Development of Alginate Composite Microparticles for Encapsulation of Bifidobacterium animalis subsp. lactis
"> Figure 1
<p>OM microphotographs of (<b>a</b>) BB-12 colony and (<b>b</b>) Gram-stained BB-12 cells, and (<b>c</b>) SEM microphotograph and (<b>d</b>) EDS semi-quantitative analysis of BB-12 cells (expressed in the atomic weight percent). The scale bars are indicated on each image.</p> "> Figure 2
<p>AFM micrographs of BB-12 cells. Visualization of the surface topography and morphology of the cells. (<b>A</b>) Topographic image; (<b>B</b>) section profile across the marked line; (<b>C</b>) amplitude image on a scan area of 5 × 5 μm<sup>2</sup>; (<b>D</b>) topographic image; (<b>E</b>) section profile across the marked line; (<b>F</b>) amplitude image on a scan area of 2 × 2 μm<sup>2</sup>. The scale bars are indicated on each image.</p> "> Figure 3
<p>Changes in the mean hydrodynamic diameter (d) and shape of BB-12 colonies with calcium chloride concentration (c(CaCl<sub>2</sub>). Error bars indicate the standard deviation of the means. Inserted microphotographs depict changes in colony shape.</p> "> Figure 4
<p>Change in (<b>a</b>) zeta potential (ζ) and (<b>b</b>) size (d) of BB-12 cell aggregates with increasing CaCl<sub>2</sub> concentration. Error bars indicate the standard deviation of the means.</p> "> Figure 5
<p>FTIR spectrum of (<b>a</b>) single components: BB-12 (black line), CA (red line), agar (blue line), SA (green line), and (<b>b</b>) microparticles, and (<b>b</b>) ALG/Ca (black line), Sample 1 (red line), Sample 2 (blue line) and Sample 3 (green line).</p> "> Figure 6
<p>SEM microphotographs of Sample 0 (<b>a</b>,<b>b</b>), Sample 1 (<b>c</b>,<b>d</b>), Sample 2 (<b>e</b>,<b>f</b>) and Sample 3 (<b>g</b>,<b>h</b>). BB-12 cells located on the surface of microparticles are denoted by red lines. The scale bars are indicated on each image.</p> "> Figure 6 Cont.
<p>SEM microphotographs of Sample 0 (<b>a</b>,<b>b</b>), Sample 1 (<b>c</b>,<b>d</b>), Sample 2 (<b>e</b>,<b>f</b>) and Sample 3 (<b>g</b>,<b>h</b>). BB-12 cells located on the surface of microparticles are denoted by red lines. The scale bars are indicated on each image.</p> "> Figure 7
<p>AFM micrographs of microparticles Sample 0 (<b>A</b>), Sample 1 (<b>B</b>), Sample 2 (<b>C</b>) and Sample 3 (<b>D</b>) with 3D topographic images of height data (<b>top</b> view), section analysis profiles (<b>right</b>) along labeled lines (<b>left</b>) and amplitude images (<b>top</b> view) of microparticles. The scale bars are indicated on each image.</p> "> Figure 8
<p>Amplitude sweep tests (G′ (■) and G″ (▲) values) of Sample 0 (red), Sample 1 (black), Sample 2 (blue) and Sample 3 (green) determined at a constant angular frequency of 5 rad/s at 23 °C.</p> "> Figure 9
<p>(<b>a</b>) Frequency sweep test (G′ (■) and G″ (▲) values) and (<b>b</b>) complex viscosity (ƞ*) and loss factor (tan δ) of Sample 0 (red), Sample 1 (black), Sample 2 (blue) and Sample 3 (green) determined at a strain of 0.1% at 23 °C.</p> "> Figure 10
<p>Time-dependent strain variation during both the creep and creep recovery tests for Sample 0 (red), Sample 1 (black), Sample 2 (blue) and Sample 3 (green) at 23 °C.</p> "> Figure 11
<p>DSC curves of Sample 0 (red line), Sample 1 (black line), Sample 2 (blue line) and Sample 3 (green line) at a heating rate of 10°/min (the first heating cycle and cooling cycle).</p> "> Figure 12
