Fish Gelatin-Based Flexible and Self-Healing Hydrogel Modified by Fe2(SO4)3
<p>Effects of gelling temperature (<b>a</b>), FG concentration (<b>b</b>), GG concentration (<b>c</b>) and Fe<sub>2</sub>(SO<sub>4</sub>)<sub>3</sub> concentration (<b>d</b>) on the springiness of fish gelatin-based flexible hydrogel.</p> "> Figure 2
<p>Response surface plot and contour plot of the interaction of various factors.</p> "> Figure 2 Cont.
<p>Response surface plot and contour plot of the interaction of various factors.</p> "> Figure 3
<p>The changes of G′ and G″ of hydrogels with temperature. (<b>a</b>) FG, (<b>b</b>) FG + Fe<sub>2</sub>(SO<sub>4</sub>)<sub>3</sub> and (<b>c</b>) FG + GG + Fe<sub>2</sub>(SO<sub>4</sub>)<sub>3</sub>.</p> "> Figure 4
<p>Digital photos of the composite hydrogel under (<b>a</b>,<b>a′</b>) compression, (<b>b</b>) folding, (<b>c</b>) self-healing, (<b>d</b>) bending, (<b>e</b>) adhering to different objects and (<b>f</b>) attachment to the skin and after removal (Red dotted circle was the location where the composite hydrogel attached). (<b>a</b>–<b>f</b>) FG + GG + Fe<sub>2</sub>(SO<sub>4</sub>)<sub>3</sub> and (<b>a′</b>) FG.</p> "> Figure 5
<p>Images of the inhibition zone of hydrogels. (<b>a</b>) FG, (<b>b</b>) FG + Fe<sub>2</sub>(SO<sub>4</sub>)<sub>3</sub> and (<b>c</b>) FG + GG + Fe<sub>2</sub>(SO<sub>4</sub>)<sub>3</sub>.</p> "> Figure 6
<p>Inhibition zone diameter of hydrogels. (<b>a</b>) FG, (<b>b</b>) FG + Fe<sub>2</sub>(SO<sub>4</sub>)<sub>3</sub> and (<b>c</b>) FG + GG + Fe<sub>2</sub>(SO<sub>4</sub>)<sub>3</sub>.</p> "> Figure 7
<p>FTIR spectra of hydrogels. (<b>a</b>) FG, (<b>b</b>) FG + Fe<sub>2</sub>(SO<sub>4</sub>)<sub>3</sub> and (<b>c</b>) FG + GG + Fe<sub>2</sub>(SO<sub>4</sub>)<sub>3</sub>.</p> "> Figure 8
<p>SEM images ((<b>a</b>–<b>c</b>) ×25,000, (<b>a′</b>–<b>c′</b>) ×50,000) of hydrogels. (<b>a</b>,<b>a′</b>) FG, (<b>b</b>,<b>b′</b>) FG + Fe<sub>2</sub>(SO<sub>4</sub>)<sub>3</sub> and (<b>c</b>,<b>c′</b>) FG + GG + Fe<sub>2</sub>(SO<sub>4</sub>)<sub>3</sub>.</p> ">
Abstract
:1. Introduction
2. Results and Discussion
2.1. Results of One-Way Test for the Preparation of Fish Gelatin-Based Flexible Hydrogel
2.2. Response Surface Optimization ANOVA for the Preparation of Fish Gelatin-Based Flexible Hydrogel
2.2.1. Response Surface Test Design and Results
2.2.2. Establishment and Analysis of Response Surface Regression Model
2.2.3. Two-Factor Interaction Analysis
2.2.4. Determination of Optimal Conditions and Verification of Regression Model
2.3. Rheological Properties of the Composite Hydrogel
2.4. Compression Performance, Adhesive Performance and Self-Healing Properties of the Composite Hydrogel
2.5. Antibacterial Activity of Hydrogels
2.6. FTIR Spectra of Hydrogels
2.7. SEM of Hydrogels
3. Conclusions
4. Materials and Methods
4.1. Materials and Reagents
4.2. Preparation of Hydrogels
4.3. Determination of the Springiness of the Hydrogels
