Exogenously Applied Triacontanol Mitigates Cadmium Toxicity in Vigna radiata L. by Optimizing Growth, Nutritional Orchestration, and Metal Accumulation
<p>Effect of TRIA and Cd on proline and total soluble protein content of <span class="html-italic">V. radiata</span>. Values demonstrate means ± SE of four replicates (n = 4). Non-identical letters over error bars exhibit significant differences between the treatments at <span class="html-italic">p</span> ≤ 0.05. C = control, Cd = 20 mg kg<sup>−1</sup> Cd, TRIA1 = 10 µM L<sup>−1</sup> TRIA, TRIA2 = 20 µM L<sup>−1</sup> TRIA, TRIA3 = 30 µM L<sup>−1</sup> TRIA.</p> "> Figure 2
<p>Effect of TRIA and Cd on photosynthetic rate, stomatal conductance, and transpiration rate of <span class="html-italic">V. radiata</span>. Values demonstrate means ± SE of four replicates (n = 4). Non-identical letters over error bars exhibit significant differences between the treatments at <span class="html-italic">p</span> ≤ 0.05. C = control, Cd = 20 mg kg<sup>−1</sup> Cd, TRIA1 = 10 µM L<sup>−1</sup> TRIA, TRIA2 = 20 µM L<sup>−1</sup> TRIA, TRIA3 = 30 µM L<sup>−1</sup> TRIA.</p> "> Figure 3
<p>Effect of TRIA and Cd on DDPH and total phenolic content of <span class="html-italic">V radiata</span>. Values demonstrate means ± SE of four replicates (n = 4). Non-identical letters over error bars exhibit significant differences between the treatments at <span class="html-italic">p</span> ≤ 0.05. C = control, Cd = 20 mg kg<sup>−1</sup> Cd, TRIA1 = 10 µM L<sup>−1</sup> TRIA, TRIA2 = 20 µM L<sup>−1</sup> TRIA, TRIA3 = 30 µM L<sup>−1</sup> TRIA.</p> "> Figure 4
<p>Pearson correlation for <span class="html-italic">V. radiata</span> under TRIA and Cd affect. Different abbreviated forms shown in figure as follows: Zn (Zn concentration in shoots), Mg (Mg concentration in shoots), k (K concentration in shoots), Na (Na concentration in shoots), Chl (chlorophyll), RL (root length), SL (shoot length), LA (leaf area), NP (net photosynthesis), SC (stomatal conductance), Caro (carotenoid content), Pro (protein content), Germ (germination percentage), MTI (metal tolerance index), AC (accumulation factor), Prol (proline concentration), Phe (phenolic level), NOL (number of leaves), SFW (shoot fresh weight), RFW (shoot fresh weight), RDW (root dry weight), SDW (shoot dry weight), ROT (rate of transpiration).</p> "> Figure 5
<p>Loading plots of principal component analysis (PCA) demonstrated a relation between physiological parameters and growth under TRIA treatment and Cd on <span class="html-italic">Vigna radiate</span> L. Various abbreviations used in the figures are as follows: Zn (Zn amount in shoots), Chl (chlorophyll concentration), RL (length of root), SL (length of shoot), LA (leaf area), NP (net photosynthesis), TR (rate of transpiration), SC (stomatal conductance), Caro (carotenoid concentration), pro (protein), MTI (metal tolerance index), AC (accumulation factor), Prol (proline concentration), Phe (phenolic content), Ger (percentage of germination).</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Measurement of Growth Parameters
2.2. Biomass Production Assessment
2.3. Plant Photosynthetic Pigment Determination
2.4. Assessment of Cd Accumulation
2.5. Estimation of Mineral Content
2.6. Assessment of Soluble Protein
2.7. Total Proline Content Determination
2.8. Analyzing the Gas Exchange Parameters
2.9. Assessment of Total Phenolic Content
2.10. Statistical Analysis
3. Results
3.1. Growth Parameters of V. radiata
3.2. Assessment of Biomass
3.3. Estimation of Photosynthetic Pigments and Cadmium Uptake Content
