Thermosensitive In Situ Ophthalmic Gel for Effective Local Delivery and Antifungal Activity of Ketoconazole Nanoparticles
<p>Physical stability of ketoconazole-loaded NPs (NPs) over a 3-month storage period at 30 °C. (<b>A</b>) Particle size; (<b>B</b>) PDI; (<b>C</b>) zeta potential (*** indicates <span class="html-italic">p</span> < 0.001 and **** indicates <span class="html-italic">p</span> < 0.0001).</p> "> Figure 2
<p>Cumulative release profile of ketoconazole from NPs over an 8 h incubation period in phosphate-buffered saline (pH 7.4) at 33 ± 0.5 °C.</p> "> Figure 3
<p>Chemical stability of ketoconazole-loaded NPs over a 3-month storage period at three different temperatures (4 °C, 30 °C, and 45 °C).</p> "> Figure 4
<p>Gelation time of in situ gel loaded with ketoconazole NPs during a 3-month incubation period at different storage temperatures (4 °C, 30 °C, and 45 °C). Statistical significance compared to initial gelation time is indicated as follows: * indicates <span class="html-italic">p</span> < 0.05 and **** indicates <span class="html-italic">p</span> < 0.0001.</p> "> Figure 5
<p>Gelation temperature of in situ gel loaded with ketoconazole NPs over a 3-month incubation period at different storage temperatures (4 °C, 30 °C, and 45 °C). Statistical significance compared to initial gelation temperature is indicated as follows: * indicates <span class="html-italic">p</span> < 0.05, ** indicates <span class="html-italic">p</span> < 0.01, and **** indicates <span class="html-italic">p</span> < 0.0001.</p> "> Figure 6
<p>pH stability of in situ gel loaded with ketoconazole NPs over a 3-month incubation period at different storage temperatures (4 °C, 30 °C, and 45 °C). Statistical significance compared to the initial pH value is indicated as follows: * indicates <span class="html-italic">p</span> < 0.05, **** indicates <span class="html-italic">p</span> < 0.0001.</p> "> Figure 7
<p>Viscosity-temperature profile of in situ gel formulations with and without ketoconazole-loaded NPs.</p> "> Figure 8
<p>The viscosity of ketoconazole-loaded NPs stored at three different temperatures (4 °C, 30 °C, and 45 °C) over a 3-month incubation period. * indicates <span class="html-italic">p</span> < 0.05.</p> ">
Abstract
:1. Introduction
2. Results and Discussion
2.1. Particle Size, Polydispersity Index, and Zeta Potential of Ketoconazole-Loaded and Blank NPs
2.2. Encapsulation Efficiency of Ketoconazole in NPs
2.3. Physical Stability of Ketoconazole NPs
2.4. Encapsulation Efficiency of Ketoconazole NPs
2.5. In Vitro Release of Ketoconazole from NPs
2.6. Kinetic Degradation of Ketoconazole in NPs
2.7. Antifungal Activity of Ketoconazole NPs
2.8. Gelation Temperature and Gelation Time
2.9. Effect of In Situ Gel Composition on Gelation Temperature and Gelation Time
2.10. Effect of Incubation Time and Temperature on Gelation Time
