Cryostructuring of Polymeric Systems: 68. Evaluation of Poly(vinyl alcohol) Composite Cryogels Filled with Poly(3-hydroxybutyric acid)-Based Microspheres of Different Porous Morphology as Potential Delivery Systems for Drugs of Various Water-Solubility †
"> Figure 1
<p>Images (optical stereomicroscope) of wet PHB microspheres: MS-1 (<b>a</b>) and MS-2 (<b>b</b>).</p> "> Figure 2
<p>SEM images of dry PHB microspheres: MS-1 (<b>a</b>) and MS-2 (<b>b</b>).</p> "> Figure 3
<p>PHB particle size distribution. Curve 1 corresponds to MS-1, curve 2 corresponds to MS-2.</p> "> Figure 4
<p>Values of the Young’s modulus of the PVA cryogel samples prepared from the feed compositions indicated in <a href="#gels-10-00734-t002" class="html-table">Table 2</a>.</p> "> Figure 5
<p>Chemical structure of ibuprofen sodium salt [<a href="#B53-gels-10-00734" class="html-bibr">53</a>].</p> "> Figure 6
<p>Chemical structure of simvastatin [<a href="#B54-gels-10-00734" class="html-bibr">54</a>].</p> "> Figure 7
<p>Change in the amount of ibuprofen sodium salt in solution during saturation of samples. Curve 1—cryogel sample without filler; curve 2—cryogel sample with additions of porous PHB microspheres; curve 3—cryogel sample with additions of non-porous PHB microspheres. The mass content of PHB particles in cryogels is equal to ~27 mg/cm<sup>3</sup> in all cases.</p> "> Figure 8
<p>Ibuprofen sodium salt release. Curve 1—cryogel sample without filler; curve 2—cryogel sample with the addition of porous PHB microspheres; curve 3—cryogel sample with the addition of non-porous PHB microspheres.</p> "> Figure 9
<p>Weibull model plot for the release of ibuprofen sodium salt. Curve 1—cryogel sample without filler; curve 2—cryogel sample with the addition of porous PHB microspheres; curve 3—cryogel sample with the addition of non-porous PHB microspheres.</p> "> Figure 10
<p>Simvastatin release. Curve 1—cryogel sample without filler; curve 2—cryogel sample with added porous PHB microspheres; curve 3—cryogel sample with added non-porous PHB microspheres.</p> ">
Abstract
:1. Introduction
2. Results and Discussion
2.1. PHB-Based Microspheres
2.2. Physico-Mechanical Properties of the Filler-Free and Composite PVA Cryogels
2.3. Drug Release from Unfilled and Composite PVA Cryogels
2.4. Lease of Ibuprofen Sodium Salt
Unfilled PVA Cryogel | 1.81 × 10−5 cm2/s |
PVA cryogel filled with MS-1 particles | 1.64 × 10−5 cm2/s |
PVA cryogel filled with MS-2 particles | 1.58 × 10−5 cm2/s |
2.5. Simvastatin Release
Unfilled PVA Cryogel | 2.58 × 10−8 cm2/s |
PVA cryogel filled with MS-1 particles | 4.24 × 10−8 cm2/s |
PVA cryogel filled with MS-2 particles | 1.85 × 10−8 cm2/s |
3. Conclusions
4. Materials and Methods
4.1. Materials
4.2. Methods
4.2.1. Unloaded and SVN-Loaded PHB Microspheres
4.2.2. Microstructure of PHB Microspheres
4.2.3. Filler-Free PVA Cryogels and Composite PVA/PHB Cryogels
4.2.4. Physico-Mechanical Properties of Filler-Free and Composite PVACGs
4.2.5. Saturation of PVACGs with Ibuprofen Sodium Salt
4.2.6. Kinetics of Drugs Release from the PVACG-Based Carriers
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Langer, R.; Peppas, N.A. Advances in biomaterials, drug delivery, and bionanotechnology. AIChE J. 2003, 49, 2990–3006. [Google Scholar] [CrossRef]
