Integrated Metabolomic and Transcriptomic Analysis Revealed the Mechanism of BHPF Exposure in Endometrium
<p>BHPF inhibits the cell viability of endometrial cells. (<b>A</b>) Viability curve at 48 h post-treatment, reflecting the percentage of viable cells across a BHPF gradient. (<b>B</b>) Cell viability of Ishikawa cells after treatment for 48 h was measured by CCK-8 assays. Data are presented as the mean ± SD of at least 3 independent experiments. * <span class="html-italic">p</span> < 0.05, ** <span class="html-italic">p</span> < 0.01. Abbreviation: EC50, median effect concentration; SD, standard deviation; n.s, not significant.</p> "> Figure 2
<p>Metabolomics profiles of Ishikawa cells exposed to BHPF. (<b>A</b>) Numbers of up- and downregulated DEMs in different BHPF-treatment groups. (<b>B</b>,<b>C</b>) Heatmap of hierarchical clustering analysis for DEMs between different groups. (<b>D</b>) Volcano plot of BHPF-induced DEMs in the control vs. 0.5 μM and 5 μM groups. (<b>E</b>) Up- and downregulation of the top 20 DEMs. Each group consisted of <span class="html-italic">n</span> = 3, * <span class="html-italic">p</span> < 0.05, ** <span class="html-italic">p</span> < 0.01, *** <span class="html-italic">p</span> < 0.001.</p> "> Figure 3
<p>Chord plot analysis of interrelation of DEMs in the two BHPF-treatment groups. (<b>A</b>) Chord plot analysis of interrelation of DEMs between Control and low-exposure group. (<b>B</b>) Chord plot analysis of interrelation of DEMs between Control and high-exposure group.</p> "> Figure 4
<p>Enrichment analysis of DEMs. (<b>A</b>,<b>C</b>) KEGG enrichment based on the rich factor for DEMs in the control vs. 0.5 μM and 5 μM BHPF exposure groups. (<b>B</b>,<b>D</b>) Differential abundance score for DEMs. (<b>E</b>,<b>F</b>) Pathway analysis for DEMs in different groups. * <span class="html-italic">p</span> < 0.05, ** <span class="html-italic">p</span> < 0.01, *** <span class="html-italic">p</span> < 0.001.</p> "> Figure 5
<p>Transcriptomic analysis in Ishikawa cells after BHPF exposure. (<b>A</b>) Volcano plot illustrating the DEGs identified in the transcriptomes of the control vs. 0.5 μM BHPF exposure group. (<b>B</b>) Volcano plot of DEGs of the control vs. 5 μM BHPF exposure group. (<b>C</b>) Number of upregulated and downregulated DEGs in different comparison groups. (<b>D</b>) Venn diagram showing the significantly DEGs in each pairwise comparison and the overlap among them. (<b>E</b>,<b>F</b>) Heatmap of DEGs between the different comparison groups. Each group consisted of <span class="html-italic">n</span> = 3.</p> "> Figure 6
<p>Enrichment analysis of DEGs. (<b>A</b>,<b>B</b>) Scatter plot of the top 20 significantly enriched GO terms. (<b>C</b>,<b>D</b>) KEGG pathway enrichment of DEGs from different comparison groups.</p> "> Figure 7
<p>Joint analyses of differential transcripts and metabolites. (<b>A</b>) Bubble plot of joint KEGG enrichment analysis between the DEMs and DEGs in the control vs. 0.5 μM BHPF exposure group. (<b>B</b>) Bubble plot joint KEGG enrichment analysis between the DEMs and DEGs in the control vs. 5 μM BHPF exposure group.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Cell Culture and Exposure to Chemicals
2.3. Cell Viability Assay
2.4. Cell Treatment for Metabolomics and Transcriptomics
2.5. Quantitative Reverse Transcription PCR
2.6. Statistical Analyses
2.6.1. Metabolomics Data Analysis
2.6.2. Transcriptomic Data Analysis
