Interaction between Styrofoam and Microalgae Spirulina platensis in Brackish Water System
<p>Microplastic Styrofoam with a diameter of 2 mm (<b>left</b>) and implementation of Styrofoam in microalgae culture (<b>right</b>).</p> "> Figure 2
<p>Brackish water culture <span class="html-italic">S. platensis</span> growth in each treatment (<span class="html-italic">Spirulina</span> A is a control (without Styrofoam), <span class="html-italic">Spirulina</span> B = 150 mg Styrofoam/500 mL culture, <span class="html-italic">Spirulina</span> C = 250 mg Styrofoam/500 mL culture, <span class="html-italic">Spirulina</span> D = 400mg Styrofoam/500 mL culture).</p> "> Figure 3
<p>The logarithmic of optical density of <span class="html-italic">S. platensis</span> at the exponential phase in brackish water in various concentrations of microplastic treatment (<b>A</b>) control, (<b>B</b>) 150 mg, (<b>C</b>) 250 mg, and (<b>D</b>) 400 mg.</p> "> Figure 4
<p>FTIR results of the ratio of Styrofoam (<b>A</b>) before treatment, (<b>B</b>) 150 mg, (<b>C</b>) 250 mg, and (<b>D</b>) 400 mg; after 30-day treatment with <span class="html-italic">S. platensis</span> in brackish water culture.</p> "> Figure 5
<p>SEM analysis results of brackish water culture <span class="html-italic">S. platensis</span> for 30 days. (<b>A</b>) <span class="html-italic">S. platensis</span> without Styrofoam treatment. (<b>B</b>) <span class="html-italic">S. platensis</span> treated with Styrofoam 150 mg/500 mL. (<b>C</b>) <span class="html-italic">S. platensis</span> treated with Styrofoam 250 mg/500 mL. (<b>D</b>) <span class="html-italic">S. platensis</span> treated with Styrofoam 400 mg/500 mL.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Styrofoam Preparation
2.2. Culture Preparation of S. platensis
2.3. Harvesting of S. platensis
2.4. FTIR and SEM Analysis
2.5. Statistical Analysis
3. Results
3.1. Spirulina platensis Growth under Styrofoam Pressure
3.2. Styrofoam Degradation
3.3. Interaction of S. platensis with Styrofoam
4. Discussions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Andrady, A.L. Microplastics in the marine environment. Mar. Pollut. Bull. 2011, 62, 1596–1605. [Google Scholar] [CrossRef]
- Hidalgo-Ruz, V.; Gutow, L.; Thompson, R.C.; Thiel, M. Microplastics in the marine environment: A review of the methods used for identification and quantification. Environ. Sci. Technol. 2012, 46, 3060–3075. [Google Scholar] [CrossRef] [PubMed]
- Duis, K.; Coors, A. Microplastics in the aquatic and terrestrial environment: Sources (with a specific focus on personal care products), fate and effects. Environ. Sci. Eur. 2016, 28, 1–25. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cole, M.; Lindeque, P.; Halsband, C.; Galloway, T.S. Microplastics as contaminants in the marine environment: A review. Mar. Pollut. Bull. 2011, 62, 2588–2597. [Google Scholar] [CrossRef]
- Thompson, R.C.; Olsen, Y.; Mitchell, R.P.; Davis, A.; Rowland, S.J.; John, A.W.G.; McGonigle, D.; Russell, A.E. Lost at sea: Where is all the plastic? Science 2004, 304, 838. [Google Scholar] [CrossRef]
- European Chemical Agency (ECHA). Available online: https://echa.europa.eu/documents/10162/23665416/rest_microplastics_qa_v1.0_16524_en.pdf/c9849410-c360-d95b-e287-ae635b0b7b3f (accessed on 17 September 2020).