<p>Fraction of released BB-12 cells (f<sub>BB-12</sub>) from composites with time (t). Error bars indicate the standard deviation of the means. Samples are denoted.</p> ">
Abstract
:1. Introduction
2. Results and Discussion
2.1. Interaction Between BB-12 Cells and Calcium Ions
2.1.1. Morphology and Size of BB-12 Colony and Cells
2.1.2. Effect of Calcium Ion Concentration on the Growth of BB-12 Colonies on Agar Plates and Cells in Suspensions
2.2. Physicochemical Characterization of Microparticles
2.2.1. Identification of Molecular Interactions Between Microparticle Constituents
2.2.2. Microscopic Characterization of Microparticles
2.2.3. Rheological Properties
Amplitude Sweep
Frequency Sweep
Creep and Creep Recovery Test
2.2.4. Thermal Properties
2.2.5. BB-12 In Vitro Release from Composites
3. Concluding Remarks
4. Materials and Methods
4.1. Materials
4.1.1. Bifidobacterium animalis subsp. lactis BB-12 Cells and Preparation for Encapsulation
4.1.2. Microparticles Preparation
4.2. Methods
4.2.1. The Zeta Potential and Size of BB-12 Cells Suspended in Water and Calcium Ions Solutions
4.2.2. Microscopic Observations
4.2.3. Attenuated Total Reflectance Fourier Transform Infrared Spectroscopy
4.2.4. Encapsulation Efficiency, Loading Capacity, Swelling Degree and In Vitro BB-12 Release from Microspheres
- (a)
- Encapsulation efficiency
- (b)
- Loading capacity
- (c)
- Swelling degree
- (d)
- In vitro release of BB-12 from composites
4.2.5. Rheological Measurements
4.2.6. Differential Scanning Calorimetry
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bermudez-Brito, M.; Plaza-Díaz, J.; Muñoz-Quezada, S.; Gómez-Llorente, C.; Gil, A. Probiotic mechanisms of action. Ann. Nutr. Metab. 2012, 61, 160–174. [Google Scholar] [CrossRef] [PubMed]
- Sanders, M.E. Probiotics: Considerations for human health. Nutr. Rev. 2003, 61, 91–99. [Google Scholar] [CrossRef] [PubMed]
- Cook, M.T.; Tzortzis, G.; Charalampopoulos, D.; Khutoryanskiy, V.V. Microencapsulation of probiotics for gastrointestinal delivery. J. Control. Release 2012, 162, 56–67. [Google Scholar] [CrossRef] [PubMed]
- Sbehatm, M.; Mauriello, G.; Altamimi, M. Microencapsulation of Probiotics for Food Functionalization: An Update on Literature Reviews. Microorganisms 2022, 10, 1948. [Google Scholar] [CrossRef]
- Shori, A.B. Microencapsulation Improved Probiotics Survival During Gastric Transit. HAYATI J. Biosci. 2017, 24, 1–5. [Google Scholar] [CrossRef]
- Draget, K.I.; Skjåk-Bræk, G.; Smidsrød, O. Alginate based new materials. Carbohydr. Polym. 1994, 25, 65–71. [Google Scholar] [CrossRef]
- Ching, S.H.; Bansal, N.; Bhandari, B. Alginate gel particles-A review of production techniques and physical properties. Crit. Rev. Food Sci. Nutr. 2017, 57, 1133–1152. [Google Scholar] [CrossRef]
- Kwiecień, I.; Kwiecień, M. Application of Polysaccharide-Based Hydrogels as Probiotic Delivery Systems. Gels 2018, 4, 47. [Google Scholar] [CrossRef]
- George, M.; Abraham, T.E. Polyionic hydrocolloids for the intestinal delivery of protein drugs: Alginate and chitosan—A review. J. Control. Release 2006, 114, 1–14. [Google Scholar] [CrossRef]
- Agriopoulou, S.; Tarapoulouzi, M.; Varzakas, T.; Jafari, S.M. Application of Encapsulation Strategies for Probiotics: From Individual Loading to Co-Encapsulation. Microorganisms 2023, 11, 2896. [Google Scholar] [CrossRef]