4.4. One-Way Experimental Design for the Preparation of Fish Gelatin-Based Flexible Hydrogel
4.4.1. Effect of Gelling Temperature on the Springiness of Fish Gelatin-Based Flexible Hydrogel
4.4.2. Effect of FG Concentration on the Springiness of Fish Gelatin-Based Flexible Hydrogel
4.4.3. Effect of GG Concentration on the Springiness of Fish Gelatin-Based Flexible Hydrogel
4.4.4. Effect of Fe2(SO4)3 Concentration on the Springiness of Fish Gelatin-Based Flexible Hydrogel
4.5. Response Surface Test for the Preparation of Fish Gelatin-Based Flexible Hydrogel
4.6. Determination of Rheological Properties
4.7. Compression Performance, Adhesive Performance and Self-Healing Properties
4.8. Antibacterial Activity Assay
4.9. Analyses of Fourier Transform Infrared (FT-IR) Spectra
4.10. Scanning Electron Microscopy (SEM)
4.11. Statistical Analysis
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Usman, M.; Sahar, A.; Inam-Ur-Raheem, M.; Rahman, U.U.; Sameen, A.; Aadil, R.M. Gelatin extraction from fish waste and potential applications in food sector. Int. J. Food Sci. Technol. 2022, 57, 154–163. [Google Scholar] [CrossRef]
- Fathi, M.; Ahmadi, N.; Forouhar, A.; Atani, S.H. Natural Hydrogels, the Interesting Carriers for Herbal Extracts. Food Rev. Int. 2022, 38, 713–737. [Google Scholar] [CrossRef]
- Zhang, T.; Xu, J.M.; Zhang, Y.Y.; Wang, X.C.; Lorenzo, J.M.; Zhong, J. Gelatins as emulsifiers for oil-in-water emulsions: Extraction, chemical composition, molecular structure, and molecular modification. Trends Food Sci. Technol. 2020, 106, 113–131. [Google Scholar] [CrossRef]
- Nitsuwat, S.; Zhang, P.Z.; Ng, K.; Fang, Z.X. Fish gelatin as an alternative to mammalian gelatin for food industry: A meta-analysis. LWT-Food Sci. Technol. 2021, 141, 110899. [Google Scholar] [CrossRef]
- Samadian, H.; Zamiri, S.; Ehterami, A.; Farzamfar, S.; Vaez, A.; Khastar, H.; Alam, M.; Ai, A.; Derakhshankhah, H.; Allahyari, Z.; et al. Electrospun cellulose acetate/gelatin nanofibrous wound dressing containing berberine for diabetic foot ulcer healing: In vitro and in vivo studies. Sci. Rep. 2020, 10, 8312. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.L.; Liu, Z.; Tang, J.L.; Wang, R.Y.; Liu, W.X.; Liu, H.M.; Zhao, Q.; Niu, L.H.; Zhang, C.L. Gellan gum improves the gel properties and thermal stability of tilapia (Oreochromis spp.) skin gelatin sterilized at 121 °C. J. Food Process. Preserv. 2022, 46, e17131. [Google Scholar]
- Li, X.F.; Yang, Q.; Zhao, Y.J.; Longa, S.J.; Zheng, J. Dual physically crosslinked double network hydrogels with high toughness and self-healing properties. Soft Matter 2017, 13, 911–920. [Google Scholar] [CrossRef] [PubMed]
- Zheng, S.Y.; Ding, H.Y.; Qian, J.; Yin, J.; Wu, Z.L.; Song, Y.H.; Zheng, Q. Metal-Coordination Complexes Mediated Physical Hydrogels with High Toughness, Stick-Slip Tearing Behavior, and Good Processability. Macromolecules 2016, 49, 9637–9646. [Google Scholar] [CrossRef]