- Auta, H.S.; Emenike, C.U.; Fauziah, S.H. Distribution and importance of microplastics in the marine environment: A review of the source, fate, effect, and potential solution. Environ. Int. 2017, 102, 165–176. [Google Scholar] [CrossRef]
- Frias, J.P.G.L.; Nash, R. Microplastics: Finding a consensus on the definition. Mar. Pollut. Bull. 2019, 138, 145–147. [Google Scholar] [CrossRef] [PubMed]
- Castañeda, R.A.; Avlijas, S.; Simard, M.A.; Ricciardi, A. Microplastic pollution in St. Lawrence River sediments. Can. J. Fish. Aquat. Sci. 2014, 70, 1767–1771. [Google Scholar]
- Khoironi, A.; Anggoro, S.; Sudarno, S. Evaluation of the Interaction among Micoalgae Spirulina sp, Plastics Polyethylene Terephtalate and Polypropylene in Freshwater Environment. J. Ecol. Eng. 2019, 20, 161–173. [Google Scholar] [CrossRef]
- Ho, B.T.; Roberts, T.K.; Lucas, S. An overview on biodegradation of polystyrene and modified polystyrene: The microbial approach. Crit. Rev. Biotechnol. 2018, 38, 308–320. [Google Scholar] [CrossRef] [PubMed]
- Chandra, M.; Kohn, C.; Pawlitz, J.; Powell, G. Real Cost of Styrofoam; Saint Luis University: St. Louis, MO, USA, 2016; Available online: https://greendiningalliance.org/wp-content/uploads/2016/12/real-cost-of-styrofoam_written-report.pdf (accessed on 8 November 2020).
- Rummel, C.D.; Jahnke, A.; Gorokhova, E.; Kühnel, D.; Schmitt-Jansen, M. Impacts of biofilm formation on the fate and potential effects of microplastic in the aquatic environment. Environ. Sci. Technol. Lett. 2017, 4, 258–267. [Google Scholar] [CrossRef] [Green Version]
- Li, S.; Wang, P.; Zhang, C.; Zhou, X.; Yin, Z.; Hu, T.; Hu, D.; Liu, C.; Zhu, L. Influence of polystyrene microplastics on the growth, photosynthetic efficiency and aggregation of freshwater microalgae Chlamydomonas reinhardtii. Sci. Total Environ. 2020, 714, 136767. [Google Scholar] [CrossRef] [PubMed]
- Lagarde, F.; Olivier, O.; Zanella, M.; Daniel, P.; Hiard, S.; Caruso, A. Microplastic interactions with freshwater microalgae: Hetero-aggregation and changes in plastic density appear strongly dependent on polymer type. Environ. Pollut. 2016, 215, 331–339. [Google Scholar] [CrossRef] [PubMed]
- Fachrul, M.F.; Rinanti, A. Bioremediasi Pencemar Mikroplastik di Ekosistim Perairan Menggunakan Bakteri Indigenous (Bioremediation of Microplastic Pollutant in Aquatic Ecosystem by Indigenous Bacteria). Semin. Nas. Kota Berkelanjutan 2018, 1, 302. [Google Scholar] [CrossRef]
- Fahrenfeld, N.L.; Arbuckle-Keil, G.; Beni, N.N.; Bartelt-Hunt, S.L. Source tracking microplastics in the freshwater environment. TrAC Trends Anal. Chem. 2019, 112, 248–254. [Google Scholar] [CrossRef]
- Prata, J.C.; Lavorante, B.; BS MMontenegro, M.; Guilhermino, L. Influence of microplastics on the toxicity of the pharmaceuticals procainamide and doxycycline on the marine microalgae Tetraselmis chuii. Aquat. Toxicol. 2018, 197, 143–152. [Google Scholar] [CrossRef]
- Harding, S. Marine Debris: Understanding, Preventing and Mitigating the Significant Adverse Impacts on Marine and Coastal Biodiversity, CBD Technical Series. Biodiversity 2016. [Google Scholar] [CrossRef]
- Bhattacharya, P.; Lin, S.; Turner, J.P.; Ke, P.C. Physical adsorption of charged plastic nanoparticles affects algal photosynthesis. J. Phys. Chem. 2010, C 114, 16556–16561. [Google Scholar] [CrossRef]
- Marquez, F.J.; Sasaki, K.; Kakizono, T.; Nishio, N.; Nagai, S. Growth characteristics of Spirulina platensis in mixotrophic and heterotrophic conditions. J. Ferment. Bioeng. 1993, 76, 408–410. [Google Scholar] [CrossRef]
- Song, Y.; Qiu, R.; Hu, J.; Li, X.; Zhang, X.; Chen, Y.; Wu, W.M.; He, D. Biodegradation and disintegration of expanded polystyrene by land snails Achatina fulica. Sci. Total Environ. 2020, 746, 141289. [Google Scholar] [CrossRef]
- Troell, M. Integrated Marine and Brackishwater Aquaculture in Tropical Regions’, Integrated Mariculture-A Global Review-FAO Fisheries and Aquaculture Technical Paper N0. 529, (October 2013). 2009, pp. 47–132. Available online: http://linkinghub.elsevier.com/retrieve/pii/S0044848603004691 (accessed on 16 October 2020).