- Guérin, D.; Vuillemard, J.-C.; Subirade, M. Protection of Bifidobacteria Encapsulated in Polysaccharide-Protein Gel Beads against Gastric Juice and Bile. J. Food Prot. 2003, 66, 2076–2084. [Google Scholar] [CrossRef] [PubMed]
- Khlibsuwan, R.; Khunkitti, W.; Pongjanyakul, T. Alginate-caseinate composites: Molecular interactions and characterization of cross-linked beads for the delivery of anticandidals. Int. J. Biol. Macromol. 2018, 115, 483–493. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Gao, S.; Yun, S.; Zhang, M.; Peng, L.; Li, Y.; Zhou, Y. Microencapsulating Alginate-Based Polymers for Probiotics Delivery Systems and Their Application. Pharmaceuticals 2022, 15, 644. [Google Scholar] [CrossRef] [PubMed]
- Ramdhan, T.; Ching, S.H.; Prakash, S.; Bhandari, B. Physical and mechanical properties of alginate based composite gels. Trends Food Sci. Technol. 2020, 106, 150159. [Google Scholar] [CrossRef]
- Frakolaki, G.; Giannou, V.; Tzia, C. Encapsulation of Bifidobacterium animalis subsp. lactis Through Emulsification Coupled with External Gelation for the Development of Synbiotic Systems. Probiotics Antimicrob. Proteins 2023, 15, 1424–1435. [Google Scholar] [CrossRef]
- Yin, Z.-C.; Wang, Y.-L.; Wang, K. A pH-responsive composite hydrogel beads based on agar and alginat for oral drug delivery. J. Drug Deliv. 2018, 43, 12–18. [Google Scholar] [CrossRef]
- Mostafavi, F.S.; Zaeim, D. Agar-based edible films for food packaging applications—A review. Int. J. Biol. Macromol. 2020, 159, 1165–1176. [Google Scholar] [CrossRef]
- Ghazagh, P.; Frounchi, M. Hydroxyapatite/alginate/polyvinyl alcohol/agar composite double-network hydrogels as injectable drug delivery microspheres. Chem. Pap. 2024, 78, 2967–2976. [Google Scholar] [CrossRef]
- Ghosh, A.K.; Bandyopadhyay, P. Polysaccharide-protein interactions and their relevance in food colloids. In The Complex World of Polysaccharides; Karunaratne, D.N., Ed.; InTech: London, UK, 2012; pp. 395–408. [Google Scholar] [CrossRef]
- Phadungath, C. Casein micelle structure: A concise review. Songklanakarin. J. Sci. Technol. (SJST) 2005, 27, 201–212. [Google Scholar]
- He, Z.; Zhang, X.; Qi, W.; Qui, W.; Guang, R.; Su, E. Alginate-casein microspheres as bioactive vehicles for nutrients. Trans. Tianjin Univ. 2015, 21, 383–391. [Google Scholar] [CrossRef]
- Yang, X.; Li, A.; Li, D.; Guo, Y.; Sun, L. Applications of mixed polysaccharide-protein systems in fabricating multi-structures of binary food gels—A review. Trends Food Sci. Technol. 2021, 109, 197–210. [Google Scholar] [CrossRef]
- Chen, L.; Subirade, M. Alginate-whey protein granular microspheres as oral delivery vehicles for bioactive compounds. Biomacromolecules 2009, 10, 3321–3329. [Google Scholar] [CrossRef] [PubMed]
- Bonnaillie, L.M.; Zhang, H.; Akkurt, S.; Yam, K.L.; Tomasula, P.M. Casein Films: The Effects of Formulation, Environmental Conditions and the Addition of Citric Pectin on the Structure and Mechanical Properties. Polymers 2014, 6, 2018–2036. [Google Scholar] [CrossRef]
- Sadiq, U.; Gill, H.; Chandrapala, J. Casein Micelles as an Emerging Delivery System for Bioactive Food Components. Foods 2021, 10, 1965. [Google Scholar] [CrossRef] [PubMed]
- Li, P.; Guo, C.; Li, X.; Yuan, K.; Yang, X.; Guo, Y.; Yang, X. Preparation and structural characteristics of composite alginate/casein emulsion gels: A microscopy and rheology study. Food Hydrocoll. 2021, 118, 106792. [Google Scholar] [CrossRef]
