 13, 1475. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, I.; Leça, J.M.; Aguiar, R.; Fernandes, T.; Marques, J.C.; Cordeiro, N. Influence of crop system on fruit quality, carotenoids, fatty acids, and phenolic compounds in cherry tomatoes. Agric. Res. 2021, 10, 56–65. [Google Scholar] [CrossRef]
- Sánchez-Salcedo, E.M.; Sendra, E.; Hernández, F.; Ollivier, M.; Carbonell-Barrachina, Á.A.; Legua, P. Fatty acids, antioxidant activity, mineral composition, and proximate analysis of seed and seedless jujube fruits. J. Food Compos. Anal. 2016, 45, 8–16. [Google Scholar] [CrossRef]
- Makrygiannis, I.; Karyotou, P.; Constantinou, M.; Machera, K.; Tsikakis, T.; Katsouras, A.; Botti, S.; Fakas, S. Environmental conditions affect the lipid composition of apricot kernel oil. Agronomy 2023, 13, 1051. [Google Scholar] [CrossRef]
- Erdogan-Orhan, I.; Kartal, M. Insights into research on phytochemistry and biological activities of apricot kernel and oil. Food Rev. Int. 2011, 27, 418–426. [Google Scholar] [CrossRef]
Treatment | L* (D65) | a* (D65) | b* (D65) | C* (D65) | H°* (D65) |
---|---|---|---|---|---|
TA | 61.17 b 1 | 24.51 a | 38.74 b | 46.12 b | 57.45 a |
TB | 62.74 a | 24.21 a | 40.17 a | 47.09 a | 58.75 a |
TC | 60.19 b | 24.42 a | 36.32 c | 44.46 c | 55.54 b |
TD | 62.33 a | 23.63 a | 38.37 b | 45.72 b | 57.89 a |
Treatment | Maximum Force (N) | Total Work (N mm−1) | Breaking Force (N) | Maximum Force Work (N mm−1) |
---|---|---|---|---|
TA | 16.00 b 1 | 32.37 a | 22.40 b | 82.97 b |
TB | 10.48 c | 20.59 b | 17.56 b | 72.32 b |
TC | 13.73 bc | 25.48 ab | 22.19 b | 63.36 b |
TD | 21.65 a | 36.72 a | 39.42 a | 125.45 a |
Treatment | Sucrose | Glucose | Fructose | Sweetness Index | Citric | Malic | Quinic |
---|---|---|---|---|---|---|---|
(g 100 mL−1) | (g 100 mL−1) | ||||||
TA | 19.47 b 1 | 0.82 b | 1.01 b | 31.24 b | 0.59 a | 1.17 a | 0.15 a |
TB | 24.00 a | 1.03 a | 1.10 ab | 37.96 a | 0.63 a | 1.22 a | 0.17 a |
TC | 24.31 a | 1.00 ab | 1.16 ab | 38.48 a | 0.58 a | 1.24 a | 0.17 a |
TD | 22.10 ab | 1.07 a | 1.22 a | 35.72 a | 0.57 a | 1.30 a | 0.16 a |
Volatile Compound | Chemical Family | RT 1 | Kovats Index (KI) 2 | Descriptors | |
---|---|---|---|---|---|
(min) | Exp. | Lit. | |||
1-Hexanol | Alcohols | 6.66 | 873 | 865 | Green, herbaceous, woody, sweet [43] |
6-Methyl-5-hepten-2-one | Ketones | 11.85 | 978 | 986 | Oily, herbaceous, green [43] |
Butanoic acid butyl ester | Esters | 12.51 | 991 | 994 | Floral [44] |
Hexanoic acid ethyl ester | Esters | 12.65 | 994 | 998 | Apple peel, brandy, fruit gum [44] |
(E)- 3-Hexen-1-ol acetate | Esters | 13.01 | 1001 | 1005 | Green, floral, fruity [44] |
Acetic acid hexyl ester | Esters | 13.44 | 1008 | 1010 | Apple, cherry, floral, pear, sweet [43] |