- Besseling, E.; Wang, B.; Lurling, M.; Koelmans, A.A. Nanoplastic affects growth of S. obliquus and reproduction of D. magna. Environ. Sci. Technol. 2014, 48, 12336–12343. [Google Scholar] [CrossRef]
- Sjollema, S.B.; Redondo-Hasselerharm, P.; Leslie, H.A.; Kraak, M.H.S.; Vethaak, A.D. Do plastic particles affect microalgal photosynthesis and growth? Aquat. Toxicol. 2016, 170, 259–261. [Google Scholar] [CrossRef] [PubMed]
- Canniff, P.M.; Hoang, T.C. Microplastic ingestion by Daphnia magna and its enhancement on algal growth. Sci. Total Environ. 2018, 633, 500–507. [Google Scholar] [CrossRef] [Green Version]
- Fakhri, M.; Antika, P.W.; Ekawati, A.W.; Arifin, N.B. Pertumbuhan, Kandungan Pigmen, dan Protein Spirulina platensis yang Dikultur Pada Ca(NO3)2 Dengan Dosis yang Berbeda. J. Aquac. Fish Health 2020, 9, 38–47. [Google Scholar] [CrossRef]
- Astuti, W.; Jamali, A.; Amin, M. Desalinasi Air Payau Menggunakan Surfactant Modified Zeolite (SMZ). J. Zeolit Indones. 2007, 6, 32–37. [Google Scholar]
- Nur, M.A.; Hadiyanto, H. Enhancement of chlorella vulgaris biomass cultivated in pome medium as biofuel feedstock under mixotrophic conditions. J. Eng. Technol. Sci. 2015, 47, 487–497. [Google Scholar] [CrossRef] [Green Version]
- Islam, M.T. Learning SPSS without Pain: A Comprehensive Manual for Data Analysis and Interpretation of Outputs, 1st ed.; ASA Publications: Dhaka, Bangladesh, 2020. [Google Scholar] [CrossRef]
- Nandiyanto, A.B.D.; Oktiani, R.; Ragadhita, R. How to read and interpret ftir spectroscope of organic material. Indones. J. Sci. Technol. 2019, 4, 97–118. [Google Scholar] [CrossRef]
- Mohamed, M.A.; Jaafar, J.; Ismail, A.F.; Othman, M.H.D.; Rahman, M.A. Fourier Transform Infrared (FTIR) Spectroscopy, Membrane Characterization; Elsevier B.V.: Amsterdam, The Netherlands, 2017. [Google Scholar] [CrossRef]
- Dmytryk, A.; Saeid, A.; Chojnacka, K. Biosorption of microelements by spirulina: Towards technology of mineral feed supplements. Sci. World J. 2014, 2014, 1–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sujatno, A.; Salam, R.; Bandriyana, B.; Dimyati, A. Studi Scanning Electron Microscopy(SEM) untuk Karakterisasi Proses Oxidasi Paduan Zirkonium. J. Forum Nukl. 2015, 9, 44–50. [Google Scholar] [CrossRef]
- Abd Mutalib, M.; Rahman, M.A.; Othman, M.H.D.; Ismail, A.F.; Jaafar, J. Scanning Electron Microscopy (SEM) and Energy-Dispersive X-ray (EDX) Spectroscopy, Membrane Characterization; Elsevier B.V.: Amsterdam, The Netherlands, 2017. [Google Scholar] [CrossRef]
- Chentir, I.; Hamdi, M.; Doumandji, A.; HadjSadok, A.; Ouada, H.B.; Nasri, M.; Jridi, M. Enhancement of extracellular polymeric substances (EPS) production in Spirulina (Arthrospira sp.) by two-step cultivation process and partial characterization of their polysaccharidic moiety. Int. J. Biol. Macromol. 2017, 105, 1412–1420. [Google Scholar] [CrossRef]