- Ko, D.Y.; Shinde, U.P.; Yeon, B.; Jeong, B. Recent progress of in situ formed gels for biomedical applications. Progr. Polym. Sci. 2013, 38, 672–701. [Google Scholar] [CrossRef]
- Chelu, M.; Musuc, A.M. Polymer gels: Classification and recent developments in biomedical applications. Gels 2023, 9, 161. [Google Scholar] [CrossRef] [PubMed]
- Lozinsky, V.I. Cryotropic gelation of poly(vinyl alcohol) solutions. Russ. Chem. Rev. 1998, 67, 573–586. [Google Scholar] [CrossRef]
- Hassan, C.M.; Peppas, N.A. Structure and applications of poly(vinyl alcohol) hydrogels produced by conventional crosslinking or by freezing/thawing methods. Adv. Polym. Sci. 2000, 153, 37–65. [Google Scholar] [CrossRef]
- Adelnia, H.; Ensandoost, R.; Moonshi, S.S.; Gavgani, J.N.; Vasafi, E.I.; Ta, H.T. Freeze/thawed polyvinyl alcohol hydrogels: Present, past and future. Eur. Polym. J. 2022, 164, 110974. [Google Scholar] [CrossRef]
- Rivera-Hernandez, G.; Antunes-Ricardo, M.; Martínez-Morales, P.; Sanchez, L. Polyvinyl alcohol based-drug delivery systems for cancer treatment. Int. J. Pharm. 2021, 600, 120478. [Google Scholar] [CrossRef]
- Hickey, A.S.; Peppas, N.A. Mesh size and diffusive characteristics of semicrystalline poly (vinyl alcohol) membranes prepared by freezing/thawing techniques. J. Membr. Sci. 1995, 107, 229–237. [Google Scholar] [CrossRef]
- Gajra, B.; Pandya, S.S.; Vidyasagar, G.; Rabari, H.; Dedania, R.R.; Rao, S. Poly(vinyl alcohol) hydrogel and its pharmaceutical and biomedical applications: A review. Int. J. Pharm. Res. 2012, 4, 20–26. [Google Scholar]
- Wan, W.; Bannerman, A.D.; Yang, L.; Mak, H. Poly(vinyl alcohol) cryogels for biomedical applications. Adv. Polym. Sci. 2014, 263, 283–321. [Google Scholar] [CrossRef]
- Gorska, A.; Krupa, A.; Majda, D.; Kulinowski, P.; Kurek, M.; Węglarz, W.P.; Jachowicz, R. Poly(vinyl alcohol) cryogel membranes loaded with resveratrol as potential active wound dressings. AAPS PharmSciTech 2021, 22, 109. [Google Scholar] [CrossRef] [PubMed]
- Calo, E.; Barros, J.; Ballamyb, L.; Khutoryanskiy, V.V. Poly(vinyl alcohol)–Gantrez® AN cryogels for wound care applications. RSC Adv. 2016, 6, 105487–105494. [Google Scholar] [CrossRef]
- Swieszkowski, W.; Ku, D.; Bersee, H.; Kurzydlowski, K. An elastic material for cartilage replacement in an arthritic shoulder joint. Biomaterials 2006, 27, 1534–1541. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.H.; Campbell, G. Formulations of polyvinyl alcohol cryogel that mimic the biomechanical properties of soft tissues in the natural lumbar intervertebral disc. Spine 2009, 34, 2745–2753. [Google Scholar] [CrossRef]
- Liang, X.; Zhong, H.-J.; Ding, H.; Yu, B.; Ma, X.; Liu, X.; Chong, C.-M.; He, J. Polyvinyl alcohol (PVA)-based hydrogels: Recent progress in fabrication, properties, and multifunctional applications. Polymers 2024, 16, 2755. [Google Scholar] [CrossRef]
- Noguchi, T.; Yamamuro, T.; Oka, M.; Kumar, P.; Kotoura, Y.; Hyonyt, S.H.; Ikadat, Y. Poly(vinyl alcohol) hydrogel as an artificial articular cartilage: Evaluation of biocompatibility. J. Appl. Biomater. 1991, 2, 101–107. [Google Scholar] [CrossRef]
- Alexandre, N.; Ribeiro, J.; Gärtner, A.; Pereira, T.; Amorim, I.; Fragoso, J.; Lopes, A.; Fernandes, J.; Costa, E.; Santos-Silva, A.; et al. Biocompatibility and hemocompatibility of polyvinyl alcohol hydrogel used for vascular grafting—In vitro and in vivo studies. J. Biomed. Mater. Res. A 2014, 102, 4262–4275. [Google Scholar] [CrossRef]