2.6.3. Joint Analysis
3. Results
3.1. Effects of BHPF on Ishikawa Cell Viability
3.2. Metabolomic Analysis
3.2.1. Effects of BHPF Exposure on Metabolic Patterns in Ishikawa Cells
3.2.2. Differentially Expressed Metabolite Identification
3.2.3. KEGG Pathway Enrichment Analysis
3.3. Transcriptomic Analysis
3.3.1. Transcriptome Sequencing and DEG Identification
3.3.2. GO and KEGG Enrichment Analysis
3.4. Joint Analysis of Metabolome and Transcriptome
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dai, Z.; Li, Y.F.; Yang, S.G.; Zhao, N.; Zhang, X.L.; Xu, J. Kinetics and thermal properties of epoxy resins based on bisphenol fluorene structure. Eur. Polym. J. 2009, 45, 1941–1948. [Google Scholar] [CrossRef]
- den Braver-Sewradj, S.P.; van Spronsen, R.; Hessel, E.V.S. Substitution of bisphenol A: A review of the carcinogenicity, reproductive toxicity, and endocrine disruption potential of alternative substances. Crit. Rev. Toxicol. 2020, 50, 128–147. [Google Scholar] [CrossRef]
- Liu, W.; Wang, J.; Qiu, Q.H.; Ji, L.; Wang, C.Y.; Zhang, M.L. Synthesis and characterisation of 9,9-bis(4-hydroxyphenyl)-fluorene catalysed by cation exchanger. Pigm. Resin. Technol. 2008, 37, 9–15. [Google Scholar] [CrossRef]
- Zhang, Z.B.; Hu, Y.; Guo, J.L.; Yu, T.; Sun, L.B.; Xiao, X.; Zhu, D.S.; Nakanishi, T.; Hiromori, Y.; Li, J.Y.; et al. Fluorene-9-bisphenol is anti-oestrogenic and may cause adverse pregnancy outcomes in mice. Nat. Commun. 2017, 8, 14585. [Google Scholar] [CrossRef]
- Jin, H.B.; Zhu, L.Y. Occurrence and partitioning of bisphenol analogues in water and sediment from Liaohe River Basin and Taihu Lake, China. Water Res. 2016, 103, 343–351. [Google Scholar] [CrossRef]
- Fan, X.; Guo, J.; Jia, X.; Mao, X.; Zhou, Y.; Wang, Y.; Guo, X.; Shen, J.; Huai, N.; Zhang, K.; et al. Reproductive Toxicity and Teratogenicity of Fluorene-9-bisphenol on Chinese Medaka (Oryzias sinensis): A Study from Laboratory to Field. Environ. Sci. Technol. 2023, 57, 561–569. [Google Scholar] [CrossRef] [PubMed]
- Ozkan-Kotiloglu, S.; Arslan, P.; Akca, G.; Gunal, A.C. Are BPA-free plastics safe for aquatic life?—Fluorene-9-bisphenol induced thyroid-disrupting effects and histopathological alterations in adult zebrafish (Danio rerio). Comp. Biochem. Physiol. C Toxicol. Pharmacol. 2022, 260, 109419. [Google Scholar]
- Jin, M.; Dang, J.; Paudel, Y.N.; Wang, X.; Wang, B.; Wang, L.; Li, P.; Sun, C.; Liu, K. The possible hormetic effects of fluorene-9-bisphenol on regulating hypothalamic-pituitary-thyroid axis in zebrafish. Sci. Total Environ. 2021, 776, 145963. [Google Scholar] [CrossRef]
- Mi, P.; Tang, Y.-Q.; Feng, X.-Z. Acute fluorene-9-bisphenol exposure damages early development and induces cardiotoxicity in zebrafish (Danio rerio). Ecotoxicol. Environ. Safe 2020, 202, 110922. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Xu, Y.; Zhang, S.; Zhao, C.; Feng, D.; Feng, X. Fluorene-9-bisphenol exposure decreases locomotor activity and induces lipid-metabolism disorders by impairing fatty acid oxidation in zebrafish. Life Sci. 2022, 294, 120379. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.M.; Ling, Y.H.; Jiang, J.H.; Wang, D.; Wang, J.X.; Li, J.Y.; Wang, X.D.; Wang, H.L. Differential mechanisms regarding triclosan bisphenol A and fluorene-9-bisphenol induced zebrafish lipid-metabolism disorders by RNA-Seq. Chemosphere 2020, 251, 126318. [Google Scholar] [CrossRef]
