Multi-Approach Unveils Potential Gene Introgression of Oil Camellias
<p>Topological discordance between the phylogenetic relationships of Sect. Oleifera based on the chloroplast genome dataset (<b>a</b>) and transcriptome orthologs (<b>b</b>) with bipartition information restored from the gene trees shown above the branches. The multispecific coalescent species tree is presented to show the branch lengths. The pie charts at each node represent the estimated proportions of gene trees with different topologies based on the nucleotide alignment; q1, q2, and q3 refer to the quartet support for the main topology (green), the first alternative (purple), and the second alternative (blue), respectively. (<b>c</b>) PCA analysis of the morphological data (leaf, flower, and fruit). (<b>d</b>) The pattern and content of anthocyanin in these plants (µg/100 mg), where the liquid-phase diagram represents four peak patterns.</p> "> Figure 2
<p>The origin of oil camellias. (<b>a</b>) Maximum-likelihood phylogenetic tree of oil camellias using whole-genome resequencing data. Numbers above the branches indicate the bootstrap values. (<b>b</b>) Gene flow events in oil camellias estimated with SNaQ and the different datasets, using <span class="html-italic">C. sinensis</span> as the outgroup, and the length of each terminal branch set to 1. (<b>c</b>–<b>e</b>) Different subsets with different outgroups.</p> "> Figure 3
<p>Identification of gene flow events between species with different ploidies. (<b>a</b>) Combinations of ABBA-BABA statistics and the corresponding values. Z-scores > 3 indicate statistically significant results. (<b>b</b>) Ploidy of these oil camellias. * indicates that the ploidy has been verified with cytological data according to Ming (2000).</p> "> Figure 4
<p>Ancestral area reconstruction for oil camellias based on transcriptome orthologs. (<b>a</b>) Biogeography of Oil camellia. (<b>b</b>) Divergence time of Oli camellia. The pie charts indicate the relative estimates of possible ancestral areas. A, Central China; B, Paleotropic region; C, Eastern China; D, Southwestern China; E, Northwest China; and F, Japan. Ma, million years ago.</p> "> Figure 5
<p>Predicted parental origin model for polyploid camellias. ♀ Maternal and ♂ paternal. Probable subgenomic composition and origins are inferred from the data presented herein.</p> ">
Abstract
:1. Introduction
2. Method
2.1. Taxon Sampling
2.2. Extraction and Quantitative and Qualitative Analyses of the Anthocyanins
2.3. Genome Size Estimation and Determination of the Ploidy Level
2.4. Plastome Sequencing, Assembly, and Annotation
2.5. Transcriptome Assembly and Inference of Orthologs
2.6. Whole-Genome Resequencing Analysis
2.7. Phylogenetic Relationship Analyses
2.8. Phylogenetic Conflict Assessment and Gene Flow Inference
2.9. Divergence Time and Reconstructing the Ancestral State
3. Results
3.1. Phylogenetic Relationships Based on the Transcriptome and Chloroplast Genome
3.2. Morphological and Metabolite Data Support the Phylogenetic Relationships
3.3. Evaluation of the Topological Conflicts and Origin of Oil Camellias
3.4. Divergence Times and Biogeographical Reconstruction
4. Discussion
4.1. Reconstructing the Phylogenetic Relationships of Sect. Oleifera and Sect. Paracamellia
4.2. The Composition of Anthocyanin Is Related to Phylogenetic Relationships Between Camellia Species
4.3. Potential Gene Introgression of Oil Camellias