- Mojaveri, S.J.; Hosseini, S.F.; Gharsallaoui, A. Viability improvement of Bifidobacterium animalis BB-12 by encapsulation in chitosan/poly(vinyl alcohol) hybrid electrospun fiber mats. Carbohydr. Polym. 2020, 241, 116278. [Google Scholar] [CrossRef]
- Loyeau, P.A.; Spotti, M.J.; Vanden Braber, N.L.; Rossi, Y.E.; Montenegro, M.A.; Vinderola, G.; Carrara, C.R. Microencapsulation of Bifidobacterium animalis subsp. lactis INL1 using whey proteins and dextrans conjugates as wall materials. Food Hydrocoll. 2018, 85, 129–135. [Google Scholar] [CrossRef]
- Holkem, A.T.; Raddatz, G.C.; Barin, J.S.; Moraes Flores, É.M.; Muller, E.I.; Codevilla, C.F.; Jacob-Lopes, E.; Grosso, C.F.-G.; de Menezes, C.R. Production of microparticles containing Bifidobacterium BB-12 by emulsification/internal gelation. LWT 2017, 76, 216–221. [Google Scholar] [CrossRef]
- Frakolaki, G.; Giannou, V.; Kekos, D.; Tzia, C. A review of the microencapsulation techniques for the incorporation of probiotic bacteria in functional foods. Crit. Rev. Food Sci. Nutr. 2021, 61, 1515–1536. [Google Scholar] [CrossRef]
- Cedran, M.F.; Rodrigues, F.J.; Bicas, J.L. Encapsulation of Bifidobacterium BB-12® in alginate-jaboticaba peel blend increases encapsulation efficiency and bacterial survival under adverse conditions. Appl. Microbiol. Biotechnol. 2021, 105, 119–127. [Google Scholar] [CrossRef]
- Rathore, S.; Desai, P.M.; Liew, C.V.; Chan, L.W.; Heng, P.W.S. Microencapsulation of microbial cells. J. Food Eng. 2013, 116, 369–381. [Google Scholar] [CrossRef]
- Arenas-Padilla, M.; Duarte-Gutiérrez, J.L.; Mata-Haro, V. Bifidobacterium animalis ssp. lactis BB-12 induces IL-10 through cell membrane-associated components via TLR2 in swine. J. Appl. Microbiol. 2018, 125, 1881–1889. [Google Scholar] [CrossRef]
- Milani, C.; Turroni, F.; Duranti, S.; Lugli, G.-A.; Mancabelli, L.; Ferrario, C.; van Sinderen, D.; Ventura, M. Genomics of the Genus Bifidobacterium Reveals Species-Specific Adaptation to the Glycan-Rich Gut Environment. Appl. Environ. Microbiol. 2015, 82, 980–991. [Google Scholar] [CrossRef]
- Fachin, L.; Moryia, J.; Neves Gândara, A.L.; Viotto, W.H. Evaluation of culture media for counts of Bifidobacterium animalis subsp. lactis Bb 12in yoghurt after refrigerated storage. Braz. J. Microbiol. 2008, 39, 357–361. [Google Scholar] [CrossRef]
- Indira, M.; Venkateswarulu, T.C.; Abraham Peele, K.; Nazneen Bobby, M.; Krupanidhi, S. Bioactive molecules of probiotic bacteria and their mechanism of action: A review. 3 Biotech 2019, 9, 306. [Google Scholar] [CrossRef] [PubMed]
- Gibson, G.R.; Roberfroid, M.B. Dietary modulation of the human colonic microbiota: Introducing the concept of prebiotics. J. Nutr. 1995, 125, 1401–1412. [Google Scholar] [CrossRef]
- Dufrêne, Y.F.; Viljoen, A.; Mignolet, J.; Mathelié-Guinlet, M. AFM in cellular and molecular microbiology. Cell. Microbiol. 2021, 23, e13324. [Google Scholar] [CrossRef] [PubMed]
- Dhanashree; Rajashekharan, S.; Krishnaswamy, B.; Kammara, R. Bifid Shape Is Intrinsic to Bifidobacterium adolescentis. Front. Microbiol. 2017, 8, 478. [Google Scholar] [CrossRef] [PubMed]
- Bozkurt, K.; Denktas, C.; Ozdemir, O.; Altındal, A.; Avdan, Z.; Bozkurt, H.S. Charge Transport in Bifidobacterium animalis subsp. Lactis BB-12 under Various Atmospheres. Open J. Appl. Sci. 2019, 9, 506–514. [Google Scholar] [CrossRef]
- Milani, C.; Lugli, G.A.; Duranti, S.; Turroni, F.; Bottacini, F.; Mangifesta, M.; Sanchez, B.; Viappiani, A.; Mancabelli, L.; Taminiau, B.; et al. Genomic encyclopedia of type strains of the genus Bifidobacterium. Appl. Environ. Microbiol. 2014, 80, 6290–6302. [Google Scholar] [CrossRef]