- Yang, L.; Guo, X.; Mao, X.T.; Jia, X.J.; Zhou, Y.; Hu, Y.; Sun, L.B.; Guo, J.L.; Xiao, H.; Zhang, Z.B. Hepatic toxicity of fluorene-9-bisphenol (BHPF) on CD-1 mice. Ecotoxicol. Environ. Safe 2021, 219, 112298. [Google Scholar] [CrossRef]
- Jia, Z.Z.; Wang, H.Y.; Feng, Z.Y.; Zhang, S.Z.; Wang, L.N.; Zhang, J.W.; Liu, Q.Q.; Zhao, X.; Feng, D.F.; Feng, X.Z. Fluorene-9-bisphenol exposure induces cytotoxicity in mouse oocytes and causes ovarian damage. Ecotoxicol. Environ. Safe 2019, 180, 168–178. [Google Scholar] [CrossRef] [PubMed]
- Meng, F.; Li, X.; Li, J.; Zhu, Y.; Su, M.; Zhang, B.; Wang, Y.; Ge, R.S. Fluornen-9-bisphenol increases Leydig cell proliferation but inhibits maturation in pubertal male rats via interacting with androgen receptor as an antagonist and estrogen receptor alpha as an agonist. Chem. Biol. Interact. 2022, 363, 110024. [Google Scholar] [CrossRef] [PubMed]
- Zuo, X.; Zhang, S.; Bai, H.; Yu, Q.; Zhao, Q.; Sun, M.; Zhao, X.; Feng, X. Effects of fluorene-9-bisphenol exposure on anxiety-like and social behavior in mice and protective potential of exogenous melatonin. Environ. Sci. Pollut. Res. Int. 2024, 31, 29385–29399. [Google Scholar] [CrossRef]
- Ji, X.M.; Shi, L.L.; Yin, X.; Huai, Z.Q.; Li, Y.M.; Ren, J.Y.; Fu, Y.Y.; Du, Y.R.; Gao, Y.; Song, L.; et al. Sex- and developmental stage-dependent effects of fluorene-9-bisphenol exposure on emotional behaviors in mice. Chemosphere 2019, 225, 890–896. [Google Scholar] [CrossRef]
- Yin, F.; Huang, X.; Lin, X.; Chan, T.F.; Lai, K.P.; Li, R. Analyzing the synergistic adverse effects of BPA and its substitute, BHPF, on ulcerative colitis through comparative metabolomics. Chemosphere 2022, 287, 132160. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Zhang, W.; Cui, N.; Xiao, Z.M.; Zhao, W.Y.; Wang, R.G.; Giesy, J.P.; Su, X.O. Fluorene-9-bisphenol regulates steroidogenic hormone synthesis in H295R cells through the AC/cAMP/PKA signaling pathway. Ecotoxicol. Environ. Safe 2022, 243, 113982. [Google Scholar] [CrossRef] [PubMed]
- Jiao, X.F.; Ding, Z.M.; Meng, F.; Zhang, X.Y.; Wang, Y.S.; Chen, F.; Duan, Z.Q.; Wu, D.; Zhang, S.X.; Miao, Y.L.; et al. The toxic effects of Fluorene-9-bisphenol on porcine oocyte in vitro maturation. Environ. Toxicol. 2020, 35, 152–158. [Google Scholar] [CrossRef]
- Zhang, S.X.; Sun, B.X.; Wang, D.L.; Liu, Y.; Li, J.; Qi, J.J.; Zhang, Y.H.; Bai, C.Y.; Liang, S. Chlorogenic Acid Ameliorates Damage Induced by Fluorene-9-Bisphenol in Porcine Sertoli Cells. Front. Pharmacol. 2021, 12, 678772. [Google Scholar] [CrossRef] [PubMed]
- Jo, Y.S.; Ko, H.S.; Kim, A.Y.; Jo, H.G.; Kim, W.J.; Choi, S.K. Effects of polycyclic aromatic hydrocarbons on the proliferation and differentiation of placental cells. Reprod. Biol. Endocrinol. 2022, 20, 47. [Google Scholar] [CrossRef]
- Wang, L.; Zhuang, T.; Li, F.; Wei, W. Fluorene-9-bisphenol inhibits epithelial-mesenchymal transition of human endometrial cancer Ishikawa cells by repressing TGF-beta signaling pathway. Environ. Sci. Pollut. Res. Int. 2019, 26, 27407–27413. [Google Scholar] [CrossRef] [PubMed]
- Jin, Z.Y.; Liu, C.K.; Hong, Y.Q.; Liang, Y.X.; Liu, L.; Yang, Z.M. BHPF exposure impairs mouse and human decidualization. Environ. Pollut. 2022, 304, 119222. [Google Scholar] [CrossRef]
- Serim, I.; Demirel, H.H.; Zemheri-Navruz, F.; Ince, S. Taurine exhibits antioxidant, anti-inflammatory, and antiapoptotic effects against pyraclostrobin exposure in rats. Toxicol. Res. 2024, 13, tfae120. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.F.; Xie, Z.X.; Wu, M.X.; Chen, Y.Y.; Wang, X.; Li, X.K.; Liu, F.L. The role of taurine through endoplasmic reticulum in physiology and pathology. Biochem. Pharmacol. 2024, 226, 116386. [Google Scholar] [CrossRef] [PubMed]