2.11. Effect of Incubation Time and Temperature on Gelation Temperature
2.12. Effects of Incubation Time on pH
2.13. Rheology and Viscosity of In Situ Gel Loaded with Ketoconazole NPs
3. Conclusions
4. Materials and Methods
4.1. Materials
4.2. Methods
4.2.1. Ketoconazole Nanoparticle Preparation and Characterization
4.2.2. Determination of Encapsulation Efficiency
4.2.3. In Vitro Release Study of Ketoconazole NPs
4.2.4. Determination of Physical Stability of Ketoconazole NPs
4.2.5. Determination of Chemical Stability of Ketoconazole Entrapped in Ketoconazole NPs
4.2.6. Antifungal Activity Study of Ketoconazole NPs Against Malassezia furfur by Broth Microdilution Assay
4.2.7. Preparation of In Situ Gel Loaded with Ketoconazole NPs
4.2.8. Characterization of In Situ Gel Loaded with Ketoconazole NPs
Determination of Gelation Temperature
Determination of Gelation Time
pH Measurement
Rheological Measurement of In Situ Gel Containing Ketoconazole NPs
4.2.9. Physical Stability Study of In Situ Gel Loaded with Ketoconazole NPs
4.2.10. Statistical Analysis
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Brown, L.; Leck, A.K.; Gichangi, M.; Burton, M.J.; Denning, D.W. The global incidence and diagnosis of fungal keratitis. Lancet Infect. Dis. 2021, 21, e49–e57. [Google Scholar] [CrossRef] [PubMed]
- Yuliani, S.H.; Putri, D.C.A.; Virginia, D.M.; Gani, M.R.; Riswanto, F.D.O. Prevalence, Risk, and Challenges of Extemporaneous Preparation for Pediatric Patients in Developing Nations: A Review. Pharmaceutics 2023, 15, 840. [Google Scholar] [CrossRef] [PubMed]
- El-Mofty, H.M.; Abdelhakim, M.A.; El-Miligi, M.F.; El-Nabarawi, M.A.; Khalil, I.A. A new combination formula for treatment of fungal keratitis: An experimental study. J. Ophthalmol. 2014, 2014, 173298. [Google Scholar] [CrossRef]
- Ivanov, M.; Ćirić, A.; Stojković, D. Emerging Antifungal Targets and Strategies. Int. J. Mol. Sci. 2022, 23, 2756. [Google Scholar] [CrossRef]
- Bhalani, D.V.; Nutan, B.; Kumar, A.; Singh Chandel, A.K. Bioavailability Enhancement Techniques for Poorly Aqueous Soluble Drugs and Therapeutics. Biomedicines 2022, 10, 2055. [Google Scholar] [CrossRef]
- Bhavin Vadhera, S.S.; Dudhatc, K.; Dhavald, M.; Singe, S.; Prajapati, B.G. Nanocrystals Fortified Gelfor Improved Transdermal Applications. Nanofabrication 2024, 9, 1–15. [Google Scholar] [CrossRef]
- Maĭchuk Iu, F.; Karimov, M.K.; Lapshina, N.A. Ketoconazole in the treatment of ocular mycoses. Vestn. Oftalmol. 1990, 106, 44–46. [Google Scholar]
- Ahmed, T.A.; Alzahrani, M.M.; Sirwi, A.; Alhakamy, N.A. Study the Antifungal and Ocular Permeation of Ketoconazole from Ophthalmic Formulations Containing Trans-Ethosomes Nanoparticles. Pharmaceutics 2021, 13, 151. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, L.; Gao, C.; Zhang, L.; Xia, H. Ocular pharmacokinetics of topically-applied ketoconazole solution containing hydroxypropyl beta-cyclodextrin to rabbits. J. Ocul. Pharmacol. Ther. 2008, 24, 501–506. [Google Scholar] [CrossRef]
