Facile Construction of Hybrid Hydrogels with High Strength and Biocompatibility for Cranial Bone Regeneration
<p>Schematic illustration of the fabrication procedures of SGgel@ABG composite hydrogel for calvaria bone defects repair.</p> "> Figure 2
<p>Structure and property characterizations. (<b>A</b>) Synthesis route of modified polymers and amine-functionalized ABG. (<b>B</b>) <sup>1</sup>H NMR spectrum of the tetra-PEG-SG polymer. (<b>C</b>–<b>F</b>) SEM images, compressive, rheology and adhesive profiles of (<b>a</b>) SGgel and (<b>b</b>) SGgel@ABG hydrogels. Red arrows represent the similar inner pores.</p> "> Figure 3
<p>Cell cytotoxicity of SGgel and SGgel@ABG hybrid scaffolds in vitro. (<b>A</b>) Live/dead staining of BMSCs. Wherein, the green cells are the living BMSCs, and the red cells are the dead BMSCs. (<b>B</b>) Cell viability and (<b>C</b>) Cell proliferation of SGgel and SGgel@ABG hybrid scaffolds after the cultivation for the appointed time. NS, not significant.</p> "> Figure 4
<p>In vitro osteogenic differentiation of SGgel@ABG hydrogel. (<b>A</b>–<b>C</b>) ALP (14 d) and ARS staining (21 d) revealing the enhanced osteogenic differentiation of BMSCs. (<b>D</b>,<b>E</b>) Western blotting analysis and (<b>F</b>) qPCR quantification showing the highest osteogenic expression markers (OCN, ALP, Osterix and RUNX2) in the hydrogels. Statistically significant differences in comparison with untreated cells (control), SGgel hydrogel and SGgel@ABG hydrogel. ** <span class="html-italic">p</span> < 0.01.</p> "> Figure 5
<p>(<b>A</b>) 3D reconstruction of Micro-CT images of regenerated bone formation in rat cranium after the hydrogel implantation for 8 weeks with control group, SGgel group and SGgel@ABG group. (<b>B</b>–<b>D</b>) Quantitative analysis of BV, BV/TV and BMD of newly formed bone tissue. (<b>E</b>) H&E and Masson’s trichrome staining. (<b>F</b>,<b>G</b>) Woven bone and cartilage areas were analyzed in defect bone region. ** <span class="html-italic">p</span> < 0.01.</p> ">
Abstract
:1. Introduction
2. Results and Discussion
2.1. Preparation and Characterization of SGgel and SGgel@ABG Hydrogels
2.2. Cell Viability and Proliferation
2.3. In Vitro Osteogenic Differentiation
2.4. Hybrid Hydrogel Scaffolds Regenerate Bone Formation In Vivo
3. Conclusions
4. Materials and Methods
4.1. Materials
4.2. Measurements
4.3. Synthesis of Tetra-PEG-SG Polymer
4.4. Synthesis of ABG
4.5. Preparation of SGgel and SGgel@ABG Hydrogels
4.6. In Vitro Cytotoxicity Assay
4.7. Live/Dead Staining Assay
4.8. Cell Proliferation Assay
4.9. ALP Staining and ARS Staining
4.10. Quantitative Real-Time Polymerase Chain Reaction (qRT-PCR) Analysis
4.11. In Vivo Experiments
4.12. Microcomputed Tomography (Micro-CT) Analysis
4.13. Histological Observations
4.14. Statistics Analysis
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Service, R.F. Tissue engineers build new bone. Science 2000, 289, 1498–1500. [Google Scholar] [CrossRef]
- Senarath-Yapa, K.; Li, S.; Walmsley, G.G.; Zielins, E.; Paik, K.; Britto, J.A.; Grigoriadis, A.E.; Wan, D.C.; Liu, K.J.; Longaker, M.T.; et al. Small molecule inhibition of transforming growth factor beta signaling enables the endogenous regenerative potential of the mammalian calvarium. Tissue Eng. Part A 2016, 22, 707–720. [Google Scholar] [CrossRef] [Green Version]