- Jurić, S.; Tanuwidjaja, I.; Fuka, M.M.; Kahlina, K.V.; Marijan, M.; Boras, A.; Vinceković, M. Encapsulation of two fermentation agents, Lactobacillus sakei and calcium ions in mirospheres. Colloids Surf. B 2020, 197, 111387. [Google Scholar] [CrossRef] [PubMed]
- Oust, A.; Møretrø, T.; Kirschner, C.; Narvhus, J.A.; Kohler, A. FT-IR spectroscopy for identification of closely related lactobacilli. J. Microbiol. Methods 2004, 59, 149–162. [Google Scholar] [CrossRef]
- Shakirova, L.; Auzina, L.; Zikmanis, P.; Gavare, M.; Grube, M. Influence of Growth Conditions on Hydrophobicity of Lactobacillus acidophilus and Bifidobacterium lactis Cells and Characteristics by FT-IR Spectra. Spectroscopy 2010, 24, 251–255. [Google Scholar] [CrossRef]
- Sharma, P.K.; Das, A.; Rao, K.H.; Forssberg, K.S.E. Surface Characterization of Acidithiobacillus ferrooxidans Cells Grown under Different Conditions. Hydrometallurgy 2003, 71, 285–292. [Google Scholar] [CrossRef]
- Vinceković, M.; Šegota, S.; Jurić, S.; Harja, M.; Ondrašek, G. Development and Characterization of a Novel Soil Amendment Based on Biomass Fly Ash Encapsulated in Calcium Alginate Microspheres. Int. J. Mol. Sci. 2022, 23, 9984. [Google Scholar] [CrossRef] [PubMed]
- Arfat, Y.A.; Ahmed, J.; Jacob, H. Preparation and characterization of agar-based nanocomposite films reinforced with bimetallic (Ag-Cu) alloy nanoparticles. Carbohydr. Polym. 2017, 155, 382–390. [Google Scholar] [CrossRef]
- Mahmoud Nasef, M.; El-Hefian, E.A.; Saalah, S.; Yahaya, A.H. Preparation and Properties of Non-Crosslinked and Ionically Crosslinked Chitosan/Agar Blended Hydrogel Films. E-J. Chem. 2011, 8, S411–S419. [Google Scholar] [CrossRef]
- Nagaraju, P.G.; Sindhu, P.; Dubey, T.; Chinnathambi, S.; Poornima Priyadarshini, C.G.; Rao, P.J. Influence of sodium caseinate, maltodextrin, pectin and their Maillard conjugate on the stability, in vitro release, anti-oxidant property and cell viability of eugenol-olive oil nanoemulsions. Int. J. Biolog. Macromol. 2021, 183, 158–170. [Google Scholar] [CrossRef]
- Barreto, P.L.M.; Pires, A.T.N.; Soldi, V. Thermal degradation of edible films based on milk proteins and gelatin in inert atmosphere. Polym. Degrad. Stab. 2003, 79, 147–152. [Google Scholar] [CrossRef]
- Jurić, S.; Đermić, E.; Topolovec-Pintarić, S.; Bedek, M.; Vinceković, M. đ Physicochemical properties and release characteristics of calcium alginate microspheres loaded with Trichoderma viride spores. J. Integr. Agric. 2019, 18, 2534–2548. [Google Scholar] [CrossRef]
- Malektaj, H.; Drozdov, A.D.; de Claville Christiansen, J. Mechanical Properties of Alginate Hydrogels Cross-Linked with Multivalent Cations. Polymers 2023, 15, 3012. [Google Scholar] [CrossRef] [PubMed]
- Abarca-Cabrera, L.; Fraga-García, P.; Berensmeier, S. Bio-nano interactions: Binding proteins, polysaccharides, lipids and nucleic acids onto magnetic nanoparticles. Biomater. Res. 2021, 25, 12. [Google Scholar] [CrossRef]
- Sreya, E.S.; Kumar, D.P.; Balakrishnan, P.; Gopi, S. Science and Technology of Alginates: A Review. In Handbook of Biomass; Thomas, S., Hosur, M., Pasquini, D., Jose Chirayil, C., Eds.; Springer: Singapore, 2023; pp. 1–28. [Google Scholar] [CrossRef]
