Temperature-Regulated Synthesis of Hyaluronic Acid-Interpenetrated Polyacrylamide/Poly(Acrylic Acid Sodium Salt) Semi-Interpenetrated Polymer Network Gel for the Removal of Methyl Violet
"> Figure 1
<p>(<b>A</b>) Variation of experimental and theoretical values of volume fraction of crosslinked polymer network after preparation and (<b>B</b>) the gel fraction of PAAm/PSA/HyA semi−IPNs as a function of the polymerization temperature, as well as HyA content after complete drying. (<b>C</b>) Optical views of HyA−free control gel, PAAm/PSA/Hy0, synthesized at 24 °C.</p> "> Figure 2
<p>ATR−FTIR of (<b>A</b>) PAAm gel, linear PSA polymer, and HyA−free control gel, PAAm/PSA/HyA0, (<b>B</b>) neat hyaluronic acid (HyA) and PAAm/PSA/HyA semi−IPNs prepared with varying HyA contents. (<b>C</b>) As−prepared state appearance of 0.05% (<span class="html-italic">w</span>/<span class="html-italic">v</span>) HyA−containing PAAm/PSA/HyA1 semi−IPN sample synthesized at ambient temperature.</p> "> Figure 3
<p>(<b>A</b>) As−prepared-state images of PAAm/PSA/HyA semi−IPNs synthesized at different polymerization temperatures after their removal from the syringe. (<b>B</b>) XRD curves of semi−IPNs as a function of the composition.</p> "> Figure 4
<p>(<b>A</b>) Equilibrium volume swelling ratio of PAAm/PSA/HyA semi−IPNs shown as a function of HyA content, as well as the gel preparation temperature. (<b>B</b>) Optical images of semi−IPN gels after their swelling in water. (<b>C</b>) Swelling isotherms of PAAm/PSA/HyA semi−IPNs with different HyA content in terms of relative weight swelling ratio against the swelling time in water. The preparation temperatures were indicated.</p> "> Figure 5
<p>(<b>A</b>–<b>C</b>) Stress−compressive strain isotherms of PAAm/PSA/HyA semi−IPNs after their preparation at 5, 24, and 45 °C. HyA content. (<b>D</b>) Optical images of 0.20% (<span class="html-italic">w</span>/<span class="html-italic">v</span>) HyA−containing semi-IPN gels prepared at 45 °C during uniaxial compression testing.</p> "> Figure 6
<p>(<b>A</b>–<b>D</b>) Stress-compressive strain isotherms of semi-IPN PAAm/PSA/HyA gels after their equilibrium swelling in water. HyA content. Optical views of gels formed at different conditions after finger compression.</p> "> Figure 7
<p>Compressive elastic moduli of PAAm/PSA/HyA gels from the uniaxial compression tests after preparation (<b>A</b>) and after equilibrium swelling in water (<b>B</b>) as a function of polymerization temperature. (<b>C</b>) Manual bending and folding images of semi-IPNs synthesized at different polymerization temperatures after removal from the syringe.</p> "> Figure 8
<p>(<b>A</b>–<b>C</b>) Equilibrium volume swelling ratio of PAAm/PSA/HyA semi−IPN shown as a function of pH of swelling medium, as well as gel preparation temperature. (<b>D</b>) Optical images of semi−IPN PAAm/PSA/HyA after their swelling in acidic and basic pH conditions.</p> "> Figure 9