- Vi, L.; Baht, G.S.; Soderblom, E.J.; Whetstone, H.; Wei, Q.; Furman, B.; Puviindran, V.; Nadesan, P.; Foster, M.; Poon, R.; et al. Macrophage cells secrete factors including LRP1 that orchestrate the rejuvenation of bone repair in mice. Nat. Commun. 2018, 9, 5191. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fan, B.; Guo, Z.; Li, X.; Li, S.; Gao, P.; Xiao, X.; Wu, J.; Shen, C.; Jiao, Y.; Hou, W. Electroactive barium titanate coated titanium scaffold improves osteogenesis and osseointegration with low-intensity pulsed ultrasound for large segmental bone defects. Bioact. Mater. 2020, 5, 1087–1101. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Dou, X.; Zhang, L.; Wang, H.; Zhang, T.; Bai, R.; Sun, Q.; Wang, X.; Yu, T.; Wu, D.; et al. Facile fabrication of a biocompatible composite gel with sustained release of aspirin for bone regeneration. Bioact. Mater. 2022, 11, 130–139. [Google Scholar] [CrossRef]
- Dimitriou, R.; Jones, E.; McGonagle, D.; Giannoudis, P.V. Bone regeneration: Current concepts and future directions. BMC Med. 2011, 9, 66. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gómez-Barrena, E.; Rosset, P.; Lozano, D.; Stanovici, J.; Ermthaller, C.; Gerbhard, F. Bone fracture healing: Cell therapy in delayed unions and nonunions. Bone 2018, 70, 93–101. [Google Scholar] [CrossRef] [Green Version]
- Wang, W.; Yeung, K.W.K. Bone grafts and biomaterials substitutes for bone defect repair: A review. Bioact. Mater. 2017, 2, 224–247. [Google Scholar] [CrossRef]
- Ho-Shui-Ling, A.; Bolander, J.; Rustom, L.E.; Johnson, A.W.; Luyten, F.P.; Picart, C. Bone regeneration strategies: Engineered scaffolds, bioactive molecules and stem cells current stage and future perspectives. Biomaterials 2018, 180, 143–162. [Google Scholar] [CrossRef]
- Bose, S.; Sarkar, N. Natural medicinal compounds in bone tissue engineering. Trends Biotechnol. 2020, 38, 404–417. [Google Scholar] [CrossRef]
- William, G., Jr.; Einhorn, T.A.; Koval, K.; McKee, M.; Smith, W.; Sanders, R.; Watson, T. Bone grafts and bone graft substitutes in orthopaedic trauma surgery. A critical analysis. J. Bone Joint Surg. Am. 2007, 89, 649–658. [Google Scholar] [CrossRef]
- Senthil, R.; Kavukcu, S.B. Efficacy of glycoprotein-based nanocurcumin/silk fibroin electrospun scaffolds: Perspective for bone apatite formation. Mater. Chem. Phys. 2022, 289, 126444. [Google Scholar] [CrossRef]
- Petite, H.; Viateau, V.; Bensaïd, W.; Meunier, A.; de Pollak, C.; Bourguignon, M.; Oudina, K.; Sedel, L.; Guillemin, G. Tissue engineered bone regeneration. Nat. Biotechnol. 2000, 18, 959. [Google Scholar] [CrossRef]
- Li, R.; Sun, Y.; Cai, Z.; Li, Y.; Sun, J.; Bi, W.; Yang, F.; Zhou, Q.; Ye, T.; Yu, Y. Highly bioactive peptide-HA photo-crosslinking hydrogel for sustained promoting bone regeneration. Chem. Eng. J. 2021, 415, 129015. [Google Scholar] [CrossRef]
- Armiento, A.R.; Hatt, L.P.; Rosenberg, G.S.; Thompson, K.; Stoddart, M.J. Functional biomaterials for bone regeneration: A lesson in complex biology. Adv. Funct. Mater. 2020, 30, 1909874. [Google Scholar] [CrossRef]
- Xu, B.; Ye, J.; Fan, B.-S.; Wang, X.; Zhang, J.-Y.; Song, S.; Song, Y.; Jiang, W.-B.; Wang, X.; Yu, J.-K. Protein-spatiotemporal partition releasing gradient porous scaffolds and anti-inflammatory and antioxidant regulation remodel tissue engineered anisotropic meniscus. Bioact. Mater. 2023, 20, 194–207. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.J.; Jiang, D.; Zhang, Z.Z.; Chen, Y.R.; Yang, Z.D.; Zhang, J.Y.; Shi, J.; Wang, X.; Yu, J.K. Biomimetic nanosilica-collagen scaffolds for in situ bone regeneration: Toward a cell-free, one-step surgery. Adv. Mater. 2019, 31, 1904341. [Google Scholar] [CrossRef] [PubMed]
- Ren, X.; Chen, X.; Geng, Z.; Su, J. (Bone-targeted biomaterials: Strategies and applications. Chem. Eng. J. 2022, 446, 137133. [Google Scholar] [CrossRef]
- Yang, Y.; Zhou, M.; Peng, J.; Wang, X.; Liu, Y.; Wang, W.; Wu, D. Robust, anti-freezing and conductive bonding of chitosan-based double-network hydrogels for stable-performance flexible electronic. Carbohyd. Polym. 2022, 276, 118753. [Google Scholar] [CrossRef]