- McMahon, D.J.; Oommen, B.S. Casein Micelle Structure, Functions, and Interactions. In Advanced Dairy Chemistry; McSweeney, P., Fox, P., Eds.; Springer: Boston, MA, USA, 2013; pp. 185–209. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, K.; Hu, J.; Zhang, Y.; Dai, Y.; Xia, F. Role of a high calcium ion content in extending the properties of alginate dual-crosslinked hydrogels. J. Mater. Chem. A 2020, 8, 25390–25401. [Google Scholar] [CrossRef]
- Paoletti, S.; Donati, I. Comparative Insights into the Fundamental Steps Underlying Gelation of Plant and Algal Ionic Polysaccharides: Pectate and Alginate. Gels 2022, 8, 784. [Google Scholar] [CrossRef]
- Elzoghby, A.O.; El-Fotoh, W.S.; Elgindy, N.A. Casein-based formulations as promising controlled release drug delivery systems. J. Control. Release 2011, 153, 206–216. [Google Scholar] [CrossRef]
- Bennacef, C.; Desobry, S.; Jasniewski, J.; Leclerc, S.; Probst, L.; Desobry-Banon, S. Influence of Alginate Properties and Calcium Chloride Concentration on Alginate Bead Reticulation and Size: A Phenomenological Approach. Polymers 2023, 15, 4163. [Google Scholar] [CrossRef]
- Wang, Y.; Lu, Y. Sodium Alginate-Based Functional Materials toward Sustainable Applications: Water Treatment and Energy Storage. Ind. Eng. Chem. Res. 2023, 62, 11279–11304. [Google Scholar] [CrossRef]
- Jurić, S.; Šegota, S.; Vinceković, M. Influence of surface morphology and structure of alginate microparticles on the bioactive agents release behavior. Carbohydr. Polym. 2019, 218, 234–242. [Google Scholar] [CrossRef]
- Vinceković, M.; Jurić, S.; Vlahoviček-Kahlina, K.; Martinko, K.; Šegota, S.; Marijan, M.; Krčelić, A.; Svečnjak, L.; Majdak, M.; Nemet, I.; et al. Novel Zinc/Silver Ions-Loaded Alginate/Chitosan Microparticles Antifungal Activity against Botrytis cinerea. Polymers 2023, 15, 4359. [Google Scholar] [CrossRef]
- Jabeen, S.; Maswal, M.; Chat, O.A.; Rather, G.M.; Dar, A.A. Rheological behavior and Ibuprofen delivery applications of pH responsive composite alginate hydrogels. Colloids Surf. B Biointerfaces 2016, 139, 211–218. [Google Scholar] [CrossRef]
- Cuomo, F.; Cofelice, M.; Lopez, F. Rheological characterization of hydrogels from alginate-based nanodispersion. Polymers 2019, 11, 259. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Chen, Z.; Zhang, W.; Lei, C.; Li, J.; Hu, X.; Zhanf, F.; Chen, C. The physical and structural properties of acid-Ca2+ induced casein-alginate/Ca2+ double network gels. Int. J. Biol. Macromol. 2023, 245, 125564. [Google Scholar] [CrossRef] [PubMed]
- Dodero, A.; Vicini, S.; Alloisio, M.; Castellano, M. Sodium alginate solutions: Correlation between rheological properties and spinnability. J. Mater. Sci. 2019, 54, 8034–8046. [Google Scholar] [CrossRef]
- Olderøy, M.Ø.; Xie, M.; Andreassen, J.P.; Strand, B.L.; Zhang, Z.; Sikorski, P. Viscoelastic properties of mineralized grains of alginate hydrogel. J. Mater. Sci. Mater. Med. 2012, 23, 1619–1627. [Google Scholar] [CrossRef]
- Huang, D.; Quan, Q.; Zheng, Y.; Tang, W.; Zhang, Z.; Qiang, X. Dual-network design to enhance the properties of agar aerogel adsorbent by incorporating in situ ion cross-linked alginate. Environ. Chem. Lett. 2020, 18, 251–255. [Google Scholar] [CrossRef]
- Leick, S.; Kott, M.; Degen, P.; Henning, S.; Päsler, T.; Suter, D.; Rehage, H. Mechanical properties of liquid-filled shellac composite capsules. Phys. Chem. Chem. Phys. PCCP 2011, 13, 2765–2773. [Google Scholar] [CrossRef]
- Stephen, A.M.; Phillips, G.O. Food Polysaccharides and Their Applications; CRC Press: Boca Raton, FL, USA, 2006; pp. 1–752. [Google Scholar] [CrossRef]