- Rogozhin, S.V.; Lozinsky, V.I.; Vainerman, E.S.; Domotenko, L.V.; Mamtsis, A.M.; Ivanova, S.A.; Shtil’man, M.I.; Korshak, V.V. Noncovalent cryostructurization in polymer systems. Dokl. Akad. Nauk SSSR 1984, 278, 129–133. (In Russian) [Google Scholar]
- Millon, L.E.; Nieh, M.; Hutter, J.L.; Wan, W. SANS characterization of an anisotropic poly (vinyl alcohol) hydrogel with vascular applications. Macromolecules 2007, 40, 3655–3662. [Google Scholar] [CrossRef]
- Stammen, J.A.; Williams, S.; Ku, D.N.; Guldberg, R.E. Mechanical properties of a novel PVA hydrogel in shear and unconfined compression. Biomaterials 2001, 22, 799–806. [Google Scholar] [CrossRef]
- Duboeuf, F.; Basarab, A.; Liebgott, H.; Brusseau, E.; Delachartre, P.; Vray, D. Investigation of PVA cryogel Young’s modulus stability with time, controlled by a simple reliable technique. Med. Phys. 2009, 36, 656–661. [Google Scholar] [CrossRef] [PubMed]
- Kokabi, M.; Sirousazar, M.; Hassan, Z.M. PVA-clay nanocomposite hydrogels for wound dressing. Eur. Polym. J. 2007, 43, 773–781. [Google Scholar] [CrossRef]
- Timofejeva, A.; D’Este, M.; Loca, D. Calcium phosphate/polyvinyl alcohol composite hydrogels: A review on the freeze-thaw synthesis approach and applications in regenerative medicine. Eur. Polym. J. 2017, 95, 547–565. [Google Scholar] [CrossRef]
- Tamer, T.M.; Sabet, M.M.; Omer, A.M.; Abbas, E.; Eid, A.I.; Mohy-Eldin, M.S.; Hassan, M.A. Hemostatic and antibacterial PVA/kaolin composite sponges loaded with penicillin-streptomycin for wound dressing applications. Sci. Rep. 2021, 11, 3428. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.; Bae, H.; Chung, N.; Lee, H.; Choi, S.; Hwang, S.; Lee, J. Freezing/thawing processing of PVA in the preparation of structured microspheres for protein drug delivery. Macromol. Res. 2011, 19, 130–136. [Google Scholar] [CrossRef]
- Kolosova, O.Y.; Shaikhaliev, A.I.; Krasnov, M.S.; Bondar, I.M.; Sidorskii, E.V.; Sorokina, E.V.; Lozinsky, V.I. Cryostructuring of polymeric systems. 64. Preparation and properties of poly(vinyl alcohol)-based cryogels loaded with antimicrobial drugs and assessment of the potential of such gel materials to perform as the gel implants for treatment of infected wounds. Gels 2023, 9, 113. [Google Scholar] [CrossRef]
- Cascone, M.G.; Zhu, Z.; Borselli, F.; Lazzeri, L. Poly(vinyl alcohol) hydrogels as hydrophilic matrices for the release of lipophilic drugs loaded in PLGA nanoparticles. J. Mater. Sci. Mater. Med. 2002, 13, 29–32. [Google Scholar] [CrossRef]
- Long, J.; Etxeberria, E.A.; Kornelsen, C.; Nand, V.A.; Ray, S.; Bunt, C.R.; Seyfoddin, A. Development of a long-term drug delivery system with levonorgestrel-loaded chitosan microspheres embedded in poly(vinyl alcohol) hydrogel. Appl. Biomater. 2019, 2, 2766–2779. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, S.M.; Chen, P.P.; Cheng, L.; Zhou, W.; Tang, W.X.; Chen, Z.W.; Ke, C.M. Controlled release of insulin from PLGA nanoparticles embedded within PVA hydrogels. J. Mater. Sci. Mater. Med. 2007, 18, 2205–2210. [Google Scholar] [CrossRef]
- Kolosova, A.S.; Sokolskaya, M.K.; Vitkalova, I.A.; Torlova, A.S.; Pikalov, E.S. Fillers for modification of modern polymer composite materials. Fundam. Res. 2017, 10, 459–465. (In Russian) [Google Scholar]