- Henry, W.S.; Muller, S.; Yang, J.S.; Innes-Gold, S.; Das, S.; Reinhardt, F.; Sigmund, K.; Phadnis, V.V.; Wan, Z.; Eaton, E.; et al. Ether lipids influence cancer cell fate by modulating iron uptake. bioRxiv 2024. [Google Scholar] [CrossRef]
- Papin, M.; Fontaine, D.; Goupille, C.; Figiel, S.; Domingo, I.; Pinault, M.; Guimaraes, C.; Guyon, N.; Cartron, P.F.; Emond, P.; et al. Endogenous ether lipids differentially promote tumor aggressiveness by regulating the SK3 channel. J. Lipid Res. 2024, 65, 100544. [Google Scholar] [CrossRef]
- Tharp, K.M.; Kersten, K.; Maller, O.; Timblin, G.A.; Stashko, C.; Canale, F.P.; Menjivar, R.E.; Hayward, M.-K.; Berestjuk, I.; ten Hoeve, J.; et al. Tumor-associated macrophages restrict CD8+ T cell function through collagen deposition and metabolic reprogramming of the breast cancer microenvironment. Nat. Cancer 2024, 5, 1045–1062. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Duan, J.J.; Guo, Y.F.; Chen, J.J.; Chen, T.Q.; Wang, J.; Yu, S.C. Targeting the glutamine-arginine-proline metabolism axis in cancer. J. Enzyme Inhib. Med. Chem. 2024, 39, 2367129. [Google Scholar] [CrossRef] [PubMed]
- Young, V.J.; Brown, J.K.; Maybin, J.; Saunders, P.T.; Duncan, W.C.; Horne, A.W. Transforming growth factor-beta induced Warburg-like metabolic reprogramming may underpin the development of peritoneal endometriosis. J. Clin. Endocrinol. Metab. 2014, 99, 3450–3459. [Google Scholar] [CrossRef]
- Li, C.; Liu, F.Y.; Shen, Y.; Tian, Y.; Han, F.J. Research progress on the mechanism of glycolysis in ovarian cancer. Front. Immunol. 2023, 14, 1284853. [Google Scholar] [CrossRef]
- Prochownik, E.V.; Wang, H. The Metabolic Fates of Pyruvate in Normal and Neoplastic Cells. Cells 2021, 10, 762. [Google Scholar] [CrossRef] [PubMed]
- Budczies, J.; Brockmoller, S.F.; Muller, B.M.; Barupal, D.K.; Richter-Ehrenstein, C.; Kleine-Tebbe, A.; Griffin, J.L.; Oresic, M.; Dietel, M.; Denkert, C.; et al. Comparative metabolomics of estrogen receptor positive and estrogen receptor negative breast cancer: Alterations in glutamine and beta-alanine metabolism. J. Proteomics 2013, 94, 279–288. [Google Scholar] [CrossRef]
- Wilson, K.; Hess, J.; Zhang, G.F.; Brunengraber, H.; Tochtrop, G. Metabolism of Beta-Alanine in Rat Liver: Degradation to Acetyl-CoA and Carboxylation to 2-(aminomethyl)-malonate. FASEB J. 2017, 31, 655.3. [Google Scholar] [CrossRef]
- Schnuck, J.K.; Sunderland, K.L.; Kuennen, M.R.; Vaughan, R.A. Characterization of the metabolic effect of beta-alanine on markers of oxidative metabolism and mitochondrial biogenesis in skeletal muscle. J. Exerc. Nutrition Biochem. 2016, 20, 34–41. [Google Scholar] [CrossRef] [PubMed]
- Desvaux, E.; Hemon, P.; Soret, P.; Le Dantec, C.; Chatzis, L.; Cornec, D.; Devauchelle-Pensec, V.; Consortium, P.C.; Elouej, S.; Duguet, F.; et al. High-content multimodal analysis supports the IL-7/IL-7 receptor axis as a relevant therapeutic target in primary Sjogren’s syndrome. J. Autoimmun. 2023, 149, 103147. [Google Scholar] [CrossRef]
- Wang, C.; Kong, L.; Kim, S.; Lee, S.; Oh, S.; Jo, S.; Jang, I.; Kim, T.D. The Role of IL-7 and IL-7R in Cancer Pathophysiology and Immunotherapy. Int. J. Mol. Sci. 2022, 23, 10412. [Google Scholar] [CrossRef] [PubMed]