- Steffe, J.F.R. Rheological Methods in Food Process Engineering, 2nd ed.; Freeman Press: Lansing, MI, USA, 1996; pp. 318–321. [Google Scholar]
- Bellich, B.; Borgogna, M.; Cok, M.; Cesàro, A. Release Properties of Hydrogels: Water Evaporation from Alginate Gel Beads. Food Biophys. 2011, 6, 259–266. [Google Scholar] [CrossRef]
- Vinceković, M.; Jurić, S.; Šegota, S.; Šijaković Vujičić, N.; Španić, N.; Mutaliyeva, B.; Prosyanik, A.V.; Marijan, M. Morphological, rheological and thermal characteristics of biopolymeric microparticles loaded with plant stimulants. J. Polym. Res. 2022, 29, 204. [Google Scholar] [CrossRef]
- Florea-Sprioiu, A.; Bala, D.; Balan, A.; Nichita, C.; Stamatin, I. Alginate matrices prepared in sub and supercritical CO2. Dig. J. Nanomater. Biostruct. 2012, 7, 1549–1555. [Google Scholar]
- E Hariri El Nokab, M.; Es Sayed, J.; De Witte, F.; Dewettinck, K.; Elshewy, A.; Zhang, Z.; Van Steenberge, P.H.M.; Wang, T.; Sebakhy, K.O. A comparative analytical study for the different water pools present in alginate hydrogels: Qualitative vs. quantitative approaches. Food Hydrocoll. 2024, 154, 110159. [Google Scholar] [CrossRef]
- Bagre, A.C.; Jain, K.; Jain, N.K. Alginate coated chitosan coreshell nanoparticles for oral delivery of enoxaparin: In vitro and in vivo assessment. Int. J. Pharm. 2013, 456, 31–40. [Google Scholar] [CrossRef] [PubMed]
- Riberio, A.J.; Silva, C.; Ferreira, D.; Vega, F. Chitosan-reinforced alginate microspheres obtained through the emulsification/internal gelation technique. Eur. J. Pharm. Sci. 2005, 25, 31–40. [Google Scholar] [CrossRef] [PubMed]
- Soares, J.P.; Santos, J.E.; Chierice, G.O.; Cavalheiro, E.T.G. Thermal behavior of alginic acid and its sodium salt. Eclética Química 2004, 29, 57–63. [Google Scholar] [CrossRef]
- Gargallo, L.; Radić, D. Viscoelastic Behaviour of Polymers. In Physicochemical Behavior and Supramolecular Organization of Polymers; Springer: Dordrecht, The Netherlands, 2009; pp. 43–62. [Google Scholar] [CrossRef]
- Siepmann, J.; Siepmann, F. Modeling of diffusion controlled drug delivery. J. Control. Release 2012, 161, 351–362. [Google Scholar] [CrossRef]
- Korsmeyer, R.W.; Gurny, R.; Doelker, E.; Buri, P.; Peppas, N.A. Mechanisms of solute release from porous hydrophilic polymers. Int. J. Pharm. 1983, 15, 25–35. [Google Scholar] [CrossRef]
- Kim, H.; Fassihi, R. Application of a binary polymer system in drug release rate modulation. 2. Influence of formulation variables and hydrodynamic conditions on release kinetics. J. Pharm. Sci. 1997, 86, 323–328. [Google Scholar] [CrossRef]
- Nečas, D.; Klapetek, P. Gwyddion: An open-source software for SPM data analysis. Cent. Eur. J. Phys. 2012, 10, 181–188. [Google Scholar] [CrossRef]
- Vinceković, M.; Jalšenjak, N.; Topolovec-Pintarić, S.; Đermić, E.; Bujan, M.; Jurić, S. Encapsulation of biological and chemical agents for plant nutrition and protection: Chitosan/Alginate microcapsules loaded with copper cations and Trichoderma viride. J. Agric. Food Chem. 2016, 64, 8073–8083. [Google Scholar] [CrossRef]
- Corbo, M.R.; Bevilacqua, A.; Speranza, B.; Di Maggio, B.; Gallo, M.; Sinigaglia, M. Use of alginate beads as carriers for lactic acid bacteria in a structured system and preliminary validation in a meat product. Meat Sci. 2016, 111, 198–203. [Google Scholar] [CrossRef]