<p>The adsorption performance (<b>A</b>–<b>E</b>), and adsorption capacity (<b>F</b>) of HyA-integrated PAAm/PSA/HyA gels as a function of contact time at different preparation conditions. (<b>G</b>) Optical images of HyA-integrated PAAm/PSA/HyA gels after 1 h adsorption of MV dye.</p> "> Figure 10
<p>Regression analysis of adsorption of MV with 0.2% (<span class="html-italic">w</span>/<span class="html-italic">v</span>) HyA-integrated PAAm/PSA/HyA4 gels by pseudo-first-order (PFO) kinetic model (<b>A</b>), pseudo-second-order (PSO) kinetic model (<b>B</b>), Avrami model (<b>C</b>), and intraparticle diffusion model (<b>D</b>).</p> "> Figure 11
<p>Results of nonlinear PFO kinetic model, PSO kinetic model, Avrami, Elovich kinetic model, and intraparticle diffusion model of 0.20% (<span class="html-italic">w</span>/<span class="html-italic">v</span>) PAAm/PSA/HyA4 semi−IPN gels formed at polymerization temperatures of Tprep (°C): 45 (<b>A</b>), 24 (<b>B</b>), 5 (<b>C</b>) and −18 (<b>D</b>).</p> "> Scheme 1
<p>Synthesis route of semi-IPN PAAm/PSA/HyA gels. (<b>A</b>) Preparation of HyA precursor solution, (<b>B</b>) PSA addition, (<b>C</b>) monomer AAm and crosslinker BAAm addition, (<b>D</b>) redox-initiator pair APS/TEMED addition, (<b>E</b>) transfer to the polypropylene syringes and crosslinking reactions at different temperatures. (<b>F</b>) Appearances of HyA precursor solutions at different concentrations. Images of as-prepared-state semi-IPNs containing 0.05% (<span class="html-italic">w</span>/<span class="html-italic">v</span>) HyA after polymerization at −18 °C and 24 °C.</p> "> Scheme 2
<p>Illustration of the possible interactions between MV dye and HyA-containing PAAm/PSA/HyA semi-IPNs.</p> ">
Abstract
:1. Introduction
2. Results and Discussion
2.1. Structural Characterization of HyA-Containing Semi-IPN Gels
2.2. Swelling Properties of HyA-Containing Semi-IPN Gels
2.3. Mechanical Properties of HyA-Containing Semi-IPN Gels
2.4. pH-Response of HyA-Interpenetrated Semi-IPNs
2.5. Adsorption Properties of HyA-Interpenetrated Semi-IPN Gels
3. Conclusions
4. Experimental
4.1. Materials and Methods
4.2. Synthetic Pathway for Preparation of Hyaluronic Acid-Interpenetrated Semi-IPN Gels
4.3. Swelling Measurements of HyA-Containing Semi-IPN Gels
4.4. Mechanical Measurements of HyA-Containing Semi-IPN Gels
4.5. Attenuated Total Reflectance Fourier Transform Infrared Spectroscopy (ATR-FTIR)
4.6. Adsorption Efficiency of HyA-Interpenetrated Semi-IPNs for Cationic Dyes
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Long, Y.-H.; Ju, X.-J.; Yang, S.-H.; Chen, S.-K.; Xie, R.; Wang, W.; Liu, Z.; Pan, D.-W.; Chu, L.-Y. Microfluidic Fabrication of Monodisperse Hyaluronic Acid Microspheres with Excellent Biocompatibility and Tunable Physicochemical Properties. Ind. Eng. Chem. Res. 2024, 63, 6632–6643. [Google Scholar] [CrossRef]
- Bezold, M.G.; Hanna, A.R.; Dollinger, B.R.; Patil, P.; Yu, F.; Duvall, C.L.; Gupta, M.K. Hybrid Shear-Thinning Hydrogel Integrating Hyaluronic Acid with ROS-Responsive Nanoparticles. Adv. Funct. Mater. 2023, 33, 2213368. [Google Scholar] [CrossRef] [PubMed]