2-Hexen-1-ol acetate | Esters | 13.56 | 1010 | 1014 | Apple, pear, banana, peach, berries [44] |
p-Cymene | Terpenes | 14.08 | 1018 | 1024 | Citrus [43] |
Limonene | Terpenes | 14.37 | 1022 | 1027 | Lemon, orange, citrus, sweet [43] |
Benzeneacetaldehyde | Aldehydes | 15.12 | 1034 | 1043 | Ethereal, coffee, wine-like [43] |
Butanoic acid pentyl ester | Esters | 18.47 | 1087 | 1092 | Pear, apricot [43] |
Linalool | Terpenoids | 18.81 | 1093 | 1098 | Lemon, orange, floral, citrus, sweet [43] |
Terpinen-4-ol | Terpenes | 23.95 | 1169 | 1177 | Chocolate, grapefruit, lemon, lime [43] |
(Z)-Butanoic acid 3-hexenyl ester | Esters | 24.51 | 1177 | 1187 | Green [43] |
Butanoic acid hexyl ester | Esters | 24.98 | 1184 | 1190 | Apple peel, citrus, fresh [44] |
(E)- Butanoic acid 2-hexenyl ester | Esters | 25.17 | 1187 | 1191 | Fruit [44] |
Octanoic acid ethyl ester | Esters | 25.31 | 1189 | 1196 | Apricot, floral, pear, pineapple [43] |
Decanal | Aldehydes | 25.88 | 1197 | 1204 | Waxy, floral, citrus, sweet [43] |
β-Cyclocitral | Aldehydes | 26.49 | 1207 | 1208 | Fruity, minty, green [43] |
Butanoic acid 2-methyl-hexyl ester | Esters | 27.89 | 1230 | 1236 | Strawberry [44] |
Benzeneacetic acid ethyl ester | Esters | 28.03 | 1232 | 1229 | Honey, floral, green, sweet [43] |
cis-Geraniol | Terpenoids | 28.69 | 1243 | 1239 | Apple, apricot, berry, rose, sweet [43] |
Salicylic acid | Aromatic hydroxy acids | 31.21 | 1285 | 1285 | Sweet, sour [44] |
(Z)-Hexanoic acid 3-hexenyl ester | Esters | 35.77 | 1371 | 1379 | Fruit, prune [44] |
Hexanoic acid hexyl ester | Esters | 36.09 | 1378 | 1381 | Apple peel, peach, plum [44] |
(E)-Hexanoic acid 2-hexenyl ester | Esters | 36.21 | 1378 | 1368 | Green [44] |
Decanoic acid ethyl ester | Esters | 36.54 | 1387 | 1391 | Brandy, grape, pear [44] |
Dodecanal | Aldehydes | 37.18 | 1399 | 1409 | Herbaceous, waxy, floral, sweet [43] |
Nerylacetone | Ketones | 38.91 | 1432 | 1438 | Floral, fruit [44] |
γ-Decalactone | Ketones | 39.57 | 1448 | 1450 | Peach [43] |
δ-Decalactone | Ketones | 40.71 | 1476 | 1471 | Butter, coconut, fruity, peach [43] |
γ-Dodecanolactone | Ketones | 48.35 | 1666 | 1671 | Apricot, flower, fruit, peach [44] |
Volatile Compound | TA | TB | TC | TD |
---|---|---|---|---|
Alcohols | ||||
1-Hexanol | 0.51 a 1 | 0.42 a | 0.23 a | 0.43 a |
Terpenes | ||||
p-Cymene | 0.03 b | 0.02 b | 0.02 b | 0.05 a |
Limonene | 0.46 ab | 0.32 bc | 0.23 c | 0.55 a |
Terpinen-4-ol | 0.01 a | 0.02 a | 0.02 a | 0.12 a |
Terpenoids | ||||
Linalool | 1.07 b | 3.63 a | 2.99 a | 1.41 b |
cis-Geraniol | 0.11 a | 0.08 a | 0.04 a | 0.03 a |
Aromatic hydroxy acids | ||||
Salicylic acid | 0.05 a | 0.05 a | 0.04 a | 0.04 a |
Aldehydes | ||||
Benzeneacetaldehyde | 0.04 a | 0.06 a | 0.04 a | 0.05 a |