- Vinceković, M.; Jurić, S.; Đermić, E.; Topolovec-Pintarić, S. Kinetics and mechanisms of chemical and biological agents release from biopolymeric microcapsules. J. Agric. Food Chem. 2017, 65, 9608–9617. [Google Scholar] [CrossRef]
- Waghunde, R.R.; Priya, J.; Naik, B.M.; Solanky, K.U.; Sabalpara, A.N. Optical density—A tool for the estimation of spore count of Trichoderma Viride. J. Biopestic. 2010, 3, 624–626. [Google Scholar] [CrossRef]
Sample | Ra/nm | Rq/nm | Zrange/nm |
---|---|---|---|
Sample 0 | 74 ± 6 | 90 ± 7 | 590 ± 39 |
Sample 1 | 84 ± 6 | 106 ± 9 | 655 ± 71 |
Sample 2 | 59 ± 3 | 71 ± 7 | 387 ± 41 |
Sample 3 | 76 ± 6 | 97 ± 8 | 657 ± 69 |
G′ (max)/Pa | Yield Point/ Stress/Pa | Yield Point/ Strain/% | Flow Point/Pa | Loss Factor | Flow Transition Index | |
---|---|---|---|---|---|---|
Sample 0 | 17,524 | 240.1 | 1.54% | 461.2 | 0.21 | 1.92 |
Sample 1 | 15,942 | 173.9 | 1.25% | 371.1 | 0.20 | 2.13 |
Sample 2 | 35,700 | 377.8 | 1.38% | 584.3 | 0.17 | 1.55 |
Sample 3 | 25,052 | 281.9 | 1.34% | 482.1 | 0.18 | 1.71 |
Creep/Creep Recovery | Max. Strain γmax (%) | Max. Creep Compliance Jmax (1/Pa) × 10−4 | Instantaneous Compliance J0 (1/Pa) × 10−4 | Zero Shear Viscosity η0 (mPa·s) × 109 | Compliance Je0 (1/Pa) × 10−5 | Elastic Compliance Je (%) |
---|---|---|---|---|---|---|
Sample 0 | 0.83 | 2.78 | 1.38 | 8.93 | 9.80 | 35.3 |
Sample 1 | 0.80 | 2.64 | 1.24 | 8.59 | 8.58 | 32.4 |
Sample 2 | 0.57 | 1.90 | 0.94 | 13.03 | 7.99 | 41.9 |
Sample 3 | 0.66 | 2.22 | 1.15 | 14.14 | 8.00 | 36.2 |
Samples | First Transition | Second Transition | Third Transition |
---|---|---|---|
Sample 0 | Tendo = 91 °C | Tg = 192.63 °C | Tcc = 294.36 °C |
ΔCp = 7.97 J/g·°C | ΔHcc = −106 J/g | ||
ΔH = 39.73 J/g | |||
Sample 1 | Tendo = 111 °C | Tg = 211.93 °C | Tcc = 288.08 °C |
ΔCp = 7.85 J/g·°C | ΔHcc = −73.51 J/g | ||
ΔH = 34.13 J/g | |||
Sample 2 | Tendo = 108 °C | Tg = 196.02 °C | Tcc = 291.08 °C |
ΔCp = 10.96 J/g·°C | ΔHcc = −54.55 J/g | ||
ΔH = 20.99 J/g | |||
Sample 3 | Tendo = 115 °C | Tg = 200.75 °C | Tcc = 290.22 °C |
ΔCp = 11.73 J/g·°C | ΔHcc = −52.15 J/g | ||
ΔH = 20.73 J/g |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vinceković, M.; Živković, L.; Turkeyeva, E.; Mutaliyeva, B.; Madybekova, G.; Šegota, S.; Šijaković Vujičić, N.; Pustak, A.; Jurkin, T.; Kiš, M.; et al. Development of Alginate Composite Microparticles for Encapsulation of Bifidobacterium animalis subsp. lactis. Gels 2024, 10, 752. https://doi.org/10.3390/gels10110752
Vinceković M, Živković L, Turkeyeva E, Mutaliyeva B, Madybekova G, Šegota S, Šijaković Vujičić N, Pustak A, Jurkin T, Kiš M, et al. Development of Alginate Composite Microparticles for Encapsulation of Bifidobacterium animalis subsp. lactis. Gels. 2024; 10(11):752. https://doi.org/10.3390/gels10110752
Chicago/Turabian StyleVinceković, Marko, Lana Živković, Elmira Turkeyeva, Botagoz Mutaliyeva, Galiya Madybekova, Suzana Šegota, Nataša Šijaković Vujičić, Anđela Pustak, Tanja Jurkin, Marta Kiš, and et al. 2024. "Development of Alginate Composite Microparticles for Encapsulation of Bifidobacterium animalis subsp. lactis" Gels 10, no. 11: 752. https://doi.org/10.3390/gels10110752
APA StyleVinceković, M., Živković, L., Turkeyeva, E., Mutaliyeva, B., Madybekova, G., Šegota, S., Šijaković Vujičić, N., Pustak, A., Jurkin, T., Kiš, M., & Kajić, S. (2024). Development of Alginate Composite Microparticles for Encapsulation of Bifidobacterium animalis subsp. lactis. Gels, 10(11), 752. https://doi.org/10.3390/gels10110752