- Carneiro, J.; Döll-Boscardin, P.M.; Fiorin, B.C.; Nadal, J.M.; Farago, P.V.; de Paula, J.P. Development and characterization of hyaluronic acid-lysine nanoparticles with potential as innovative dermal filling. Braz. J. Pharm. Sci. 2016, 52, 4. [Google Scholar] [CrossRef]
- Samchenko, Y.; Ulberg, Z.; Korotych, O. Multipurpose smart hydrogel systems. Adv. Colloid Interface Sci. 2011, 168, 247. [Google Scholar] [CrossRef] [PubMed]
- Allison, D.D.; Grande-Allen, K.J. Hyaluronan: A powerful tissue engineering tool. Tissue Eng. 2006, 12, 2131–2140. [Google Scholar] [CrossRef]
- Fan, F.; Su, B.; Kolodychak, A.; Ekwueme, E.; Alderfer, L.; Saha, S.; Webber, M.J.; Hanjaya-Putra, D. Hyaluronic Acid Hydrogels with Phototunable Supramolecular Cross-Linking for Spatially Controlled Lymphatic Tube Formation. ACS Appl. Mater. Interfaces 2023, 15, 58181–58195. [Google Scholar] [CrossRef]
- Wu, W.; Jia, S.; Xu, H.; Gao, Z.; Wang, Z.; Lu, B.; Ai, Y.; Liu, Y.; Liu, R.; Yang, T.; et al. Supramolecular Hydrogel Microspheres of Platelet-Derived Growth Factor Mimetic Peptide Promote Recovery from Spinal Cord Injury. ACS Nano 2023, 17, 3818–3837. [Google Scholar] [CrossRef]
- Rodell, C.B.; Kaminski, A.L.; Burdick, J.A. Rational Design of Network Properties in Guest–Host Assembled and Shear-Thinning Hyaluronic Acid Hydrogels. Biomacromolecules 2013, 14, 4125–4134. [Google Scholar] [CrossRef]
- Yi, Z.; Sun, Z.; Shen, Y.; Luo, D.; Zhang, R.; Ma, S.; Zhao, R.; Farheen, J.; Iqbal, M.Z.; Kong, X. The sodium hyaluronate microspheres fabricated by solution drying for transcatheter arterial embolization. J. Mater. Chem. B 2022, 10, 4105–4114. [Google Scholar] [CrossRef]
- Burdick, J.A.; Prestwich, G.D. Hyaluronic acid hydrogels for biomedical applications. Adv. Mater. 2011, 23, H41–H56. [Google Scholar] [CrossRef]
- Collins, M.N.; Birkinshaw, C. Hyaluronic acid based scaffolds for tissue engineering—A review. Carbohydr. Polym. 2013, 92, 1262–1279. [Google Scholar] [CrossRef]
- Li, H.; Qi, Z.; Zheng, S.; Chang, Y.; Kong, W.; Fu, C.; Yu, Z.; Yang, X.; Pan, S. The Application of Hyaluronic Acid-Based Hydrogels in Bone and Cartilage Tissue Engineering. Adv. Mater. Sci. Eng. 2019, 2019, 3027303. [Google Scholar] [CrossRef]
- Ye, X.; Li, X.; Shen, Y.; Chang, G.; Yang, J.; Gu, Z. Self-healing pH-sensitive cytosine- and guanosine-modified hyaluronic acid hydrogels via hydrogen bonding. Polymer 2017, 108, 348–360. [Google Scholar] [CrossRef]
- Young, J.L.; Engler, A.J. Hydrogels with Time-Dependent Material Properties Enhance Cardiomyocyte Differentiation In Vitro. Biomaterials 2011, 32, 1002–1009. [Google Scholar] [CrossRef] [PubMed]
- Seong, Y.-J.; Lin, G.; Kim, B.J.; Kim, S.; Kim, H.-E.; Jeong, S.-H. Hyaluronic Acid-Based Hybrid Hydrogel Microspheres with Enhanced Structural Stability and High Injectability. ACS Omega. 2019, 4, 13834–13844. [Google Scholar] [CrossRef] [PubMed]