- Lei, L.; Bai, Y.; Qin, X.; Liu, J.; Huang, W.; Lv, Q. Current understanding of hydrogel for drug release and tissue engineering. Gels 2022, 8, 301. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.D.; Lee, E.A.; An, Y.-H.; Kim, S.L.; Lee, S.S.; Yu, S.J.; Jang, H.L.; Nam, K.T.; Im, S.G.; Hwang, N.S. Chondroitin sulfate-based biomineralizing surface hydrogels for bone tissue engineering. ACS Appl. Mater. Interfaces 2017, 9, 21639–21650. [Google Scholar] [CrossRef]
- Sun, J.-Y.; Zhao, X.; Illeperuma, W.R.K.; Chaudhuri, O.; Oh, K.H.; Mooney, D.J.; Vlassak, J.J.; Suo, Z. Highly stretchable and tough hydrogels. Nature 2012, 489, 133–136. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tsou, Y.-H.; Khoneisser, J.; Huang, P.-C.; Xu, X. Hydrogel as a bioactive material to regulate stem cell fate. Bioact. Mater. 2016, 1, 39–55. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, Y.; Wang, X.; Yang, F.; Wang, L.; Wu, D. Highly elastic and ultratough hybrid ionic-covalent hydrogels with tunable structures and mechanics. Adv. Mater. 2018, 30, 1707071. [Google Scholar] [CrossRef]
- Oprita, E.I.; Iosageanu, A.; Craciunescu, O. Progress in composite hydrogels and scaffolds enriched with icariin for osteochondral defect healing. Gels 2022, 8, 648. [Google Scholar] [CrossRef] [PubMed]
- Gull, N.; Khan, S.M.; Butt MT, Z.; Zia, S.; Khalid, S.; Islam, A.; Sajid, I.; Khan, R.U.; King, M.W. Hybrid cross-linked hydrogels as a technology platform for in vitro release of cephradine. Polym. Adv. Technol. 2019, 30, 2414–2424. [Google Scholar] [CrossRef]
- Zhu, T.; Wang, H.; Jing, Z.; Fan, D.; Liu, Z.; Wang, X.; Tian, Y. High efficacy of tetra-PEG hydrogel sealants for sutureless dural closure. Bioact. Mater. 2022, 8, 12–19. [Google Scholar] [CrossRef]
- Shi, L.; Wang, F.; Zhu, W.; Xu, Z.; Fuchs, S.; Hilborn, J.; Zhu, L.; Ma, Q.; Wang, Y.; Weng, X.; et al. Self-healing silk fibroin-based hydrogel for bone regeneration: Dynamic metal-ligand self-assembly approach. Adv. Funct. Mater. 2017, 27, 1700591. [Google Scholar] [CrossRef]
- Ge, J.; Li, Y.; Wang, M.; Gao, C.; Yang, S.; Lei, B. Engineering conductive antioxidative antibacterial nanocomposite hydrogel scaffolds with oriented channels promotes structure-functional skeletal muscle regeneration. Chem. Eng. J. 2021, 425, 130333. [Google Scholar] [CrossRef]
- Dou, X.; Cao, Q.; Sun, F.; Wang, Y.; Wang, H.; Shen, H.; Yang, F.; Wang, X.; Wu, D. Synergistic control of dual cross-linking strategy toward tailor-made hydrogels. Sci. China Chem. 2020, 63, 1793–1798. [Google Scholar] [CrossRef]
- Li, D.; Zhou, J.; Zhang, M.; Ma, Y.; Yang, Y.; Han, X.; Wang, X. Long-term delivery of alendronate through injectable tetra-peg hydrogel to promote osteoporosis therapy. Biomater. Sci. 2020, 8, 3138–3146. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Gao, P.; Yang, Y.; Guo, H.; Wu, D. Dynamic and programmable morphology and size evolution via a living hierarchical self-assembly strategy. Nat. Commun. 2018, 9, 2772. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Che, L.; Wang, Y.; Sha, D.; Li, G.; Wei, Z.; Liu, C.; Yuan, Y.; Song, D. A biomimetic and bioactive scaffold with intelligently pulsatile teriparatide delivery for local and systemic osteoporosis regeneration. Bioact. Mater. 2023, 19, 75–87. [Google Scholar] [CrossRef]
- Li, C.; Zhang, W.; Wang, R.; Du, X.-F.; Jiang, D.; Liu, B.; Nie, Y.; Liao, J.; Chen, Y.; Liang, X.; et al. Nanocomposite multifunctional hydrogel for suppressing osteosarcoma recurrence and enhancing bone regeneration. Chem. Eng. J. 2022, 435, 134896. [Google Scholar] [CrossRef]
- Wang, X.; Gao, P.; Wang, J.; Yang, Y.; You, Y.; Wu, D. A robust strategy for precise fabrication of rigid-flexible coupling dendrimers toward self-coordinated hierarchical assembly. CCS Chem. 2020, 2, 1093–1104. [Google Scholar] [CrossRef]