Decanal | 0.03 a | 0.04 a | 0.04 a | 0.05 a |
β-Cyclocitral | 0.06 b | 0.11 a | 0.09 ab | 0.05 b |
Dodecanal | 0.03 b | 0.04 b | 0.08 a | 0.08 a |
Esters | ||||
Butanoic acid butyl ester | 0.47 ab | 0.23 bc | 0.16 c | 0.54 a |
Hexanoic acid ethyl ester | 0.58 a | 0.89 a | 1.01 a | 0.77 a |
(E)- 3-Hexen-1-ol acetate | 0.18 b | 0.45 a | 0.28 ab | 0.34 ab |
Acetic acid hexyl ester | 0.14 a | 0.27 a | 0.18 a | 0.20 a |
2-Hexen-1-ol acetate | 0.31 b | 0.87 a | 0.46 ab | 0.62 ab |
Butanoic acid pentyl ester | 0.11 a | 0.05 b | 0.04 b | 0.09 ab |
(Z)-Butanoic acid 3-hexenyl ester | 0.46 a | 0.16 bc | 0.09 c | 0.41 ab |
Butanoic acid hexyl ester | 1.68 a | 0.65 b | 0.47 b | 1.28 ab |
(E)-Butanoic acid 2-hexenyl ester | 0.92 a | 0.30 b | 0.11 b | 0.99 a |
Octanoic acid ethyl ester | 0.56 a | 0.42 a | 0.16 a | 0.09 a |
Butanoic acid 2-methyl-hexyl ester | 0.38 a | 0.31 a | 0.28 a | 0.40 a |
Benzeneacetic acid ethyl ester | 0.17 a | 0.11 a | 0.001 a | 0.001 a |
(Z)-Hexanoic acid 3-hexenyl ester | 0.09 a | 0.03 b | 0.02 b | 0.07 abc |
Hexanoic acid hexyl ester | 0.24 a | 0.05 a | 0.06 a | 0.15 a |
(E)-Hexanoic acid 2-hexenyl ester | 0.08 a | 0.03 b | 0.02 b | 0.06 ab |
Decanoic acid ethyl ester | 0.80 a | 0.19 a | 0.01 a | 0.01 a |
Ketones | ||||
6-Methyl-5-hepten-2-one | 0.04 b | 0.07 a | 0.05 ab | 0.04 b |
Nerylacetone | 0.05 a | 0.08 a | 0.06 a | 0.07 a |
γ-Decalactone | 0.53 a | 0.87 a | 0.64 a | 0.30 a |
δ-Decalactone | 0.04 a | 0.07 a | 0.05 a | 0.03 a |
γ-Dodecanolactone | 0.06 a | 0.09 a | 0.07 a | 0.03 a |
Total (mg Kg−1) | 10.31 a | 10.96 a | 8.01 a | 9.35 a |
Fatty Acids (mg Kg−1 DM) | TA | TB | TC | TD |
---|---|---|---|---|
Butiric acid (C4:0) | 9.48 a 1 | 9.46 a | 9.54 a | 9.45 a |
Caprioic acid (C6:0) | 2.03 a | 2.13 a | 1.27 a | 2.08 a |
Caprilic acid (C8:0) | 4.43 a | 2.94 a | 2.46 a | 3.19 a |
Capric acid (C10:0) | 1.86 a | 1.02 a | 1.07 a | 1.13 a |
Undecanoic acid (C11:0) | 0.94 a | 0.78 a | 0.57 a | 1.02 a |
Lauric acid (C12:0) | 1.33 a | 1.50 a | 1.67 a | 1.30 a |
Myristoleic acid (C14:1) | 0.98 ab | 0.92 ab | 0.72 b | 1.19 a |
Pentadecanoic acid (C15:0) | 1.06 a | 1.02 a | 1.03 a | 1.08 a |
Palmitic acid (C16:0) | 74.16 a | 79.65 a | 83.06 a | 84.46 a |
Heptadecanoic acid (C17:0) | 2.42 ab | 2.12 ab | 1.86 b | 2.91 a |
Margaroleic acid (C17:1c10) | 0.68 a | 0.82 a | 0.66 a | 0.60 a |
Stearic acid (C18:0) | 6.71 a | 7.48 a | 8.34 a | 8.47 a |
Oleic acid (C18:1t9) | 2.30 ab | 1.61 ab | 1.21 b | 3.88 a |
Oleic acid (C18:1c9/C18:1n9) | 2.65 a | 2.75 a | 2.85 a | 3.06 a |
Linolenic acid (C18:2c9.12/C18:2n6c) | 140.17 a | 148.45 a | 153.69 a | 153.96 a |
Arachidic acid (C20:0) | 2.51 a | 2.86 a | 3.13 a | 3.00 a |
Linoleic acid (C18:3c6.9.12 gamma/C18:3n6) | 1.34 ab | 1.40 ab | 0.94 b | 2.24 a |