- Atoufi, Z.; Kamrava, S.K.; Davachi, S.M.; Hassanabadi, M.; Garakani, S.S.; Alizadeh, R.; Farhadi, M.; Tavakol, S.; Bagher, Z.; Motlagh, G.H. Injectable PNIPAM/Hyaluronic acid hydrogels containing multipurpose modified particles for cartilage tissue engineering: Synthesis, characterization, drug release and cell culture study. Int. J. Biol. Macromol. 2019, 139, 1168–1181. [Google Scholar] [CrossRef]
- Yu, Z.; Zhang, Y.; Gao, Z.J.; Ren, X.Y.; Gao, G.H. Enhancing mechanical strength of hydrogels via IPN structure. J. Appl. Polym. Sci. 2017, 134, 44503. [Google Scholar] [CrossRef]
- Kim, S.J.; Lee, C.K.; Kim, S.I. Electrical/pH Responsive Properties of Poly(2-acrylamido-2-methylpropane sulfonic acid)/Hyaluronic Acid Hydrogels. J. Appl. Polym. Sci. 2004, 92, 1731–1736. [Google Scholar] [CrossRef]
- Jha, A.K.; Malik, M.S.; Farach-Carson, M.C.; Duncan, R.L.; Jia, X. Hierarchically structured, hyaluronic acid-based hydrogel matrices via the covalent integration of microgels into macroscopic networks. Soft Matter 2010, 6, 5045–5055. [Google Scholar] [CrossRef]
- Garcia, F.P.; Rippe, M.; Companhoni, M.V.P.; Stefanello, T.F.; Louage, B.; Herck, S.V.; Sancey, L.; Coll, J.-L.; De Geest, B.G.; Nakamura, C.V.; et al. A versatile method for the selective core-crosslinking of hyaluronic acid nanogels via ketone-hydrazide chemistry: From chemical characterization to in vivo biodistribution. Biomater. Sci. 2018, 6, 1754–1763. [Google Scholar] [CrossRef]
- Sennakesavan, G.; Mostakhdemin, M.; Dkhar, L.K.; Seyfoddin, A.; Fatihhi, S.J. Acrylicacid/acrylamide based hydrogels and its properties—A review. Polym. Degrad. Stab. 2020, 180, 109308. [Google Scholar] [CrossRef]
- Liaqat, H.; Badshah, S.F.; Minhas, M.U.; Barkat, K.; Khan, S.A.; Hussain, M.D.; Kazi, M. pH-Sensitive Hydrogels Fabricated with Hyaluronic Acid as a Polymer for Site-Specific Delivery of Mesalamine. ACS Omega 2024, 9, 28827–28840. [Google Scholar] [CrossRef]
- Manju, S.; Sreenivasan, K. Conjugation of curcumin onto hyaluronic acid enhances its aqueous solubility and stability. J Colloid Interface Sci. 2011, 359, 318–325. [Google Scholar] [CrossRef] [PubMed]
- Donghui, F.; Beibei, W.; Zheng, X.; Qisheng, G. Determination of hyaluronan by spectroscopic methods. J. Wuhan Univ. Technol. Mat. Sci. Ed. 2006, 21, 32–34. [Google Scholar] [CrossRef]
- Nashchekina, Y.; Guryanov, E.; Lihachev, A.; Vaganov, G.; Popova, E.; Mikhailova, N.; Nashchekin, A. Effect of Phytic Acid Addition on the Structure of Collagen-Hyaluronic Acid Composite Gel. Gels 2023, 9, 963. [Google Scholar] [CrossRef]
- Gilli, R.; Kacurakova, M.; Mathlouthi, M.; Navarini, L.; Paoletti, S. FTIR studies of sodium hyaluronate and its oligomers in the amorphous solid phase and in aqueous solution. Carbohydr. Res. 1994, 263, 315–326. [Google Scholar] [CrossRef]
- Tong, D.; Yesiloz, G.; Ren, C.L.; Madhuranthakam, C.M.R. Controlled Synthesis of Poly(acrylamide-co-sodium acrylate) Copolymer Hydrogel Microparticles in a Droplet Microfluidic Device for Enhanced Properties. Ind. Eng. Chem. Res. 2017, 56, 14972–14979. [Google Scholar] [CrossRef]