- Cotton, D.P.J.; Popel, A.; Graz, I.M.; Lacour, S.P. Photopatterning the mechanical properties of polydimethylsiloxane films. J. Appl. Phys. 2011, 109, 4922–4925. [Google Scholar] [CrossRef]
- Harrington, M.J.; Masic, A.; Holten-Andersen, N.; Waite, J.H.; Fratzl, P. Iron-Clad Fibers: A Metal-Based Biological Strategy for Hard Flexible Coatings. Science 2010, 328, 216–220. [Google Scholar] [CrossRef]
- Huang, Y.W.; Xiao, L.Y.; Zhou, J.; Liu, T.; Yan, Y.Q.; Long, S.J.; Li, X.F. Strong Tough Polyampholyte Hydrogels via the Synergistic Effect of Ionic and Metal-Ligand Bonds. Adv. Funct. Mater. 2021, 31, 2103917. [Google Scholar] [CrossRef]
- Hu, Y.; Du, Z.S.; Deng, X.L.; Wang, T.; Yang, Z.H.; Zhou, W.Y.; Wang, C.Y. Dual Physically Cross-Linked Hydrogels with High Stretchability, Toughness, and Good Self-Recoverability. Macromolecules 2016, 49, 5660–5668. [Google Scholar] [CrossRef]
- Tang, Z.H.; Huang, J.; Guo, B.C.; Zhang, L.Q.; Liu, F. Bioinspired Engineering of Sacrificial Metal-Ligand Bonds into Elastomers with Supramechanical Performance and Adaptive Recovery. Macromolecules 2016, 49, 1781–1789. [Google Scholar] [CrossRef]
- Wang, J.R.; Fan, X.L.; Liu, H.; Tang, K.Y. Self-assembly and metal ions-assisted one step fabrication of recoverable gelatin hydrogel with high mechanical strength. Polym. Plast. Technol. Mater. 2020, 59, 1899–1909. [Google Scholar] [CrossRef]
- Rao, Y.L.; Chortos, A.; Pfattner, R.; Lissel, F.; Chiu, Y.C.; Feig, V.; Xu, J.; Kurosawa, T.; Gu, X.D.; Wang, C.; et al. Stretchable Self-Healing Polymeric Dielectrics Cross-Linked Through Metal-Ligand Coordination. J. Am. Chem. Soc. 2016, 138, 6020–6027. [Google Scholar] [CrossRef] [PubMed]
- Mozhdehi, D.; Neal, J.A.; Grindy, S.C.; Cordeau, Y.; Ayala, S.; Holten-Andersen, N.; Guan, Z.B. Tuning Dynamic Mechanical Response in Metallopolymer Networks through Simultaneous Control of Structural and Temporal Properties of the Networks. Macromolecules 2016, 49, 6310–6321. [Google Scholar] [CrossRef]
- Liang, X.C.; Deng, Y.K.; Pei, X.P.; Zhai, K.K.; Xu, K.; Tan, Y.; Gong, X.Y.; Wang, P.X. Tough, rapid-recovery composite hydrogels fabricated via synergistic core-shell microgel covalent bonding and Fe3+ coordination cross-linking. Soft Matter 2017, 13, 2654–2662. [Google Scholar] [CrossRef] [PubMed]
- Cho, S.-H.; Jahncke, M.L.; Chin, K.-B.; Eun, J.-B. The effect of processing conditions on the properties of gelatin from skate (Raja kenojei) skins. Food Hydrocoll. 2006, 20, 810–816. [Google Scholar] [CrossRef]
- Derkach, S.R.; Voron’ko, N.G.; Kuchina, Y.A.; Kolotova, D.S. Modified Fish Gelatin as an Alternative to Mammalian Gelatin in Modern Food Technologies. Polymers 2020, 12, 3051. [Google Scholar] [CrossRef]
- Lin, P.; Ma, S.H.; Wang, X.L.; Zhou, F. Molecularly Engineered Dual-Crosslinked Hydrogel with Ultrahigh Mechanical Strength, Toughness, and Good Self-Recovery. Adv. Mater. 2015, 27, 2054–2059. [Google Scholar] [CrossRef]