- Lipatov, Y.S. Polymer Reinforcement; ChemTec Publishing: Toronto, ON, Canada, 1995; pp. 313–357. [Google Scholar]
- Hsissou, R.; Seghiri, R.; Benzekri, Z.; Hilali, M.; Rafik, M.; Elharfi, A. Polymer composite materials: A comprehensive review. Compos. Struct. 2021, 262, 113640. [Google Scholar] [CrossRef]
- Gomes, C.; Moreira, R.G.; Perez-Castell, E. Poly (DL-lactide-co-glycolide) (PLGA) nanoparticles with entrapped trans-cinnamaldehyde and eugenol for antimicrobial delivery applications. J. Food Sci. 2011, 76, 16–24. [Google Scholar] [CrossRef] [PubMed]
- Michurov, D.A.; Makhina, T.K.; Siracusa, V.; Bonartsev, A.P.; Lozinsky, V.I.; Iordanskii, A.L. Cryo-structuring of polymeric systems. Poly(vinyl alcohol)-based cryogels loaded with the poly(3-hydroxybutyrate) microbeads and the evaluation of such composites as the delivery vehicles for simvastatin. Polymers 2022, 14, 2196. [Google Scholar] [CrossRef] [PubMed]
- Shishatskaya, E.I.; Voinova, O.N.; Goreva, A.V.; Volova, T.G.; Mogilnaya, O.A. Biocompatibility of polyhydroxybutyrate microspheres: In vitro and in vivo evaluation. J. Sib. Fed. Univ. Biol. 2008, 1, 66–77. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Gupta, N.S.; Bezek, L.B.; Linn, J.; Bejagam, K.K.; Banerjee, S.; Dumont, J.H.; Nam, S.Y.; Kang, H.W.; Park, C.H. Biodegradation studies of polyhydroxybutyrate and polyhydroxybutyrate-co-polyhydroxyvalerate films in soil. Int. J. Mol. Sci. 2023, 24, 7638. [Google Scholar] [CrossRef]
- Mokhtarzadeh, A.; Alibakhshi, A.; Hejazi, M.; Omidi, Y.; Dolatabadi, J.E.N. Bacterial-derived biopolymers: Advanced natural nanomaterials for drug delivery and tissue engineering. Trends Anal. Chem. 2016, 82, 367–384. [Google Scholar] [CrossRef]
- Shishatskaya, E.I.; Volova, T.G.; Gordeev, S.A.; Puzyr, A.P. Degradation of p(3HB) and p(3HB-co-3HV) in biological media. J. Biomater. Sci. Polym. Ed. 2005, 16, 643–657. [Google Scholar] [CrossRef]
- Zhang, J.; Shishatskaya, E.I.; Volova, T.G.; Ferreira da Silva, L.; Chen, G.Q. Polyhydroxyalkanoates (PHA) for therapeutic applications. Mater. Sci. Eng. C 2018, 86, 144–150. [Google Scholar] [CrossRef]
- Bonartsev, A.P.; Bonartseva, G.A.; Reshetov, I.V.; Kirpichnikov, M.P.; Shaitan, K.V. Application of polyhydroxyalkanoates in medicine and the biological activity of natural poly(3-hydroxybutyrate). Acta Mater. 2019, 11, 4–16. [Google Scholar] [CrossRef]
- Bonartsev, A.P.; Zernov, A.L.; Yakovlev, S.G.; Zharkova, I.I.; Myshkina, V.L.; Mahina, T.K.; Bonartseva, G.A.; Andronova, N.V.; Smirnova, G.B.; Borisova, J.A. New poly (3-hydroxybutyrate) microparticles with paclitaxel sustained release for intraperitoneal administration. Anti-Cancer Agents Med. Chem. 2017, 17, 434–441. [Google Scholar] [CrossRef]
- Malone, A.J.; Cournane, S.; Naydenova, I.G.; Fagan, A.J.; Browne, J.E. Polyvinyl alcohol cryogel based vessel mimicking material for modelling the progression of atherosclerosis. Phys Med. 2020, 69, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Jiang, H.; Campbell, G.; Boughner, D.; Wan, W.K.; Quantz, M. Design and manufacture of a polyvinyl alcohol (PVA) cryogel tri-leaflet heart valve prosthesis. Med. Eng. Phys. 2004, 26, 269–277. [Google Scholar] [CrossRef] [PubMed]
- Lipatov, Y.S. Relaxation and viscoelastic properties of heterogeneous polymeric compositions. Adv. Polym. Sci. 1977, 22, 1–59. [Google Scholar] [CrossRef]