3.4. Determination of Plant Nutrition
3.5. Assessment of Soluble Protein and Proline Content
3.6. Assessment of Proline Content
3.7. Estimation of the Photosynthetic Rate
3.8. Determination of Stomatal Conductance
3.9. Estimation of the Transpiration Rate
3.10. Assessment of Total Phenolic Content
3.11. Estimation of 2,2-Diphenyl-1-Picrylhydrazyl (DDPH) Activity
3.12. Pearson Correlation
3.13. Principal Component Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rajput, V.D.; Minkina, T.; Kumari, A.; Singh, V.K.; Verma, K.K.; Mandzhieva, S.; Keswani, C. Coping with the Challenges of Abiotic Stress in Plants: New Dimensions in the Field Application of Nanoparticles. Plants 2021, 10, 1221. [Google Scholar] [CrossRef] [PubMed]
- Tang, J.; Zhang, J.; Ren, L.; Zhou, Y.; Gao, J.; Luo, L.; Yang, Y.; Peng, Q.; Huang, H.; Chen, A. Diagnosis of soil contamination using microbiological indices: A review on heavy metal pollution. J. Environ. Manag. 2019, 242, 121–130. [Google Scholar] [CrossRef]
- Shaheen, A.; Iqbal, J.; Hussain, S. Adaptive geospatial modeling of soil contamination by selected heavy metals in the industrial area of Sheikhupura, Pakistan. Int. J. Environ. Sci. Technol. 2019, 16, 4447–4464. [Google Scholar] [CrossRef]
- Sarwar, T.; Shahid, M.; Khalid, S.; Shah, A.H.; Ahmad, N.; Naeem, M.A.; Bakhat, H.F. Quantification and risk assessment of heavy metal build-up in soil–plant system after irrigation with untreated city wastewater in Vehari, Pakistan. Environ. Geochem. Health 2020, 42, 4281–4297. [Google Scholar] [CrossRef]
- Iqbal, Z.; Abbas, F.; Ibrahim, M.; Qureshi, T.I.; Gul, M.; Mahmood, A. Assessment of heavy metal pollution in Brassica plants and their impact on animal health in Punjab, Pakistan. Environ. Sci. Pollut. Res. 2021, 28, 22768–22778. [Google Scholar] [CrossRef]
- Lamine, S.; Petropoulos, G.P.; Brewer, P.A.; Bachari, N.E.I.; Srivastava, P.K.; Manevski, K.; Macklin, M.G. Heavy metal soil contamination detection using combined geochemistry and field spectroradiometry in the United Kingdom. Sensors 2019, 19, 762. [Google Scholar] [CrossRef]
- Ijaz, S.; Iqbal, J.; Abbasi, B.A.; Tufail, A.; Ullah, Z.; Yaseen, T.; Iqbal, R. Heavy metal–polluted arable land and its consequences: A global scenario. In Biochar-Assisted Remediation of Contaminated Soils Under Changing Climate; Elsevier: Amsterdam, The Netherlands, 2024; pp. 71–99. [Google Scholar] [CrossRef]
- Guo, B.; Hong, C.; Tong, W.; Xu, M.; Huang, C.; Yin, H.; Fu, Q. Health risk assessment of heavy metal pollution in a soil-rice system: A case study in the Jin-Qu Basin of China. Sci. Rep. 2020, 10, 11490. [Google Scholar] [CrossRef]
- Manzoor, M.; Gul, I.; Kallerhoff, J.; Arshad, M. Fungi-assisted phytoextraction of lead: Tolerance, plant growth–promoting activities and phytoavailability. Environ. Sci. Pollut. Res. 2019, 26, 23788–23797. [Google Scholar] [CrossRef]
- El Rasafi, T.; Oukarroum, A.; Haddioui, A.; Song, H.; Kwon, E.E.; Bolan, N.; Rinklebe, J. Cadmium stress in plants: A critical review of the effects, mechanisms, and tolerance strategies. Crit. Rev. Environ. Sci. Technol. 2020, 52, 675–726. [Google Scholar] [CrossRef]
- Mahajan, P.; Kaushal, J. Role of phytoremediation in reducing cadmium toxicity in soil and water. J. Toxicol. 2018, 2018, 4864365. [Google Scholar] [CrossRef]
- Di Toppi, L.S.; Gabbrielli, R. Response to cadmium in higher plants. Environ. Exp. Bot. 1999, 41, 105–130. [Google Scholar] [CrossRef]