- Hao, Y.; Dong, M.L.; Zhang, T.Y.; Peng, J.R.; Jia, Y.P.; Cao, Y.P.; Qian, Z.Y. Novel Approach of Using Near-Infrared Responsive PEGylated Gold Nanorod Coated Poly(L-lactide) Microneedles to Enhance the Antitumor Efficiency of Docetaxel-Loaded MPEG-PDLLA Micelles for Treating an A431 Tumor. ACS Appl. Mater. Interfaces 2017, 9, 15317–15327. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.H.; Xu, W.L.; Wang, X.H.; Jiang, W.Q.; Ma, X.L.; Wang, F.J.C.; Zhang, C.L.; Ren, C.G. Fabrication of PVA/PAAm IPN hydrogel with high adhesion and enhanced mechanical properties for body sensors and antibacterial activity. Eur. Polym. J. 2021, 146, 110253. [Google Scholar] [CrossRef]
- Cao, J.F.; Wu, P.; Cheng, Q.Q.; He, C.; Chen, Y.; Zhou, J.P. Ultrafast Fabrication of Self-Healing and Injectable Carboxymethyl Chitosan Hydrogel Dressing for Wound Healing. ACS Appl. Mater. Interfaces 2021, 13, 24095–24105. [Google Scholar] [CrossRef]
- Sila, A.; Martinez-Alvarez, O.; Krichen, F.; Gómez-Guillén, M.C.; Bougatef, A. Gelatin prepared from European eel (Anguilla anguilla) skin: Physicochemical, textural, viscoelastic and surface properties. Colloids Surf. A-Physicochem. Eng. Asp. 2017, 529, 643–650. [Google Scholar] [CrossRef]
- Derkach, S.R.; Kolotova, D.S.; Kuchina, Y.A.; Shumskaya, N.V. Characterization of Fish Gelatin Obtained from Atlantic Cod Skin Using Enzymatic Treatment. Polymers 2022, 14, 751. [Google Scholar] [CrossRef] [PubMed]
- He, J.M.; Zhang, J.; Xu, Y.J.; Ma, Y.G.; Guo, X.B. The Structural and Functional Differences between Three Species of Fish Scale Gelatin and Pigskin Gelatin. Foods 2022, 11, 3960. [Google Scholar] [CrossRef]
- Kim, M.S.; Park, S.J.; Gu, B.K.; Kim, C.H. Ionically crosslinked alginate-carboxymethyl cellulose beads for the delivery of protein therapeutics. Appl. Surf. Sci. 2012, 262, 28–33. [Google Scholar] [CrossRef]
- Kong, Y.; Hou, Z.S.; Zhou, L.Q.; Zhang, P.F.; Ouyang, Y.W.; Wang, P.W.; Chen, Y.W.; Luo, X.L. Injectable Self-Healing Hydrogels Containing CuS Nanoparticles with Abilities of Hemostasis, Antibacterial activity, and Promoting Wound Healing. ACS Biomater. Sci. Eng. 2021, 7, 335–349. [Google Scholar] [CrossRef]
- Andreazza, R.; Morales, A.; Pieniz, S.; Labidi, J. Gelatin-Based Hydrogels: Potential Biomaterials for Remediation. Polymers 2023, 15, 1026. [Google Scholar] [CrossRef]
- Wang, K.; Wang, J.H.; Li, L.; Xu, L.Q.; Feng, N.; Wang, Y.; Fei, X.; Tian, J.; Li, Y. Novel Nonreleasing Antibacterial Hydrogel Dressing by a One-Pot Method. ACS Biomater. Sci. Eng. 2020, 6, 1259–1268. [Google Scholar] [CrossRef]
- Sow, L.C.; Toh, N.Z.Y.; Wong, C.W.; Yang, H.S. Combination of sodium alginate with tilapia fish gelatin for improved texture properties and nanostructure modification. Food Hydrocoll. 2019, 94, 459–467. [Google Scholar] [CrossRef]