- Tavakoli, M.; Mahboobian, M.M.; Nouri, F.; Mohammadi, M. Studying the ophthalmic toxicity potential of developed ketoconazole loaded nanoemulsion in situ gel formulation for ophthalmic administration. Toxicol. Mech. Methods 2021, 31, 572–580. [Google Scholar] [CrossRef]
- Chaudhari, P.; Naik, R.; Sruthi Mallela, L.; Roy, S.; Birangal, S.; Ghate, V.; Balladka Kunhanna, S.; Lewis, S.A. A supramolecular thermosensitive gel of ketoconazole for ocular applications: In silico, in vitro, and ex vivo studies. Int. J. Pharm. 2022, 613, 121409. [Google Scholar] [CrossRef] [PubMed]
- Chittasupho, C.; Srisawad, K.; Arjsri, P.; Phongpradist, R.; Tingya, W.; Ampasavate, C.; Dejkriengkraikul, P. Targeting Spike Glycoprotein S1 Mediated by NLRP3 Inflammasome Machinery and the Cytokine Releases in A549 Lung Epithelial Cells by Nanocurcumin. Pharmaceuticals 2023, 16, 862. [Google Scholar] [CrossRef] [PubMed]
- Graván, P.; Aguilera-Garrido, A.; Marchal, J.A.; Navarro-Marchal, S.A.; Galisteo-González, F. Lipid-core nanoparticles: Classification, preparation methods, routes of administration and recent advances in cancer treatment. Adv. Colloid Interface Sci. 2023, 314, 102871. [Google Scholar] [CrossRef] [PubMed]
- Chittasupho, C.; Junmahasathien, T.; Chalermmongkol, J.; Wongjirasakul, R.; Leesawat, P.; Okonogi, S. Suppression of Intracellular Reactive Oxygen Species in Human Corneal Epithelial Cells via the Combination of Quercetin Nanoparticles and Epigallocatechin Gallate and In Situ Thermosensitive Gel Formulation for Ocular Drug Delivery. Pharmaceuticals 2021, 14, 679. [Google Scholar] [CrossRef]
- Adısanoğlu, P.; Özgüney, I. Development and Characterization of Thermosensitive and Bioadhesive Ophthalmic Formulations Containing Flurbiprofen Solid Dispersions. Gels 2024, 10, 267. [Google Scholar] [CrossRef]
- Sharma, P.K.; Chauhan, M.K. Optimization and evaluation of encapsulated brimonidine tartrate-loaded nanoparticles incorporation in situ gel for efficient intraocular pressure reduction. J. Sol-Gel Sci. Technol. 2020, 95, 190–201. [Google Scholar] [CrossRef]
- Rawat, P.S.; Ravi, P.R.; Khan, M.S.; Mahajan, R.R.; Szeleszczuk, Ł. Nebivolol Polymeric Nanoparticles-Loaded In Situ Gel for Effective Treatment of Glaucoma: Optimization, Physicochemical Characterization, and Pharmacokinetic and Pharmacodynamic Evaluation. Nanomaterials 2024, 14, 1347. [Google Scholar] [CrossRef]
- Abbas, M.N.; Khan, S.A.; Sadozai, S.K.; Khalil, I.A.; Anter, A.; Fouly, M.E.; Osman, A.H.; Kazi, M. Nanoparticles Loaded Thermoresponsive In Situ Gel for Ocular Antibiotic Delivery against Bacterial Keratitis. Polymers 2022, 14, 1135. [Google Scholar] [CrossRef]