- Kudaibergenov, S.E.; Ibraeva, Z.E.; Yashkarova, M.G.; Bekturov, E.A. Hydrogel Composite Materials; Shakarim State University Publisher: Semei, Kazakhstan, 2011; pp. 120–150. (In Russian) [Google Scholar]
- Smith, T.J.; Kennedy, J.E.; Higginbotham, C.L. Characterisation and controlled drug release from a novel two-phase hydrogel system. Int. J. Biotechnol. 2010, 11, 203–222. [Google Scholar] [CrossRef]
- Jabeen, S.; Chat, O.A.; Maswal, M.; Ashraf, U.; Rather, G.M.; Dar, A.A. Hydrogels of sodium alginate in cationic surfactants: Surfactant dependent modulation of encapsulation/release toward Ibuprofen. Carbohydr. Polym. 2015, 133, 144–153. [Google Scholar] [CrossRef]
- Yuan, X.; Yuan, Z.; Wang, Y.; Wan, Z.; Wang, X.; Yu, S.; Han, J.; Huang, J.; Xiong, C.; Ge, L.; et al. Vascularized pulp regeneration via injecting simvastatin functionalized GelMA cryogel microspheres loaded with stem cells from human exfoliated deciduous teeth. Mater. Today Bio 2022, 13, 100209. [Google Scholar] [CrossRef]
- Bölgen, N.; Aguilar, M.R.; del Mar Fernández, M.; Gonzalo-Flores, S.; Villar-Rodil, S.; San Román, J.; Pişkin, E. Thermoresponsive biodegradable HEMA–Lactate–Dextran-co-NIPA cryogels for controlled release of simvastatin. Artif. Cells Nanomed. Biotechnol. 2015, 43, 40–49. [Google Scholar] [CrossRef]
- Yaman, S.M.; Demir, D.; Bölgen, N. Design of gelatin cryogel scaffolds with the ability to release simvastatin for potential bone tissue engineering applications. Biomed. Mater. 2024, 19, 055019. [Google Scholar] [CrossRef]
- Gupta, D.; Bhatia, D.; Dave, V.; Sutariya, V.; Gupta, S.V. Salts of therapeutic agents: Chemical, physicochemical, and biological considerations. Molecules 2018, 23, 1719. [Google Scholar] [CrossRef]
- De Giorgi, R.; De Crescenzo, F.; Rizzo, N.P.; Martens, M.; Howard, W.; Cowen, P.J. Statins for major depressive disorder: A systematic review and meta-analysis of randomized controlled trials. PLoS ONE 2021, 16, e0249409. [Google Scholar] [CrossRef]
- National Center for Biotechnology Information. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/Ibuprofen-Sodium (accessed on 14 December 2023).
- National Center for Biotechnology Information. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/Simvastatin (accessed on 14 December 2023).
- Bruschi, M.L. Mathematical models of drug release. In Strategies to Modify the Drug Release from Pharmaceutical Systems; Bruschi, M.L., Ed.; Woodhead Publishing: Sawston, UK, 2015; pp. 63–86. [Google Scholar]
- Fu, Y.; Kao, W.J. Drug release kinetics and transport mechanisms of non-degradable and degradable polymeric delivery systems. Expert Opin. Drug Deliv. 2010, 7, 429–444. [Google Scholar] [CrossRef] [PubMed]
- Soni, G.; Yadav, K.S. High encapsulation efficiency of poloxamer-based injectable thermoresponsive hydrogels of etoposide. Pharm. Dev. Technol. 2014, 19, 651–661. [Google Scholar] [CrossRef] [PubMed]
- Cao, K.; Liu, Y.; Olkhov, A.A.; Siracusa, V.; Iordanskii, A.L. PLLA-PHB fiber membranes obtained by solvent-free electrospinning for short-time drug delivery. Drug Deliv. Transl. Res. 2018, 8, 291–302. [Google Scholar] [CrossRef] [PubMed]