- Wang, L.L.; Zhao, Z.Q.; Dong, J.H.; Li, D.W.; Dong, W.H.; Li, H.X.; Zhou, Y.Q.; Liu, Q.S.; Deng, B.Y. Mussel-Inspired Multifunctional Hydrogels with Adhesive, Self-Healing, Antioxidative, and Antibacterial Activity for Wound Healing. ACS Appl. Mater. Interfaces 2023, 15, 16515–16525. [Google Scholar] [CrossRef] [PubMed]
- Lin, Z.C.; Fan, D.H.; Li, G.J.; He, L.M.; Qin, X.Y.; Zhao, B.; Wang, Q.; Liang, W.L. Antibacterial, Adhesive, and Conductive Hydrogel for Diabetic Wound Healing. Macromol. Biosci. 2023, 23, e2200349. [Google Scholar] [CrossRef] [PubMed]
- Khorshidi, S.; Khoobbakht, F.; Mirmoghtadaie, L.; Hosseini, S.M. Characterization of gellan gum-chitosan based hydrogel to evaluate as a potential gelatin substitute. Food Hydrocoll. 2023, 145, 109038. [Google Scholar] [CrossRef]
Number | A. FG Concentration /(g/L) | B. GG Concentration /(g/L) | C. Fe2(SO4)3 Concentration /(g/L) | Y. Springiness /(mm) |
1 | 150 | 5 | 60 | 7.13 |
2 | 250 | 5 | 60 | 6.65 |
3 | 150 | 15 | 60 | 6.68 |
4 | 250 | 15 | 60 | 6.52 |
5 | 150 | 10 | 40 | 6.98 |
6 | 250 | 10 | 40 | 6.25 |
7 | 150 | 10 | 80 | 6.42 |
8 | 250 | 10 | 80 | 6.44 |
9 | 200 | 5 | 40 | 7.03 |
10 | 200 | 15 | 40 | 6.32 |
11 | 200 | 5 | 80 | 6.38 |
12 | 200 | 15 | 80 | 6.43 |
13 | 200 | 10 | 60 | 7.72 |
14 | 200 | 10 | 60 | 7.65 |
15 | 200 | 10 | 60 | 7.33 |
16 | 200 | 10 | 60 | 7.56 |
17 | 200 | 10 | 60 | 7.48 |
Source | Sum of Squares | df | Mean Square | F-Value | p-Value | Significance |
---|---|---|---|---|---|---|
Model | 4.11 | 9 | 0.4569 | 32.87 | <0.0001 | ** |
A | 0.2278 | 1 | 0.2278 | 16.39 | 0.0049 | ** |
B | 0.1922 | 1 | 0.1922 | 13.83 | 0.0075 | ** |
C | 0.1035 | 1 | 0.1035 | 7.45 | 0.0294 | * |
AB | 0.0256 | 1 | 0.0256 | 1.84 | 0.2169 | not significant |
AC | 0.1406 | 1 | 0.1406 | 10.12 | 0.0155 | * |
BC | 0.1444 | 1 | 0.1444 | 10.39 | 0.0146 | * |
A2 | 0.7087 | 1 | 0.7087 | 50.98 | 0.0002 | ** |
B2 | 0.6495 | 1 | 0.6495 | 46.72 | 0.0002 | ** |
C2 | 1.59 | 1 | 1.59 | 114.66 | <0.0001 | ** |
Residual | 0.0973 | 7 | 0.0139 | |||
Lack of Fit | 0.005 | 3 | 0.0017 | 0.0726 | 0.9716 | not significant |
Pure Error | 0.0923 | 4 | 0.0231 | |||
Cor Total | 4.21 | 16 |
Level | A. FG Concentration /(g/L) | B. GG Concentration /(g/L) | C. Fe2(SO4)3 Concentration /(g/L) |
---|---|---|---|
1 | 150 | 5 | 40 |
2 | 200 | 10 | 60 |
3 | 250 | 15 | 80 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, L.; Liu, H.; Zhao, Q. Fish Gelatin-Based Flexible and Self-Healing Hydrogel Modified by Fe2(SO4)3. Gels 2024, 10, 557. https://doi.org/10.3390/gels10090557
Zhang L, Liu H, Zhao Q. Fish Gelatin-Based Flexible and Self-Healing Hydrogel Modified by Fe2(SO4)3. Gels. 2024; 10(9):557. https://doi.org/10.3390/gels10090557
Chicago/Turabian StyleZhang, Lili, Haimei Liu, and Qin Zhao. 2024. "Fish Gelatin-Based Flexible and Self-Healing Hydrogel Modified by Fe2(SO4)3" Gels 10, no. 9: 557. https://doi.org/10.3390/gels10090557
APA StyleZhang, L., Liu, H., & Zhao, Q. (2024). Fish Gelatin-Based Flexible and Self-Healing Hydrogel Modified by Fe2(SO4)3. Gels, 10(9), 557. https://doi.org/10.3390/gels10090557