Linoleic acid (C18:3c9.12.15alpha/C18:3n3) | 70.10 a | 78.77 a | 69.28 a | 77.23 a |
Eicosenoic acid (C20:1c11/C20:1n9) | 3.33 ab | 3.12 ab | 2.49 b | 4.08 a |
Behenic acid (C22:0) | 1.19 a | 1.47 a | 1.45 a | 1.42 a |
Eicosatrienoic acid (C20:3c8.11.14/C20:3n6) | nd b | 0.46 a | nd b | 0.38 a |
Tricosilic acid (C23:0) | 0.43 a | 0.52 a | 0.55 a | 0.55 a |
Lignociric acid (C24:0) | 1.04 a | 1.51 a | 1.42 a | 1.25 a |
TOTAL | 331.12 a | 352.76 a | 349.26 a | 367.92 a |
Total MUFA | 9.94 ab | 9.22 b | 7.93 b | 12.81 a |
Total PUFA | 211.61 a | 229.08 a | 224.24 a | 233.81 a |
Total SFA | 109.58 a | 114.46 a | 117.09 a | 121.30 a |
U/S ratio | 2.03 a | 2.07 a | 1.97 a | 2.03 a |
AI | 0.34 a | 0.34 a | 0.37 a | 0.35 a |
TI | 0.28 a | 0.28 a | 0.32 a | 0.29 a |
PUFA/SFA | 1.94 a | 1.99 a | 1.90 a | 1.93 a |
HH | 2.87 a | 2.84 a | 2.67 a | 2.76 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Andreu-Coll, L.; Burló, F.; Galindo, A.; García-Brunton, J.; Vigueras-Fernández, J.; Blaya-Ros, P.J.; Martínez-Font, R.; Noguera-Artiaga, L.; Sendra, E.; Hernández, F.; et al. Enhancing ‘Mirlo Rojo’ Apricot (Prunus armeniaca L.) Quality Through Regulated Deficit Irrigation: Effects on Antioxidant Activity, Fatty Acid Profile, and Volatile Compounds. Horticulturae 2024, 10, 1253. https://doi.org/10.3390/horticulturae10121253
Andreu-Coll L, Burló F, Galindo A, García-Brunton J, Vigueras-Fernández J, Blaya-Ros PJ, Martínez-Font R, Noguera-Artiaga L, Sendra E, Hernández F, et al. Enhancing ‘Mirlo Rojo’ Apricot (Prunus armeniaca L.) Quality Through Regulated Deficit Irrigation: Effects on Antioxidant Activity, Fatty Acid Profile, and Volatile Compounds. Horticulturae. 2024; 10(12):1253. https://doi.org/10.3390/horticulturae10121253
Chicago/Turabian StyleAndreu-Coll, Lucía, Francisco Burló, Alejandro Galindo, Jesús García-Brunton, Jesús Vigueras-Fernández, Pedro J. Blaya-Ros, Rafael Martínez-Font, Luis Noguera-Artiaga, Esther Sendra, Francisca Hernández, and et al. 2024. "Enhancing ‘Mirlo Rojo’ Apricot (Prunus armeniaca L.) Quality Through Regulated Deficit Irrigation: Effects on Antioxidant Activity, Fatty Acid Profile, and Volatile Compounds" Horticulturae 10, no. 12: 1253. https://doi.org/10.3390/horticulturae10121253
APA StyleAndreu-Coll, L., Burló, F., Galindo, A., García-Brunton, J., Vigueras-Fernández, J., Blaya-Ros, P. J., Martínez-Font, R., Noguera-Artiaga, L., Sendra, E., Hernández, F., & Signes-Pastor, A. J. (2024). Enhancing ‘Mirlo Rojo’ Apricot (Prunus armeniaca L.) Quality Through Regulated Deficit Irrigation: Effects on Antioxidant Activity, Fatty Acid Profile, and Volatile Compounds. Horticulturae, 10(12), 1253. https://doi.org/10.3390/horticulturae10121253