- Song, Y.J.; Li, Y.; Leng, Y.; Li, S.W. 24-epibrassinolide improves differential cadmium tolerance of mung bean roots, stems, and leaves via amending antioxidative systems similar to that of abscisic acid. Environ. Sci. Pollut. Res. 2021, 28, 52032–52045. [Google Scholar] [CrossRef] [PubMed]
- Moradi, R.; Pourghasemian, N.; Naghizadeh, M. Effect of beeswax waste biochar on growth, physiology and cadmium uptake in saffron. J. Clean. Prod. 2019, 229, 1251–1261. [Google Scholar] [CrossRef]
- Kumar, N.; Kumar, V.; Bose, B.; Singhal, R.K. Cadmium toxicity in plants and alleviation through seed priming approach. Plant Physiol. Rep. 2021, 26, 647–660. [Google Scholar] [CrossRef]
- Sarkar, P.K.; Kumar, P.R.; Singh, A.K.; Bhatt, B.P. Effect of priming treatments on seed germination and seedling growth in bamboo [Dendrocalamus strictus (Roxb.) Nees]. Acta Ecol. Sin. 2020, 40, 128–133. [Google Scholar] [CrossRef]
- Sirisuntornlak, N.; Ullah, H.; Sonjaroon, W.; Arirob, W.; Anusontpornperm, S.; Datta, A. Effect of seed priming with silicon on growth, yield and nutrient uptake of maize under water-deficit stress. J. Plant Nutr. 2021, 44, 1869–1885. [Google Scholar] [CrossRef]
- Raza, M.A.S.; Aslam, M.U.; Valipour, M.; Iqbal, R.; Haider, I.; Mustafa, A.E.Z.M.; Elshamly, A.M. Seed priming with selenium improves growth and yield of quinoa plants suffering drought. Sci. Rep. 2024, 14, 886. [Google Scholar] [CrossRef]
- Biswas, S.; Seal, P.; Majumder, B.; Biswas, A.K. Efficacy of seed priming strategies for enhancing salinity tolerance in plants: An overview of the progress and achievements. Plant Stress 2023, 9, 100186. [Google Scholar] [CrossRef]
- Islam, S.; Mohammad, F. Triacontanol as a dynamic growth regulator for plants under diverse environmental conditions. Physiol. Mol. Biol. Plants 2020, 26, 871–883. [Google Scholar] [CrossRef]
- Asadi Karam, E.; Keramat, B. Foliar spray of triacontanol improves growth by alleviating oxidative damage in coriander under salinity. Indian J. Plant Physiol. 2017, 22, 120–124. [Google Scholar] [CrossRef]
- Naeem, M.; Ansari, A.A.; Aftab, T.; Shabbir, A.; Alam, M.M.; Khan, M.M.A.; Uddin, M. Application of triacontanol modulates plant growth and physiological activities of Catharanthus roseus (L.). Int. J. Bot. Stud. 2019, 4, 131–135. [Google Scholar]
- Zaid, A.; Mohammad, F.; Fariduddin, Q. Plant growth regulators improve growth, photosynthesis, mineral nutrient and antioxidant system under cadmium stress in menthol mint (Mentha arvensis L.). Physiol. Mol. Biol. Plants 2020, 26, 25–39. [Google Scholar] [CrossRef]
- Perveen, S.; Iqbal, M.; Parveen, A.; Akram, M.S.; Shahbaz, M.; Akber, S.; Mehboob, A. Exogenous triacontanol-mediated increase in phenolics, proline, activity of nitrate reductase, and shoot k+ confers salt tolerance in maize (Zea mays L.). Braz. J. Bot. 2017, 40, 1–11. [Google Scholar] [CrossRef]
- Islam, S.; Zaid, A.; Mohammad, F. Role of triacontanol in counteracting the ill effects of salinity in plants: A review. J. Plant Growth Regul. 2021, 40, 1–10. [Google Scholar] [CrossRef]
- Maresca, V.; Sorbo, S.; Keramat, B.; Basile, A. Effects of triacontanol on ascorbate-glutathione cycle in Brassica napus L. exposed to cadmium-induced oxidative stress. Ecotoxicol. Environ. Saf. 2017, 144, 268–274. [Google Scholar] [CrossRef]
- Sehrawat, N.; Yadav, M.; Sharma, A.K.; Kumar, V.; Bhat, K.V. Salt stress and mungbean [Vigna radiata (L.) Wilczek]: Effects, physiological perspective and management practices for alleviating salinity. Arch. Agron. Soil Sci. 2019, 65, 1287–1301. [Google Scholar] [CrossRef]
- Lambrides, C.J.; Godwin, I.D. Mungbean. In Pulses, Sugar and Tuber Crops; Springer: Berlin, Heidelberg, 2007; pp. 69–90. [Google Scholar] [CrossRef]