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rieseberg, L.H.; Wendel, J.F. Introgression and its consequences in plants. In Hybrid Zones and the Evolutionary Process; Harrison, R.G., Ed.; Oxford University Press: New York, NY, USA, 1993; pp. 70–100. [Google Scholar]
- Soltis, P.S.; Soltis, D.E. The role of hybridization in plant speciation. Annu. Rev. Plant Biol. 2009, 60, 561–588. [Google Scholar] [CrossRef]
- Abbott, R.; Albach, D.; Ansell, S.; Arntzen, J.W.; Baird, S.J.; Bierne, N.; Zinner, D. Hybridization and speciation. J. Evol. Biol. 2013, 26, 229–246. [Google Scholar] [CrossRef]
- Payseur, B.A.; Rieseberg, L.H. A genomic perspective on hybridization and speciation. Mol. Ecol. 2016, 25, 2337–2360. [Google Scholar] [CrossRef]
- Cui, W.H.; Du, X.Y.; Zhong, M.C.; Fang, W.; Suo, Z.Q.; Wang, D.; Hu, J.Y. Complex and reticulate origin of edible roses (Rosa, Rosaceae) in China. Hortic. Res. 2016, 9, uhab051. [Google Scholar] [CrossRef]
- Qin, S.Y.; Chen, K.; Zhang, W.J.; Xiang, X.G.; Zuo, Z.Y.; Guo, C.; Rong, J. Phylogenomic insights into the reticulate evolution of Camellia sect. Paracamellia Sealy (Theaceae). J. Syst. Evol. 2023, 62, 38–54. [Google Scholar] [CrossRef]
- Xiao, D.T.; Gu, Z.J.; Xiao, L.F. A study of meiosis of 9 species in genus camellia. Acta Bot. Yunnanica 1993, 2, 167–172. [Google Scholar]
- He, L.; Zhou, G.Y.; Zhang, H.Y.; Liu, J.A. Research progress on the health function of tea oil. J. Med. Plants Res. 2011, 5, 485–489. [Google Scholar]
- Chang, H.T. Theaceae (1) Theoideae 1. Camellia. In Flora Reipublicae Popularis Sinicae, 49; Science Press: Beijing, China, 1998; pp. 3–195. [Google Scholar]
- Ming, T.L. A systematic synopsis of the genus Camellia. Acta Bot. Yunnanica 1999, 21, 149–159. [Google Scholar]
- Lin, X.Y.; Peng, Q.F.; Lü, H.F.; Du, Y.Q.; Tang, B.Y. Leaf anatomy of Camellia sect. Oleifera and sect. Paracamellia (Theaceae) with reference to their taxonomic significance. J. Syst. Evol. 2008, 46, 183–193. [Google Scholar]
- Wu, Q.; Tong, W.; Zhao, H.; Ge, R.; Li, R.; Huang, J.; Li, F.; Wang, Y.; Mallano, A.I.; Deng, W.; et al. Comparative transcriptomic analysis unveils the deep phylogeny and secondary metabolite evolution of 116 Camellia plants. Plant J. 2022, 111, 406–421. [Google Scholar] [CrossRef]
- Fan, M.; Li, X.; Zhang, Y.; Yang, M.; Wu, S.; Yin, H.; Li, J. Novel insight into anthocyanin metabolism and molecular characterization of its key regulators in Camellia sasanqua. Plant Mol. Biol. 2023, 111, 249–262. [Google Scholar] [CrossRef]
- Qin, S.Y.; Rong, J.; Zhang, W.J.; Chen, J.K. Cultivation history of Camellia oleifera and genetic resources in the Yangtze River Basin. Biodivers. Sci. 2018, 26, 384–395. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhao, L.; Folk, R.A.; Zhao, J.L.; Zamora, N.A.; Yang, S.X.; Yu, X.Q. Phylotranscriptomics of Theaceae: Generic-level relationships, reticulation and whole-genome duplication. Ann. Bot. 2022, 129, 457–471. [Google Scholar] [CrossRef]
- Schnable, P.S.; Ware, D.; Fulton, R.S.; Stein, J.C.; Wei, F.; Pasternak, S.; Presting, G.G. The B73 maize genome:complexity, diversity, and dynamics. Science 2009, 326, 1112–1115. [Google Scholar] [CrossRef]
- Dolezel, J.; Greilhuber, J.; Suda, J. Estimation of nuclear DNA content in plants using flow cytometry. Nat. Protoc. 2007, 2, 2233–2244. [Google Scholar] [CrossRef]
- Bolger, A.M.; Lohse, M.; Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 2014, 30, 2114–2120. [Google Scholar] [CrossRef]
- Jansen, R.K.; Kaittanis, C.; Saski, C.; Lee, S.B.; Tomkins, J.; Alverson, A.J.; Daniell, H. Phylogenetic analyses of Vitis (Vitaceae) based on complete chloroplast genome sequences: Effects of taxon sampling and phylogenetic methods on resolving relationships among rosids. BMC Evol. Biol. 2006, 6, 32. [Google Scholar] [CrossRef]