- Ferrero, C.; Massuelle, D.; Doelker, E. Towards elucidation of the drug release mechanism from compressed hydrophilic matrices made of cellulose ethers. II. Evaluation of a possible swelling-controlled drug release mechanism using dimensionless analysis. J. Control. Release 2010, 141, 223–233. [Google Scholar] [CrossRef] [PubMed]
- Kosmidis, K.; Argyrakis, P.; Macheras, P. Fractal kinetics in drug release from fnite fractal matrices. J. Chem. Phys. 2003, 119, 6373–6377. [Google Scholar] [CrossRef]
- Kosmidis, K.; Argyrakis, P.; Macheras, P. A reappraisal of drug release laws using Monte Carlo simulations: The prevalence of the Weibull function. Pharm. Res. 2003, 20, 988–995. [Google Scholar] [CrossRef]
- Papadopoulou, V.; Kosmidis, K.; Vlachou, M.; Macheras, P. On the use of the Weibull function for the discernment of drug release mechanisms. Int. J. Pharm. 2006, 309, 44–50. [Google Scholar] [CrossRef]
- Peppas, N.A.; Narasimhan, B. Mathematical models in drug delivery: How modeling has shaped the way we design new drug delivery systems. J. Control. Release 2014, 190, 75–81. [Google Scholar] [CrossRef]
- Kolosova, O.Y.; Karelina, P.A.; Vasil’ev, V.G.; Grinberg, V.Y.; Kurochkin, I.I.; Kurochkin, I.N.; Lozinsky, V.I. Cryostructuring of polymeric systems. 58. Influence of the H2N-(CH2)n-COOH–type amino acid additives on formation, properties, microstructure and drug release behaviour of poly(vinyl alcohol) cryogels. React. Funct. Polym. 2021, 167, 105010. [Google Scholar] [CrossRef]
- Huang, X.; Brazel, C.S. On the importance and mechanisms of burst release in matrix-controlled drug delivery systems. J. Control. Release 2001, 73, 121–136. [Google Scholar] [CrossRef]
- Kovalcik, A.; Obruca, S.; Kalina, M.; Machovsky, M.; Enev, V.; Jakesova, M.; Sobkova, M.; Marova, I. Enzymatic hydrolysis of poly(3-Hydroxybutyrate-co-3-hydroxyvalerate) scaffolds. Materials 2020, 13, 2992. [Google Scholar] [CrossRef] [PubMed]
- Lozinsky, V.I.; Vainerman, E.S.; Domotenko, L.V.; Mamtsis, A.M.; Titova, E.F.; Belavtseva, E.M.; Rogozhin, S.V. Study of cryostructurization of polymer systems. VII. Structure formation under freezing of poly(vinyl alcohol) aqueous solutions. Coll. Polym. Sci. 1986, 264, 19–24. [Google Scholar] [CrossRef]
- Lozinsky, V.I.; Savina, I.N. Study of cryostructuration of polymer systems. 22. Poly (vinyl alcohol) composite cryogels filled with dispersed particles of various hydrophilicity/hydrophobicity. Colloid J. 2002, 64, 336–343. [Google Scholar] [CrossRef]
- Savina, I.N.; Hanora, A.; Plieva, F.M.; Galaev, I.Y.; Mattiasson, B.; Lozinsky, V.I. Study of cryostructuration of polymer systems. 24. Poly(vinyl alcohol) cryogels filled with particles of strong anion-exchanger: Properties of the composite materials and potential application. J. Appl. Polym. Sci. 2005, 95, 529–538. [Google Scholar] [CrossRef]
- Lozinsky, V.I.; Damshkaln, L.G.; Shaskol’skii, B.L.; Babushkina, T.A.; Kurochkin, I.N.; Kurochkin, I.I. Study of cryostructuring of polymer systems. 27. Physicochemical properties of poly(vinyl alcohol) cryogels and features of their macroporous morphology. Colloid J. 2007, 69, 747–764. [Google Scholar] [CrossRef]
- Michurov, D.A.; Kolosova, O.Y.; Lozinsky, V.I. Cryostructuring of polymeric systems. 61. Physicochemical properties of poly(vinyl alcohol) cryogels prepared on the basis of urea-containing DMSO-solutions of the polymer and evaluation of the resultant gel materials as potential drug carriers. Bull. Karaganda Univ.–Chem. 2022, 107, 75–86. [Google Scholar] [CrossRef]