- Fan, L.F.; Wang, X.; Wu, D.C. Polyhedral oligomeric silsesquioxanes (POSS)-based hybrid materials: Molecular design, solution self-assembly and biomedical applications. Chinese J. Chem. 2021, 39, 757–774. [Google Scholar] [CrossRef]
- Yu, T.; Zhang, L.; Dou, X.; Bai, R.; Wang, H.; Deng, J.; Zhang, Y.; Sun, Q.; Li, Q.; Wang, X.; et al. Mechanically robust hydrogels facilitating bone regeneration through epigenetic modulation. Adv. Sci. 2022, 9, e2203734. [Google Scholar] [CrossRef]
- Fan, L.-F.; Hou, C.-L.; Wang, X.; Yan, L.-T.; Wu, D.-C. Tunable multiple morphological transformation of supramolecular hyperbranched polymers based on an A2B6-type POSS monomer. Chinese J. Polym. Sci. 2021, 39, 1562–1571. [Google Scholar] [CrossRef]
- Granel, H.; Bossard, C.; Nucke, L.; Wauquier, F.; Rochefort, G.Y.; Guicheux, J.; Jallot, E.; Lao, J.; Wittrant, Y. Optimized bioactive glass: The quest for the bony graft. Adv. Healthc. Mater. 2019, 8, 1801542. [Google Scholar] [CrossRef]
- Zhang, K.; Zhou, Y.; Xiao, C.; Zhao, W.; Wu, H.; Tang, J.; Li, Z.; Yu, S.; Li, X.; Min, L.; et al. Application of hydroxyapatite nanoparticles in tumor-associated bone segmental defect. Sci. Adv. 2019, 5, eaax6946. [Google Scholar] [CrossRef]
- Bai, X.; Lü, S.; Liu, H.; Cao, Z.; Ning, P.; Wang, Z.; Gao, C.; Ni, B.; Ma, D.; Liu, M. Polysaccharides based injectable hydrogel compositing bio-glass for cranial bone repair. Carbohyd. Polym. 2017, 175, 557–564. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Zou, Q.; Chen, H.; Li, W. In vivo changes of nanoapatite crystals during bone reconstruction and the differences with native bone apatite. Sci. Adv. 2019, 5, eaay6484. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, L.; Gao, S.; Zhou, R.; Zhou, F.; Qiao, Y.; Qiu, D. Bioactive pore-forming bone adhesives facilitating cell ingrowth for fracture healing. Adv. Mater. 2020, 32, 1907491. [Google Scholar] [CrossRef]
- Tang, J.; Xi, K.; Chen, H.; Wang, L.; Li, D.; Xu, Y.; Xin, T.; Wu, L.; Zhou, Y.; Bian, J.; et al. Flexible osteogenic glue as an all-in-one solution to assist fracture fixation and healing. Adv. Funct. Mater. 2021, 31, 2102465. [Google Scholar] [CrossRef]
- Zhang, K.; Lin, S.; Feng, Q.; Dong, C.; Yang, Y.; Li, G.; Bian, L. Nanocomposite hydrogels stabilized by self-assembled multivalent bisphosphonate-magnesium nanoparticles mediate sustained release of magnesium ion and promote in-situ bone regeneration. Acta Biomater. 2017, 64, 389. [Google Scholar] [CrossRef] [PubMed]
- Tomlinson, S.K.; Ghita, O.R.; Hooper, R.M.; Evans, K.E. Monomer conversion and hardness of novel dental cements based on ethyl cyanoacrylate. Dent. Mater. 2007, 23, 799. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chang, S.; Wang, J.; Xu, N.; Wang, S.; Cai, H.; Liu, Z.; Wang, X. Facile Construction of Hybrid Hydrogels with High Strength and Biocompatibility for Cranial Bone Regeneration. Gels 2022, 8, 745. https://doi.org/10.3390/gels8110745
Chang S, Wang J, Xu N, Wang S, Cai H, Liu Z, Wang X. Facile Construction of Hybrid Hydrogels with High Strength and Biocompatibility for Cranial Bone Regeneration. Gels. 2022; 8(11):745. https://doi.org/10.3390/gels8110745
Chicago/Turabian StyleChang, Shuai, Jiedong Wang, Nanfang Xu, Shaobo Wang, Hong Cai, Zhongjun Liu, and Xing Wang. 2022. "Facile Construction of Hybrid Hydrogels with High Strength and Biocompatibility for Cranial Bone Regeneration" Gels 8, no. 11: 745. https://doi.org/10.3390/gels8110745
APA StyleChang, S., Wang, J., Xu, N., Wang, S., Cai, H., Liu, Z., & Wang, X. (2022). Facile Construction of Hybrid Hydrogels with High Strength and Biocompatibility for Cranial Bone Regeneration. Gels, 8(11), 745. https://doi.org/10.3390/gels8110745