- Pataczek, L.; Zahir, Z.A.; Ahmad, M.; Rani, S.; Nair, R.; Schafleitner, R.; Hilger, T. Beans with Benefits—The Role of Mungbean (Vigna radiate) in a Changing Environment. Am. J. Plant Sci. 2018, 9, 1577. [Google Scholar] [CrossRef]
- Kumar, V.; Singhal, R.K.; Kumar, N.; Bose, B. Micro-Nutrient Seed Priming: A Pragmatic Approach Towards Abiotic Stress Management. In New Frontiers in Stress Management for Durable Agriculture; Springer: Singapore, 2020; pp. 231–255. [Google Scholar] [CrossRef]
- Arnon, D.I. Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiol. 1949, 24, 1. [Google Scholar] [CrossRef]
- Davis, D.J.; Gross, E.L. Protein-protein interactions of the light-harvesting chlorophyll ab protein. II. Evidence for two stages of cation independent association. Biochim. Biophys. Acta (BBA)-Bioenerg. 1976, 449, 554–564. [Google Scholar] [CrossRef]
- Moseley, G.; Jones, J.R. The physical digestion of perennial ryegrass (Lolium perenne) and white clover (Trifolium repens) in the foregut of sheep. Br. J. Nutr. 1984, 52, 381–390. [Google Scholar] [CrossRef]
- Chapman, J.F.; Dale, L.S. The determination of lithium isotope abundances with a dual-beam atomic absorption spectrometer. Anal. Chim. Acta 1976, 87, 91–95. [Google Scholar] [CrossRef]
- Al-Farraj, A.S.; Al-Otabi, T.G.; Al-Wabel, M.I. Accumulation coefficient and translocation factor of heavy metals through Ochradenus baccatus plant grown on mining area at MahadAD’Dahab, Saudi Arabia. WIT Trans. Ecol. Environ. 2009, 122, 459–468. [Google Scholar]
- Balint, A.F.; Röder, M.S.; Hell, R.; Galiba, G.; Börner, A. Mapping of QTLs affecting copper tolerance and the Cu, Fe, Mn and Zn contents in the shoots of wheat seedlings. Biol. Plant. 2007, 51, 129–134. [Google Scholar] [CrossRef]
- Sagner, S.; Kneer, R.; Wanner, G.; Cosson, J.P.; Deus-Neumann, B.; Zenk, M.H. Hyperaccumulation, complexation and distribution of nickel in Sebertia acuminata. Phytochemistry 1998, 47, 339–347. [Google Scholar] [CrossRef]
- Bates, L.S.; Waldren, R.P.; Teare, I.D. Rapid determination of free proline for water-stress studies. Plant Soil 1973, 39, 205–207. [Google Scholar] [CrossRef]
- Chen, I.N.; Chang, C.C.; Ng, C.C.; Wang, C.Y.; Shyu, Y.T.; Chang, T.L. Antioxidant and antimicrobial activity of Zingiberaceae plants in Taiwan. Plant Foods Hum. Nutr. 2008, 63, 15–20. [Google Scholar] [CrossRef]
- Zieslin, N.; Ben Zaken, R. Peroxidase activity and presence of phenolic substances in peduncles of rose flowers. Plant Physiol. Biochem. (Fr.) 1993, 31, 333–339. [Google Scholar]
- Giacomino, A.; Inaudi, P.; Silletta, G.; Diana, A.; Bertinetti, S.; Gaggero, E.; Abollino, O. Analytical methods for the characterization of vegetable oils. Molecules 2022, 28, 153. [Google Scholar] [CrossRef]
- Molnár, K.; Biró-Janka, B.; Nyárádi, I.I.; Fodorpataki, L.; Varga, B.E.; Bálint, J.; Duda, M.M. Effects of Priming with Ascorbic Acid, L-Cystein and Triacontanol on Germination of Rapeseed (L.). Acta Biol. Marisiensis 2020, 3, 48–55. [Google Scholar] [CrossRef]
- Sytar, O.; Kumari, P.; Yadav, S.; Brestic, M.; Rastogi, A. Phytohormone priming: Regulator for heavy metal stress in plants. J. Plant Growth Regul. 2019, 38, 739–752. [Google Scholar] [CrossRef]
- Naeem, M.; Khan, M.M.A.; Moinuddin. Triacontanol: A potent plant growth regulator in agriculture. J. Plant Interact. 2012, 7, 129–142. [Google Scholar] [CrossRef]