- Al Barashdi, M.A.; Ali, A.; McMullin, M.F.; Mills, K. Protein tyrosine phosphatase receptor type C (PTPRC or CD45). J. Clin. Pathol. 2021, 74, 548–552. [Google Scholar] [CrossRef]
- Tchilian, E.Z.; Beverley, P.C. Altered CD45 expression and disease. Trends Immunol. 2006, 27, 146–153. [Google Scholar] [CrossRef] [PubMed]
- Massé, K.; Dale, N. Purines as potential morphogens during embryonic development. Purinerg. Signal. 2012, 8, 503–521. [Google Scholar] [CrossRef]
- Fausther, M.; Lecka, J.; Kukulski, F.; Lévesque, S.A.; Pelletier, J.; Zimmermann, H.; Dranoff, J.A.; Sévigny, J. Cloning, purification, and identification of the liver canalicular ecto-ATPase as NTPDase8. Am. J. Physiol.-Gastr. L 2007, 292, G785–G795. [Google Scholar] [CrossRef]
- Tani, H.; Li, B.; Kusu, T.; Okumura, R.; Nishimura, J.; Okuzaki, D.; Motooka, D.; Arakawa, S.; Mori, A.; Yoshihara, T.; et al. The ATP-hydrolyzing ectoenzyme E-NTPD8 attenuates colitis through modulation of P2X4 receptor-dependent metabolism in myeloid cells. Proc. Natl. Acad. Sci. USA 2021, 118, e2100594118. [Google Scholar] [CrossRef] [PubMed]
- An, Y.; Cai, H.; Yang, Y.; Zhang, Y.; Liu, S.; Wu, X.; Duan, Y.; Sun, D.; Chen, X. Identification of ENTPD8 and cytidine in pancreatic cancer by metabolomic and transcriptomic conjoint analysis. Cancer Sci. 2018, 109, 2811–2821. [Google Scholar] [CrossRef]
- Jin, G.Z.; Zhang, Y.J.; Cong, W.M.; Wu, X.Y.; Wang, X.J.; Wu, S.Y.; Wang, S.Y.; Zhou, W.P.; Yuan, S.X.; Gao, H.; et al. Phosphoglucomutase 1 inhibits hepatocellular carcinoma progression by regulating glucose trafficking. PLoS Biol. 2018, 16, e2006483. [Google Scholar] [CrossRef]
- Li, Y.P.; Liang, R.H.; Sun, M.M.; Li, Z.; Sheng, H.; Wang, J.Y.; Xu, P.J.; Liu, S.P.; Yang, W.C.; Lu, B.; et al. AMPK-dependent phosphorylation of HDAC8 triggers PGM1 expression to promote lung cancer cell survival under glucose starvation. Cancer Lett. 2020, 478, 82–92. [Google Scholar] [CrossRef]
- Krause, P.N.; McGeorge, G.; McPeek, J.L.; Khalid, S.; Nelin, L.D.; Liu, Y.; Chen, B. Pde3a and Pde3b regulation of murine pulmonary artery smooth muscle cell growth and metabolism. Physiol. Rep. 2024, 12, e70089. [Google Scholar] [CrossRef] [PubMed]
- From PDE3B to the regulation of energy homeostasis. Curr. Opin. Pharmacol. 2011, 11, 676–682. [CrossRef] [PubMed]
- Sha, Y.; Liu, W.; Li, S.; Osadchuk, L.V.; Chen, Y.; Nie, H.; Gao, S.; Xie, L.; Qin, W.; Zhou, H.; et al. Deficiency in AK9 causes asthenozoospermia and male infertility by destabilising sperm nucleotide homeostasis. EBioMedicine 2023, 96, 104798. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tan, X.; Ouyang, N.; Wang, W.; Qiu, J. Integrated Metabolomic and Transcriptomic Analysis Revealed the Mechanism of BHPF Exposure in Endometrium. Toxics 2025, 13, 100. https://doi.org/10.3390/toxics13020100
Tan X, Ouyang N, Wang W, Qiu J. Integrated Metabolomic and Transcriptomic Analysis Revealed the Mechanism of BHPF Exposure in Endometrium. Toxics. 2025; 13(2):100. https://doi.org/10.3390/toxics13020100
Chicago/Turabian StyleTan, Xin, Nengyong Ouyang, Wenjun Wang, and Junting Qiu. 2025. "Integrated Metabolomic and Transcriptomic Analysis Revealed the Mechanism of BHPF Exposure in Endometrium" Toxics 13, no. 2: 100. https://doi.org/10.3390/toxics13020100
APA StyleTan, X., Ouyang, N., Wang, W., & Qiu, J. (2025). Integrated Metabolomic and Transcriptomic Analysis Revealed the Mechanism of BHPF Exposure in Endometrium. Toxics, 13(2), 100. https://doi.org/10.3390/toxics13020100