- Kearse, M.; Moir, R.; Wilson, A.; Stones-Havas, S.; Cheung, M.; Sturrock, S.; Buxton, S.; Cooper, A.; Markowitz, S.; Duran, C.; et al. Geneious Basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 2012, 28, 1647–1649. [Google Scholar] [CrossRef]
- Wyman, S.K.; Jansen, R.K.; Boore, J.L. Automatic annotation of organellar genomes with DOGMA. Bioinformatics 2004, 20, 3252–3255. [Google Scholar] [CrossRef]
- Grabherr, M.G.; Haas, B.J.; Yassour, M.; Levin, J.Z.; Thompson, D.A.; Amit, I.; Adiconis, X.; Fan, L.; Raychowdhury, R.; Zeng, Q.D.; et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat. Biotechnol. 2011, 29, 644–652. [Google Scholar] [CrossRef]
- Haas, B.J.; Papanicolaou, A.; Yassour, M.; Grabherr, M.; Blood, P.D.; Bowden, J.; Couger, M.B.; Eccles, D.; Li, B.; Lieber, M.; et al. De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nat. Protoc. 2013, 8, 1494–1512. [Google Scholar] [CrossRef]
- Li, W.Z.; Godzik, A. Cd-hit: A fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics 2006, 22, 1658–1659. [Google Scholar] [CrossRef]
- Emms, D.M.; Kelly, S. OrthoFinder: Solving fundamental biases in whole genome comparisons dramatically improves orthogroup inference accuracy. Genome Biol. 2015, 16, 157. [Google Scholar] [CrossRef]
- Katoh, K.; Standley, D.M. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol. Biol. Evol. 2013, 30, 772–780. [Google Scholar] [CrossRef]
- Capella-Gutiérrez, S.; Silla-Martínez, J.M.; Gabaldón, T. trimAl: A tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 2009, 25, 1972–1973. [Google Scholar] [CrossRef]
- Minh, B.Q.; Schmidt, H.A.; Chernomor, O.; Schrempf, D.; Woodhams, M.D.; von Haeseler, A.; Lanfear, R. IQ-TREE 2: New models and efficient methods for phylogenetic inference in the genomic era. Mol. Biol. Evol. 2020, 37, 1530–1534. [Google Scholar] [CrossRef]
- Hoang, D.T.; Chernomor, O.; Von Haeseler, A.; Minh, B.Q.; Vinh, L.S. UFBoot2: Improving the ultrafast bootstrap approximation. Mol. Biol. Evol. 2018, 35, 518–522. [Google Scholar] [CrossRef]
- Kalyaanamoorthy, S.; Minh, B.Q.; Wong, T.K.F.; Von Haeseler, A.; Jermiin, L.S. ModelFinder: Fast model selection for accurate phylogenetic estimates. Nat. Methods 2017, 14, 587–589. [Google Scholar] [CrossRef]
- Ronquist, F.; Teslenko, M.; Van Der Mark, P.; Ayres, D.L.; Darling, A.; Höhna, S.; Larget, B.; Liu, L.; Suchard, M.A.; Huelsenbeck, J.P. Mrbayes 3.2: Efficient bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 2012, 61, 539–542. [Google Scholar] [CrossRef]
- Mirarab, S.; Reaz, R.; Bayzid, M.S.; Zimmermann, T.; Swenson, M.S.; Warnow, T. ASTRAL: Genome-scale coalescent-based species tree estimation. Bioinformatics 2014, 30, 541–548. [Google Scholar] [CrossRef]
- Solís-Lemus, C.; Bastide, P.; An’e, C. PhyloNetworks: A Package for Phylogenetic Networks. MBE 2017, 34, 3292–3298. [Google Scholar] [CrossRef]
- Michelle, M.J.; Maximos, C.; Nathan, A.; Richard, H.A.; Jeffery, P.D.; Heath, B. EvobiR: Tools for comparative analyses and teaching evolutionary biology. Zenodo 2023. [Google Scholar] [CrossRef]
- Gong, W.; Xiao, S.; Wang, L.; Liao, Z.; Chang, Y.; Mo, W.; Hu, G.; Li, W.; Zhao, G.; Zhu, H.; et al. Chromosome-level genome of Camellia lanceoleosa provides a valuable resource for understanding genome evolution and self-incompatibility. Plant J. 2022, 110, 881–898. [Google Scholar] [CrossRef]