- Sadeghi, M.; Hosseinzadeh, H. Synthesis of starch-poly(sodium acrylate-co-acrylamide) superabsorbent hydrogel with salt and pH-responsiveness properties as a drug delivery system. J Bioact. Compat. Polym. 2008, 23, 381–404. [Google Scholar] [CrossRef]
- Alcântara, L.O.; Sousa, J.R.; Andrade, F.K.; Teixeira, E.H.; Cerqueira, M.Â.; Silva, A.L.C.; Filho, M.M.S.; Souza, B.W.S. Extraction and characterization of hyaluronic acid from the eyeball of Nile Tilapia (Oreochromis niloticus). Int. J. Biol. Macromol. 2023, 226, 172–183. [Google Scholar] [CrossRef]
- Barroso, N.; Guaresti, O.; Pérez-Álvarez, L.; Ruiz-Rubio, L.; Gabilondo, N.; Vilas-Vilela, J.L. Self-healable hyaluronic acid/chitosan polyelectrolyte complex hydrogels and multilayers. Eur. Polym. J. 2019, 120, 109268. [Google Scholar] [CrossRef]
- Elella, M.H.A.; Mohamed, R.R.; Sabaa, M.W. Synthesis of novel grafted hyaluronic acid with antitumor activity. Carbohydr. Polym. 2018, 189, 107–114. [Google Scholar] [CrossRef] [PubMed]
- Swain, S.K.; Prusty, K. Biomedical applications of acrylic-based nanohydrogels. J. Mater. Sci. 2018, 53, 2303–2325. [Google Scholar] [CrossRef]
- Ouasti, S.; Donno, R.; Cellesi, F.; Sherratt, M.J.; Terenghi, G.; Tirelli, N. Network connectivity, mechanical properties and cell adhesion for hyaluronic acid/PEG hydrogels. Biomaterials 2011, 32, 6456–6470. [Google Scholar] [CrossRef]
- Díez-Peña, E.; Quijada-Garrido, I.; Barrales-Rienda, J.M. On the Water Swelling Behaviour of Poly(N-Isopropylacrylamide) [P(N-iPAAm)], Poly(Methacrylic Acid) [P(MAA)], Their Random Copolymers and Sequential Interpenetrating Polymer Networks (IPNs). Polymer 2002, 43, 4341–4348. [Google Scholar] [CrossRef]
- Kowalski, G.; Witczak, M.; Kuterasiński, L. Structure Effects on Swelling Properties of Hydrogels Based on Sodium Alginate and Acrylic Polymers. Molecules 2024, 29, 1937. [Google Scholar] [CrossRef] [PubMed]
- Tavsanli, B.; Okay, O. Preparation and fracture process of high strength hyaluronic acid hydrogels cross-linked by ethylene glycol diglycidyl ether. React. Funct. Polym. 2016, 109, 42–51. [Google Scholar] [CrossRef]
- Jeon, O.; Song, S.J.; Lee, K.-J.; Park, M.H.; Lee, S.-H.; Hahn, S.K.; Kim, S.; Kim, B.-S. Mechanical properties and degradation behaviors of hyaluronic acid hydrogels cross-linked at various cross-linking densities. Carbohydr. Polym. 2007, 70, 251–257. [Google Scholar] [CrossRef]
- Pluda, S.; Salvagnini, C.; Fontana, A.; Marchetti, A.; Di Lucia, A.; Galesso, D.; Guarise, C. Investigation of Crosslinking Parameters and Characterization of Hyaluronic Acid Dermal Fillers: From Design to Product Performances. Gels 2023, 9, 733. [Google Scholar] [CrossRef]
- Laguecir, A.; Ulrich, S.; Labille, J.; Fatin-Rouge, N.; Stoll, S.; Buffle, J. Size and pH effect on electrical and conformational behavior of poly (acrylic acid): Simulation and experiment. Eur. Polym. J. 2006, 42, 1135–1144. [Google Scholar] [CrossRef]
- Dickhaus, N.B.; Priefer, R. Determination of polyelectrolyte pKa values using surface-to-air tension measurements. Colloids Surf. A Physicochem. Eng. Asp. 2016, 488, 15–19. [Google Scholar] [CrossRef]