- Wadetwar, R.N.; Agrawal, A.R.; Kanojiya, P.S. In situ gel containing Bimatoprost solid lipid nanoparticles for ocular delivery: In-vitro and ex-vivo evaluation. J. Drug Deliv. Sci. Technol. 2020, 56, 101575. [Google Scholar] [CrossRef]
- Popovska, O.; Rafajlovska, V.; Kavrakovski, Z. A Review: Current Analytical Methods for Determination of Ketoconazole in Pharmaceutical and Biological Samples. IJPI’s J. Anal. Chem. 2013, 3, 1–14. [Google Scholar]
- Veider, F.; Sanchez Armengol, E.; Bernkop-Schnürch, A. Charge-Reversible Nanoparticles: Advanced Delivery Systems for Therapy and Diagnosis. Small 2024, 20, 2304713. [Google Scholar] [CrossRef] [PubMed]
- Herdiana, Y.; Wathoni, N.; Shamsuddin, S.; Muchtaridi, M. Scale-up polymeric-based nanoparticles drug delivery systems: Development and challenges. OpenNano 2022, 7, 100048. [Google Scholar] [CrossRef]
- Santander-Ortega, M.; Csaba, N.; Alonso, M.; Ortega-Vinuesa, J.L.; Bastos-González, D. Stability and physicochemical characteristics of PLGA, PLGA:poloxamer and PLGA:poloxamine blend nanoparticles. Colloids Surf. A Physicochem. Eng. Asp. 2007, 296, 132–140. [Google Scholar] [CrossRef]
- Palmer, M.; Curran, J.; Bowler, P. Clinical experience and safety using phosphatidylcholine injections for the localized reduction of subcutaneous fat: A multicentre, retrospective UK study. J. Cosmet. Dermatol. 2006, 5, 218–226. [Google Scholar] [CrossRef]
- Skiba, M.; Skiba-Lahiani, M.; Marchais, H.; Duclos, R.; Arnaud, P. Stability assessment of ketoconazole in aqueous formulations. Int. J. Pharm. 2000, 198, 1–6. [Google Scholar] [CrossRef]
- Mhaske, R.A.; Sahasrabudhe, S. Identification of major degradation products of ketoconazole. Sci. Pharm. 2011, 79, 817–836. [Google Scholar] [CrossRef]
- Zhu, M.; Wang, J.; Li, N. A novel thermo-sensitive hydrogel-based on poly(N-isopropylacrylamide)/hyaluronic acid of ketoconazole for ophthalmic delivery. Artif. Cells Nanomed. Biotechnol. 2018, 46, 1282–1287. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, J.; Sun, Q.; Xu, X.; Li, M.; Xie, F. Hydroxypropyl methylcellulose hydrocolloid systems: Effect of hydroxypropy group content on the phase structure, rheological properties and film characteristics. Food Chem. 2022, 379, 132075. [Google Scholar] [CrossRef]
- Fathalla, Z.M.; Vangala, A.; Longman, M.; Khaled, K.A.; Hussein, A.K.; El-Garhy, O.H.; Alany, R.G. Poloxamer-based thermoresponsive ketorolac tromethamine in situ gel preparations: Design, characterisation, toxicity and transcorneal permeation studies. Eur. J. Pharm. Biopharm. 2017, 114, 119–134. [Google Scholar] [CrossRef]
- Gupta, S.; Samanta, M.K. Design and evaluation of thermoreversible in situ gelling system of forskolin for the treatment of glaucoma. Pharm. Dev. Technol. 2010, 15, 386–393. [Google Scholar] [CrossRef]