- Dupin, J.; Matzke, N.J.; Sarkinen, T.; Knapp, S.; Olmstead, R.; Bohs, L.; Smith, S. Bayesian estimation of the global biogeographic history of the Solanaceae. J. Biogeogr. 2016, 44, 887–899. [Google Scholar] [CrossRef]
- Ming, T.L. Monograph of the Genus Camellia; Yunnan Science and Technology Press: Kunming, China, 2000. [Google Scholar]
- The Heliconius Genome Consortium. Butterfly genome reveals promiscuous exchange of mimicry adaptations among species. Nature 2012, 487, 94–98. [Google Scholar] [CrossRef]
- Dong, S.S.; Wang, Y.L.; Xia, N.H.; Liu, Y.; Liu, M.; Lian, L.; Li, N.; Li, L.F.; Lang, X.A.; Gong, Y.Q.; et al. Plastid and nuclear phylogenomic incongruences and biogeographic implications of Magnolia sl (Magnoliaceae). J. Syst. Evol. 2021, 60, 1–15. [Google Scholar] [CrossRef]
- Yu, J.R.; Niu, Y.T.; You, Y.C.; Cox, C.J.; Barrett, R.L.; Trias-Blasi, A.; Guo, J.; Wen, J.; Lu, L.M.; Chen, Z.D. Integrated phylogenomic analyses unveil reticulate evolution in Parthenocissus (Vitaceae), highlighting speciation dynamics in the Himalayan-Hengduan Mountains. New Phytologist. 2023, 238, 888–903. [Google Scholar] [CrossRef]
- Yang, K.; Fan, M.L.; Sun, Y.K.; Liu, Q.H.; Gao, H.D. The complete chloroplast genome of the subtropical species Camellia japonica ‘Huaheling’. Mitochondrial DNA Part B 2021, 6, 2385–2386. [Google Scholar] [CrossRef]
- Lin, H.Y.; Hao, Y.J.; Li, J.H.; Fu, C.X.; Soltis, P.S.; Soltis, D.E.; Zhao, Y.P. Phylogenomic conflict resulting from ancient introgression following species diversification in Stewartia sl (Theaceae). Mol. Phylogenet. Evol. 2019, 135, 2385–2386. [Google Scholar] [CrossRef]
- Fan, M.; Zhang, Y.; Yang, M.; Wu, S.; Yin, H.; Li, J.; Li, X. Transcriptomic and Chemical Analyses Reveal the Hub Regulators of Flower Color Variation from Camellia japonica Bud Sport. Horticulturae 2022, 8, 129. [Google Scholar] [CrossRef]
- Chen, X.; Wang, H.; Jiang, J.; Jiang, Y.; Zhang, W.; Chen, F. Biogeographic and metabolic studies support a glacial radiation hypothesis during Chrysanthemum evolution. Hortic. Res. 2022, 9, uhac153. [Google Scholar] [CrossRef] [PubMed]
- Romero-Soler, K.J.; Ramiirez-Morillo, I.M.; Ruiz-Sanchez, E.; Homung-Leoni, C.T.; Carnevali, G.; Raigoza, N. Phylogenetic relationships within the mexican genus Bakerantha (Hechtioideae, Bromeliaceae) based on plastid and nuclear dna: Implications for taxonomy. J. Syst. Evol. 2022, 60, 55–72. [Google Scholar] [CrossRef]
- Sealy, J.R. A Revision of the Genus Camellia; The Royal Horticultural Society: London, UK, 1958. [Google Scholar]
- Zan, T.; He, Y.T.; Zhang, M.; Yonezawa, T.; Ma, H.; Zhao, Q.M.; Kuo, W.Y.; Zhang, W.J.; Huang, C.H. Phylogenomic analyses of Camellia support reticulate evolution among major clades. Mol. Phylogenetics Evol. 2023, 182, 107744. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fan, M.; Song, Z.; Zhang, Y.; Li, X.; Sun, Z. Multi-Approach Unveils Potential Gene Introgression of Oil Camellias. Horticulturae 2024, 10, 1252. https://doi.org/10.3390/horticulturae10121252
Fan M, Song Z, Zhang Y, Li X, Sun Z. Multi-Approach Unveils Potential Gene Introgression of Oil Camellias. Horticulturae. 2024; 10(12):1252. https://doi.org/10.3390/horticulturae10121252
Chicago/Turabian StyleFan, Menglong, Zhixin Song, Ying Zhang, Xinlei Li, and Zhenyuan Sun. 2024. "Multi-Approach Unveils Potential Gene Introgression of Oil Camellias" Horticulturae 10, no. 12: 1252. https://doi.org/10.3390/horticulturae10121252
APA StyleFan, M., Song, Z., Zhang, Y., Li, X., & Sun, Z. (2024). Multi-Approach Unveils Potential Gene Introgression of Oil Camellias. Horticulturae, 10(12), 1252. https://doi.org/10.3390/horticulturae10121252