- Mafe, S.; Garcıa-Morales, V.; Ramırez, P. Estimation of pKa shifts in weak polyacids using a simple molecular model: Effects of strong polybases, hydrogen bonding and divalent counterion binding. Chem. Phys. 2004, 296, 29–35. [Google Scholar] [CrossRef]
- Mahon, R.; Balogun, Y.; Oluyemi, G.; Njugun, J. Swelling performance of sodium polyacrylate and poly(acrylamide-co-acrylic acid) potassium salt. SN Appl. Sci. 2020, 2, 117. [Google Scholar] [CrossRef]
- Kim, J.-T.; Lee, D.Y.; Kim, Y.-H.; Lee, I.-K.; Song, Y.-S. Effect of pH on Swelling Property of Hyaluronic Acid Hydrogels for Smart Drug Delivery Systems. J. Sens. Sci. Technol. 2012, 21, 256–262. [Google Scholar] [CrossRef]
- Patil, P.; Jeppu, G.; Girish, C.R.; Mohan, B. Development of a comprehensive analytical solution for modeling adsorption kinetics and equilibrium. Sep. Sci. Technol. 2024, 59, 373–394. [Google Scholar] [CrossRef]
- Bakhshi, H.; Darvishi, A. Preparation and evaluation of hydrogel composites based on starch-g-PNaMA/eggshell particles as dye biosorbent. Desalin. Water Treat. 2016, 57, 18144–18156. [Google Scholar] [CrossRef]
- Benjelloun, M.; Miyah, Y.; Evrendilek, G.A.; Zerrouq, F.; Lairini, S. Recent Advances in Adsorption Kinetic Models: Their Application to Dye Types. Arab. J. Chem. 2021, 14, 103031. [Google Scholar] [CrossRef]
- Benhalima, T.; Allali, F.Z.; Roumane, N.; Ferfera-Harrar, H. Enhanced adsorptive removal of hazardous methyl violet 2B and methyl orange dyes by Algerian diatomite-loaded polysaccharide-based hydrogel beads. J. Mol. Liq. 2023, 383, 122150. [Google Scholar] [CrossRef]
- Tawfik, A.M.; Eltabey, R.M. Fractional Kinetic Strategy toward the Adsorption of Organic Dyes: Finding a Way out of the Dilemma Relating to Pseudo-First- and Pseudo-Second-Order Rate Laws. J. Phys. Chem. A. 2024, 128, 1063–1073. [Google Scholar] [CrossRef]
- Rahchamani, J.; Zavvar Mousavi, H.; Behzad, M. Adsorption of methyl violet from aqueous solution by polyacrylamide as an adsorbent: Isotherm and kinetic studies. Desalination 2011, 267, 256–260. [Google Scholar] [CrossRef]
- Giubertoni, G.; Burla, F.; Martinez-Torres, C.; Dutta, B.; Pletikapic, G.; Pelan, E.; Rezus, Y.L.A.; Koenderink, G.H.; Bakker, H.J. Molecular Origin of the Elastic State of Aqueous Hyaluronic Acid. J. Phys. Chem. B. 2019, 123, 3043–3049. [Google Scholar] [CrossRef]
- James, H.M.; Guth, E. Theory of the elastic properties of rubber. J. Chem. Phys. 1943, 11, 455–481. [Google Scholar] [CrossRef]
- Treloar, L.R.G. The Physics of Rubber Elasticity; Oxford University Press: Oxford, UK, 1975; ISBN 0198570279. [Google Scholar]
- Flory, P.J. Phase equilibria in polymer systems: Swelling of network structures. In Principles of Polymer Chemistry; Cornell University Press: Ithaca, NY, USA, 1953; ISBN 0-8014-0134-8. [Google Scholar]
AAm content | 710.8 mg | (Experimental) | |||||
PSA content | 150.0 mg | Sample Designation | HyA % (w/v) | Tprep (°C) | |||
HyA content | 0.05–0.20% (w/v) | −18 | 5 | 24 | 45 | ||
Crosslinking agent BAAm | 19.4 mg | PAAm/PSA/HyA0 | 0 | 0.0493 | 0.0573 | 0.0546 | 0.0595 |