- Hwang, Y.S.; Chiang, P.R.; Hong, W.H.; Chiao, C.C.; Chu, I.M.; Hsiue, G.H.; Shen, C.R. Study in vivo intraocular biocompatibility of in situ gelation hydrogels: Poly(2-ethyl oxazoline)-block-poly(ε-caprolactone)-block-poly(2-ethyl oxazoline) copolymer, matrigel and pluronic F127. PLoS ONE 2013, 8, e67495. [Google Scholar] [CrossRef] [PubMed]
- Su, D.; Luu, C.; Barathi, A.; Zhu, X.; Cheah, E.; Cheng, B.; Chee, S.P. Evaluation of the use of Pluronic F127 as an intravitreal ocular drug delivery vehicle. Investig. Ophthalmol. Vis. Sci. 2006, 47, 5122. [Google Scholar]
- Brown, M.; Norton, D. The Preservation of Ophthalmic Preparations. J. Soc. Cosmet. Chem. 1965, 16, 369–393. [Google Scholar]
- Brambilla, E.; Locarno, S.; Gallo, S.; Orsini, F.; Pini, C.; Farronato, M.; Thomaz, D.V.; Lenardi, C.; Piazzoni, M.; Tartaglia, G. Poloxamer-Based Hydrogel as Drug Delivery System: How Polymeric Excipients Influence the Chemical-Physical Properties. Polymers 2022, 14, 3624. [Google Scholar] [CrossRef]
- Cook, M.T.; Haddow, P.; Kirton, S.B.; McAuley, W.J. Polymers Exhibiting Lower Critical Solution Temperatures as a Route to Thermoreversible Gelators for Healthcare. Adv. Funct. Mater. 2021, 31, 2008123. [Google Scholar] [CrossRef]
- Alexandridis, P.; Holzwarth, J.F.; Hatton, T.A. Micellization of Poly(ethylene oxide)-Poly(propylene oxide)-Poly(ethylene oxide) Triblock Copolymers in Aqueous Solutions: Thermodynamics of Copolymer Association. Macromolecules 1994, 27, 2414–2425. [Google Scholar] [CrossRef]
- Russo, E.; Villa, C. Poloxamer Hydrogels for Biomedical Applications. Pharmaceutics 2019, 11, 671. [Google Scholar] [CrossRef]
- da Silva, J.B.; Cook, M.T.; Bruschi, M.L. Thermoresponsive systems composed of poloxamer 407 and HPMC or NaCMC: Mechanical, rheological and sol-gel transition analysis. Carbohydr. Polym. 2020, 240, 116268. [Google Scholar] [CrossRef]
- Yuan, Y.; Cui, Y.; Zhang, L.; Zhu, H.-p.; Guo, Y.-S.; Zhong, B.; Hu, X.; Zhang, L.; Wang, X.-h.; Chen, L. Thermosensitive and mucoadhesive in situ gel based on poloxamer as new carrier for rectal administration of nimesulide. Int. J. Pharm. 2012, 430, 114–119. [Google Scholar] [CrossRef]
- Galocha-León, C.; Antich, C.; Voltes-Martínez, A.; Marchal, J.A.; Mallandrich, M.; Halbaut, L.; Rodríguez-Lagunas, M.J.; Souto, E.B.; Clares-Naveros, B.; Gálvez-Martín, P. Development and characterization of a poloxamer hydrogel composed of human mesenchymal stromal cells (hMSCs) for reepithelization of skin injuries. Int. J. Pharm. 2023, 647, 123535. [Google Scholar] [CrossRef]
- Hirun, N.; Kraisit, P.; Tantishaiyakul, V. Thermosensitive Polymer Blend Composed of Poloxamer 407, Poloxamer 188 and Polycarbophil for the Use as Mucoadhesive in Situ Gel. Polymers 2022, 14, 1836. [Google Scholar] [CrossRef] [PubMed]