- Kolosova, O.Y.; Vasil’ev, V.G.; Novikov, I.A.; Sorokina, E.V.; Lozinsky, V.I. Cryostructuring of polymeric systems: 67. Properties and microstructure of poly(vinyl alcohol) cryogels formed in the presence of phenol or bis-phenols introduced in the aqueous polymeric solutions prior to their freeze-thaw processing. Polymers 2024, 16, 675. [Google Scholar] [CrossRef]
MS-1 | MS-2 | |
---|---|---|
µ | 299 | 75 |
σ | 101.45 | 35.26 |
R2 | 0.99 | 0.99 |
Sample | PVA Concentration, g/L | PHB Concentration (MS-1), g/L | PHB Concentration (MS-2), g/L |
---|---|---|---|
1 | 72.6 | — | — |
1a | 72.6 | 11.4 | — |
1b | 72.6 | — | 11.4 |
2 | 100 | — | — |
2a | 100 | 11.4 | — |
2b | 100 | — | 11.4 |
Type of Drug Carrier | Frist Order | Higuchi | Peppas–Korsmeyer | ||||
---|---|---|---|---|---|---|---|
k1 | R2 | kh | R2 | n | K | R2 | |
Unfilled PVA Cryogel | −0.108 | 0.94 | 0.38 | 0.95 | 0.30 | 0.50 | 1 |
PVA cryogel filled with MS-1 particles | −0.106 | 0.92 | 0.36 | 0.95 | 0.30 | 0.48 | 0.99 |
PVA cryogel filled with MS-2 particles | −0.13 | 0.90 | 0.35 | 0.98 | 0.33 | 0.43 | 0.99 |
Type of Drug Carrier | a | b | R2 |
---|---|---|---|
Unfilled PVA Cryogel | 0.68 | 0.56 | 0.99 |
PVA cryogel filled with MS-1 particles | 0.64 | 0.53 | 0.99 |
PVA cryogel filled with MS-2 particles | 0.56 | 0.52 | 0.99 |
Type of Drug Carrier | Zero Order | Higuchi | Peppas–Korsmeyer | ||||
---|---|---|---|---|---|---|---|
K0 | R2 | kh | R2 | n | K | R2 | |
Unfilled PVA Cryogel | 0.0006 | 0.93 | 0.0145 | 0.99 | 0.41 | 0.022 | 0.99 |
PVA cryogel filled with MS-1 particles | 0.0009 | 0.89 | 0.0186 | 0.99 | 0.45 | 0.023 | 0.98 |
PVA cryogel filled with MS-2 particles | 0.0006 | 0.93 | 0.0123 | 0.99 | 0.45 | 0.012 | 0.99 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Michurov, D.A.; Andreasyan, G.A.; Lozinsky, V.I. Cryostructuring of Polymeric Systems: 68. Evaluation of Poly(vinyl alcohol) Composite Cryogels Filled with Poly(3-hydroxybutyric acid)-Based Microspheres of Different Porous Morphology as Potential Delivery Systems for Drugs of Various Water-Solubility. Gels 2024, 10, 734. https://doi.org/10.3390/gels10110734
Michurov DA, Andreasyan GA, Lozinsky VI. Cryostructuring of Polymeric Systems: 68. Evaluation of Poly(vinyl alcohol) Composite Cryogels Filled with Poly(3-hydroxybutyric acid)-Based Microspheres of Different Porous Morphology as Potential Delivery Systems for Drugs of Various Water-Solubility. Gels. 2024; 10(11):734. https://doi.org/10.3390/gels10110734
Chicago/Turabian StyleMichurov, Dmitrii A., Gagik A. Andreasyan, and Vladimir I. Lozinsky. 2024. "Cryostructuring of Polymeric Systems: 68. Evaluation of Poly(vinyl alcohol) Composite Cryogels Filled with Poly(3-hydroxybutyric acid)-Based Microspheres of Different Porous Morphology as Potential Delivery Systems for Drugs of Various Water-Solubility" Gels 10, no. 11: 734. https://doi.org/10.3390/gels10110734
APA StyleMichurov, D. A., Andreasyan, G. A., & Lozinsky, V. I. (2024). Cryostructuring of Polymeric Systems: 68. Evaluation of Poly(vinyl alcohol) Composite Cryogels Filled with Poly(3-hydroxybutyric acid)-Based Microspheres of Different Porous Morphology as Potential Delivery Systems for Drugs of Various Water-Solubility. Gels, 10(11), 734. https://doi.org/10.3390/gels10110734