APS conc | 3.51 mM | PAAm/PSA/HyA1 | 0.05 | 0.0546 | 0.0612 | 0.0554 | 0.0601 |
TEMED conc. | 24.9 mM | PAAm/PSA/HyA2 | 0.10 | 0.0610 | 0.0662 | 0.0582 | 0.0721 |
Polymerization temperature | −18, 5, 24, 45 °C | PAAm/PSA/HyA3 | 0.15 | 0.0574 | 0.0633 | 0.0606 | 0.0608 |
PAAm/PSA/HyA4 | 0.20 | 0.0547 | 0.0632 | 0.0646 | 0.0606 |
Pseudo-first-order model (PFO) | Elovich model | ||||||
Tprep/°C | (min−1) | R2 | (mg/g min) | (g/mg) | R2 | ||
45 | 1.8992 | 0.9081 | 77.741 | 0.1352 | 0.8666 | ||
24 | 1.3441 | 0.9657 | 5.6575 | 0.1063 | 0.9786 | ||
5 | 1.4048 | 0.8534 | 11.831 | 0.1362 | 0.9867 | ||
−18 | 1.7457 | 0.9139 | 11.526 | 0.1151 | 0.9761 | ||
Pseudo-second-order model (PSO) | Intraparticle model | ||||||
Tprep/°C | (g/mg min−1) | R2 | (mg g−1 min−1/2) | R2 | (mg g−1 min−1/2) | R2 | |
45 | 1.4611 | 0.9999 | 4.1629 | 0.8963 | 0.3424 | 0.9496 | |
24 | 0.5731 | 0.9992 | 3.7782 | 0.9908 | 0.8630 | 0.9854 | |
5 | 0.7731 | 0.9983 | 2.7207 | 0.9742 | 0.7668 | 0.9777 | |
−18 | 0.7305 | 0.9992 | 3.4728 | 0.9589 | 0.7487 | 0.9355 | |
Fractional power model | Avrami model | ||||||
Tprep/°C | (min−1) | (mg/g) | R2 | (min−1) | R2 | ||
45 | 0.4294 | 212.19 | 0.9735 | 0.4071 | 5.0813 | 0.9317 | |
24 | 0.4227 | 71.537 | 0.9889 | 0.5611 | 1.7451 | 0.9923 | |
5 | 0.2843 | 563.98 | 0.9844 | 0.3918 | 2.7510 | 0.9829 | |
−18 | 0.3460 | 650.61 | 0.9751 | 0.5269 | 2.4790 | 0.9925 |
Linearized Model | Non-Linearized Model | |||||
---|---|---|---|---|---|---|
Tprep/°C | Exp. (mg/g) | PFO Model (mg/g) | PSO Model (mg/g) | PFO Model (mg/g) | PSO Model (mg/g) | (kJ/mol K) |
45 | 61.264 | 38.983 | 59.892 | 56.797 | 60.476 | −8.133 |
24 | 52.715 | 42.914 | 53.545 | 48.392 | 52.929 | −7.556 |
5 | 50.834 | 38.931 | 49.173 | 44.718 | 48.558 | −7.165 |
−18 | 54.476 | 43.118 | 55.479 | 50.279 | 54.345 | −7.081 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Özcan, N.; Orakdogen, N. Temperature-Regulated Synthesis of Hyaluronic Acid-Interpenetrated Polyacrylamide/Poly(Acrylic Acid Sodium Salt) Semi-Interpenetrated Polymer Network Gel for the Removal of Methyl Violet. Gels 2024, 10, 556. https://doi.org/10.3390/gels10090556
Özcan N, Orakdogen N. Temperature-Regulated Synthesis of Hyaluronic Acid-Interpenetrated Polyacrylamide/Poly(Acrylic Acid Sodium Salt) Semi-Interpenetrated Polymer Network Gel for the Removal of Methyl Violet. Gels. 2024; 10(9):556. https://doi.org/10.3390/gels10090556
Chicago/Turabian StyleÖzcan, Nida, and Nermin Orakdogen. 2024. "Temperature-Regulated Synthesis of Hyaluronic Acid-Interpenetrated Polyacrylamide/Poly(Acrylic Acid Sodium Salt) Semi-Interpenetrated Polymer Network Gel for the Removal of Methyl Violet" Gels 10, no. 9: 556. https://doi.org/10.3390/gels10090556
APA StyleÖzcan, N., & Orakdogen, N. (2024). Temperature-Regulated Synthesis of Hyaluronic Acid-Interpenetrated Polyacrylamide/Poly(Acrylic Acid Sodium Salt) Semi-Interpenetrated Polymer Network Gel for the Removal of Methyl Violet. Gels, 10(9), 556. https://doi.org/10.3390/gels10090556