- Chittasupho, C.; Chaobankrang, K.; Sarawungkad, A.; Samee, W.; Singh, S.; Hemsuwimon, K.; Okonogi, S.; Kheawfu, K.; Kiattisin, K.; Chaiyana, W. Antioxidant, Anti-Inflammatory and Attenuating Intracellular Reactive Oxygen Species Activities of Nicotiana tabacum var. Virginia Leaf Extract Phytosomes and Shape Memory Gel Formulation. Gels 2023, 9, 78. [Google Scholar] [CrossRef] [PubMed]
- Chittasupho, C.; Umsumarng, S.; Srisawad, K.; Arjsri, P.; Phongpradist, R.; Samee, W.; Tingya, W.; Ampasavate, C.; Dejkriengkraikul, P. Inhibition of SARS-CoV-2-Induced NLRP3 Inflammasome-Mediated Lung Cell Inflammation by Triphala-Loaded Nanoparticle Targeting Spike Glycoprotein S1. Pharmaceutics 2024, 16, 751. [Google Scholar] [CrossRef] [PubMed]
- Wongsukkasem, N.; Soynark, O.; Suthakitmanus, M.; Chongdiloet, E.; Chairattanapituk, C.; Vattanikitsiri, P.; Hongratanaworakit, T.; Tadtong, S. Antiacne-Causing Bacteria, Antioxidant, Anti-Tyrosinase, Anti-Elastase and Anti-Collagenase Activities of Blend Essential Oil comprising Rose, Bergamot and Patchouli Oils. Nat. Prod. Commun. 2018, 13, 1934578X1801300529. [Google Scholar] [CrossRef]
Ketoconazole | N1 | N2 | N3 | ||||||
---|---|---|---|---|---|---|---|---|---|
rep 1 | rep 2 | rep 3 | rep 1 | rep 2 | rep 3 | rep 1 | rep 2 | rep 3 | |
20 µg/mL | (-) | (-) | (-) | (-) | (-) | (-) | (-) | (-) | (-) |
10 µg/mL | (-) | (-) | (-) | (-) | (-) | (-) | (-) | (-) | (-) |
5 µg/mL | (-) | (-) | (-) | (-) | (-) | (-) | (-) | (-) | (-) |
2.5 µg/mL | (-) | (-) | (-) | (-) | (-) | (-) | (-) | (-) | (-) |
1.25 µg/mL | (-) | (-) | (-) | (-) | (-) | (-) | (-) | (-) | (+) |
1% DMSO/medium | (++) | (++) | (++) | (++) | (++) | (++) | (++) | (++) | (++) |
Control (medium) | (++) | (++) | (++) | (++) | (++) | (++) | (++) | (++) | (++) |
Ketoconazole NPs | N1 | N2 | N3 | ||||||
rep 1 | rep 2 | rep 3 | rep 1 | rep 2 | rep 3 | rep 1 | rep 2 | rep 3 | |
20 µg/mL | (-) | (-) | (-) | (-) | (-) | (-) | (-) | (-) | (-) |
10 µg/mL | (-) | (-) | (-) | (-) | (-) | (-) | (-) | (-) | (-) |
5 µg/mL | (-) | (-) | (-) | (-) | (-) | (-) | (-) | (-) | (-) |
2.5 µg/mL | (-) | (-) | (-) | (-) | (-) | (-) | (-) | (-) | (-) |
1.25 µg/mL | (-) | (-) | (-) | (-) | (+) | (-) | (-) | (-) | (-) |
1% DMSO/medium | (++) | (++) | (++) | (++) | (++) | (++) | (++) | (++) | (++) |
Control (medium) | (++) | (++) | (++) | (++) | (++) | (++) | (++) | (++) | (++) |
Nanoparticle | (++) | (++) | (++) | (++) | (++) | (++) | (++) | (++) | (++) |
Formulation Code | Gelation Temperature (°C) | Gelation Time (s) | pH |
---|---|---|---|
F1 | 30.00 ± 0.00 | 63.33 ± 5.77 | 7.09 ± 0.01 |
F2 | 31.00 ± 0.00 | 70.00 ± 5.00 | 7.09 ± 0.01 |
F3 | 34.67 ± 0.58 | 63.33 ± 2.89 | 7.13 ± 0.03 |
F4 | <28.00 | 73.33 ± 2.89 | 7.17 ± 0.01 |
F5 | <28.00 | 51.67 ± 5.77 | 7.11 ± 0.01 |
F6 | <28.00 | 53.33 ± 2.89 | 7.16 ± 0.02 |
F7 | 30.00 ± 0.00 | 75.00 ± 0.00 | 7.07 ± 0.01 |
F8 | 31.00 ± 0.00 | 73.33 ± 2.89 | 7.04 ± 0.00 |
F9 | 30.00 ± 0.00 | 61.67 ± 5.77 | 7.09 ± 0.01 |
F10 | 30.00 ± 0.00 | 60.00 ± 8.66 | 7.05 ± 0.01 |