- Khoironi, A.; Hadiyanto, H.; Anggoro, S.; Sudarno, S. Evaluation of polypropylene plastic degradation and microplastic identification in sediments at Tambak Lorok coastal area, Semarang, Indonesia. Mar. Pollut. Bull. 2020, 151, 110868. [Google Scholar] [CrossRef] [PubMed]
- Dianratri, I.; Hadiyanto, H.; Khoironi, A.; Pratiwi, W.Z. The influence of polypropylene and polyethylene microplastics on the quality of spirulina sp. Harvests. Food Res. 2020, 4, 1739–1743. [Google Scholar] [CrossRef]
Treatments | Sum | Average µ (day−1) | Variance |
---|---|---|---|
Control (A) | 0.1437 | 0.035925 | 1.2425 × 10−6 |
150 mg/500 mL (B) | 0.141 | 0.03525 | 0.00000259 |
250 mg/500 mL (C) | 0.107 | 0.02675 | 0.00000055 |
400 mg/500 mL (D) | 0.0817 | 0.020425 | 2.49167 × 10−7 |
Source of Variation | df | MS | F | p-Value | F Crit |
---|---|---|---|---|---|
Between Groups | 3 | 0.000218974 | 189.1104714 | 2.2956 × 10−10 | 3.49029482 |
Within Groups | 12 | 1.15792 × 10−6 | |||
Total | 15 |
Treatment Pair | Tukey HSD Q Statistic | Tukey HSD p-Value | Tukey HSD Interfence |
---|---|---|---|
A–B | 1.2546 | 0.7948595 | insignificant |
A–C | 17.0529 | 0.0010053 | ** p < 0.01 |
A–D | 28.8087 | 0.0010053 | ** p < 0.01 |
B–C | 15.7983 | 0.0010053 | ** p < 0.01 |
B–D | 27.5541 | 0.0010053 | ** p < 0.01 |
C–D | 11.7558 | 0.0010053 | ** p < 0.01 |
S. platensis Content | Styrofoam Levels | |||
---|---|---|---|---|
S. platensis A (Control) | S. platensis B + 150 mg | S. platensis C + 250 mg | S. platensis D + 400 mg | |
Carbon, C | 64.3 | 85.23 | 67.15 | 62.92 |
Nitrogen, N | 18.59 | - | 16.5 | 23.69 |
Natrium Oxide, Na2O | 4.14 | 5.39 | 5.14 | 3.75 |
Magnesium Oxide, MgO | 0.51 | 0.2 | 0.27 | 0.43 |
Alumina, Al2O3 | - | - | - | - |
Silica Dioxide, SiO2 | - | - | - | 0.31 |
Phosphor Pentoxide, P2O5 | 2.29 | 1.67 | 1.75 | 2.55 |
Sulfide, SO3 | 1.95 | 2.15 | 2.3 | 1.76 |
Chloride, Cl | 4.56 | 3.58 | 4.9 | 2.8 |
Kalium Oxide, K2O | 3.67 | 1.78 | 1.99 | 1.78 |
Calcium Oxide CaO | - | - | - | - |
Cuprum (II) Oxide, CuO | - | - | - | - |
Zinc Oxide, ZnO | - | - | - | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hadiyanto, H.; Haris, A.; Muhammad, F.; Afiati, N.; Khoironi, A. Interaction between Styrofoam and Microalgae Spirulina platensis in Brackish Water System. Toxics 2021, 9, 43. https://doi.org/10.3390/toxics9030043
Hadiyanto H, Haris A, Muhammad F, Afiati N, Khoironi A. Interaction between Styrofoam and Microalgae Spirulina platensis in Brackish Water System. Toxics. 2021; 9(3):43. https://doi.org/10.3390/toxics9030043
Chicago/Turabian StyleHadiyanto, Hadiyanto, Amnan Haris, Fuad Muhammad, Norma Afiati, and Adian Khoironi. 2021. "Interaction between Styrofoam and Microalgae Spirulina platensis in Brackish Water System" Toxics 9, no. 3: 43. https://doi.org/10.3390/toxics9030043
APA StyleHadiyanto, H., Haris, A., Muhammad, F., Afiati, N., & Khoironi, A. (2021). Interaction between Styrofoam and Microalgae Spirulina platensis in Brackish Water System. Toxics, 9(3), 43. https://doi.org/10.3390/toxics9030043