F11 | 30.00 ± 0.00 | 56.67 ± 7.64 | 7.07 ± 0.01 |
F12 | 30.00 ± 0.00 | 55.00 ± 5.00 | 7.05 ± 0.01 |
F13 | >40.00 | 76.67 ± 2.89 | 6.99 ± 0.01 |
F14 | >40.00 | 80.00 ± 5.00 | 7.04 ± 0.01 |
F15 | >40.00 | 78.33 ± 5.77 | 6.95 ± 0.00 |
F16 | 30.00 ± 0.00 | 60.00 ± 5.00 | 7.06 ± 0.01 |
F17 | 29.00 ± 0.00 | 63.33 ± 2.89 | 6.98 ± 0.01 |
F18 | <28.00 | 61.67 ± 2.89 | 6.89 ± 0.01 |
F19 | >40.00 | 86.67 ± 2.89 | 6.96 ± 0.01 |
F20 | 33.00 ± 0.00 | 96.67 ± 2.89 | 6.97 ± 0.01 |
F21 | <28.00 | 90.00 ± 5.00 | 7.00 ± 0.00 |
Formula-tion | Composition (% w/v) | |||||
---|---|---|---|---|---|---|
Poloxamer 407 | Hydroxypropyl Methylcellulose (HPMC) | Sodium Carboxymethyl Cellulose (SCMC) | Sodium Alginate | Ketoconazole NPs | Purified Water q.s to | |
F1 | 18.00 | 1.00 | 100.00 | |||
F2 | 17.00 | 1.00 | 100.00 | |||
F3 | 16.00 | 1.00 | 100.00 | |||
F4 | 18.00 | 0.50 | 1.00 | 100.00 | ||
F5 | 18.00 | 1.00 | 1.00 | 100.00 | ||
F6 | 18.00 | 2.00 | 1.00 | 100.00 | ||
F7 | 17.00 | 0.50 | 1.00 | 100.00 | ||
F8 | 17.00 | 1.00 | 1.00 | 100.00 | ||
F9 | 17.00 | 2.00 | 1.00 | 100.00 | ||
F10 | 18.00 | 0.05 | 1.00 | 100.00 | ||
F11 | 18.00 | 0.10 | 1.00 | 100.00 | ||
F12 | 18.00 | 0.2 | 1.00 | 100.00 | ||
F13 | 17.00 | 0.05 | 1.00 | 100.00 | ||
F14 | 17.00 | 0.10 | 1.00 | 100.00 | ||
F15 | 17.00 | 0.2 | 1.00 | 100.00 | ||
F16 | 18.00 | 0.50 | 1.00 | 100.00 | ||
F17 | 18.00 | 1.00 | 1.00 | 100.00 | ||
F18 | 18.00 | 2.00 | 1.00 | 100.00 | ||
F19 | 17.00 | 0.50 | 1.00 | 100.00 | ||
F20 | 17.00 | 1.00 | 1.00 | 100.00 | ||
F21 | 17.00 | 2.00 | 1.00 | 100.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chaiwut, C.; Tadtong, S.; Akachaipaibul, P.; Jiaranaikulwanitch, J.; Singh, S.; Okonogi, S.; Syukri, D.M.; Chittasupho, C. Thermosensitive In Situ Ophthalmic Gel for Effective Local Delivery and Antifungal Activity of Ketoconazole Nanoparticles. Gels 2025, 11, 13. https://doi.org/10.3390/gels11010013
Chaiwut C, Tadtong S, Akachaipaibul P, Jiaranaikulwanitch J, Singh S, Okonogi S, Syukri DM, Chittasupho C. Thermosensitive In Situ Ophthalmic Gel for Effective Local Delivery and Antifungal Activity of Ketoconazole Nanoparticles. Gels. 2025; 11(1):13. https://doi.org/10.3390/gels11010013
Chicago/Turabian StyleChaiwut, Chutima, Sarin Tadtong, Puriputt Akachaipaibul, Jutamas Jiaranaikulwanitch, Sudarshan Singh, Siriporn Okonogi, Dwi Marlina Syukri, and Chuda Chittasupho. 2025. "Thermosensitive In Situ Ophthalmic Gel for Effective Local Delivery and Antifungal Activity of Ketoconazole Nanoparticles" Gels 11, no. 1: 13. https://doi.org/10.3390/gels11010013
APA StyleChaiwut, C., Tadtong, S., Akachaipaibul, P., Jiaranaikulwanitch, J., Singh, S., Okonogi, S., Syukri, D. M., & Chittasupho, C. (2025). Thermosensitive In Situ Ophthalmic Gel for Effective Local Delivery and Antifungal Activity of Ketoconazole Nanoparticles. Gels, 11(1), 13. https://doi.org/10.3390/gels11010013