- Ahmad, J.; Ali, A.A.; Al-Huqail, A.A.; Qureshi, M.I. Triacontanol attenuates drought-induced oxidative stress in Brassica juncea L. by regulating lignification genes, calcium metabolism and the antioxidant system. Plant Physiol. Biochem. 2021, 166, 985–998. [Google Scholar] [CrossRef] [PubMed]
- Arif, Y.; Singh, P.; Siddiqui, H.; Bajguz, A.; Hayat, S. Salinity induced physiological and biochemical changes in plants: An omic approach towards salt stress tolerance. Plant Physiol. Biochem. 2020, 156, 64–77. [Google Scholar] [CrossRef]
- Hu, Y.; Wang, H.; Jia, H.; Peng, M.; Zhu, T.; Liu, Y.; Wei, J. Effects of Cd treatment on morphology, chlorophyll content and antioxidant enzyme activity of Elymus nutans Griseb., a native plant in Qinghai-Tibet Plateau. Plant Signal. Behav. 2023, 18, 2187561. [Google Scholar] [CrossRef] [PubMed]
- Paunov, M.; Koleva, L.; Vassilev, A.; Vangronsveld, J.; Goltsev, V. Effects of different metals on photosynthesis: Cadmium and zinc affect chlorophyll fluorescence in durum wheat. Int. J. Mol. Sci. 2018, 19, 787. [Google Scholar] [CrossRef] [PubMed]
- Parmar, P.; Kumari, N.; Sharma, V. Structural and functional alterations in photosynthetic apparatus of plants under cadmium stress. Bot. Stud. 2013, 54, 45. [Google Scholar] [CrossRef]
- Hayat, K.; Khan, J.; Khan, A.; Ullah, S.; Ali, S.; Salahuddin; Fu, Y. Ameliorative effects of exogenous proline on photosynthetic attributes, nutrients uptake, and oxidative stresses under cadmium in pigeon pea (Cajanus cajan L.). Plants 2021, 10, 796. [Google Scholar] [CrossRef]
- Handa, N.; Kohli, S.K.; Thukral, A.K.; Bhardwaj, R.; Alyemeni, M.N.; Wijaya, L.; Ahmad, P. Protective role of selenium against chromium stress involving metabolites and essential elements in Brassica juncea L. seedlings. 3 Biotech 2018, 8, 66. [Google Scholar] [CrossRef]
- Younis, A.A.; Ismail, H.A. Triacontanol alleviated nickel toxicity in maize seedling by controlling its uptake and enhancing antioxidant system. J. Adv. Plant Biol. 2019, 1, 1–15. [Google Scholar] [CrossRef]
- Zulfiqar, S.; Shahbaz, M. Modulation of gas exchange parameters and photosystem II activity of canola (Brassica napus L.) by foliar-applied triacontanol under salt stress. Agrochimica 2013, 57, 193–200. [Google Scholar]
- Goncharuk, E.A.; Zagoskina, N.V. Heavy metals, their phytotoxicity, and the role of phenolic antioxidants in plant stress responses with focus on cadmium. Molecules 2023, 28, 3921. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Wang, Q.; Lu, H.; Li, J.; Yang, D.; Liu, J.; Yan, C. Phenolic metabolism and related heavy metal tolerance mechanism in Kandelia Obovata under Cd and Zn stress. Ecotoxicol. Environ. Saf. 2019, 169, 134–143. [Google Scholar] [CrossRef] [PubMed]
- Zoufan, P.; Azad, Z.; Ghahfarokhie, A.R.; Kolahi, M. Modification of oxidative stress through changes in some indicators related to phenolic metabolism in Malva parviflora exposed to cadmium. Ecotoxicol. Environ. Saf. 2020, 187, 109811. [Google Scholar] [CrossRef] [PubMed]
- Yadav, A.; Singh, S. Effect of exogenous phytohormone treatment on antioxidant activity, enzyme activity and phenolic content in wheat sprouts and identification of metabolites of control and treated samples by UHPLC-MS analysis. Food Res. Int. 2023, 169, 112811. [Google Scholar] [CrossRef]
- Meza, A.; Rojas, P.; Cely-Veloza, W.; Guerrero-Perilla, C.; Coy-Barrera, E. Variation of isoflavone content and DPPH• scavenging capacity of phytohormone-treated seedlings after in vitro germination of cape broom (Genista monspessulana). South Afr. J. Bot. 2020, 130, 64–74. [Google Scholar] [CrossRef]
- Ullah, S.; Khan, J.; Hayat, K.; Abdelfattah Elateeq, A.; Salam, U.; Yu, B.; Ma, Y.; Wang, H.; Tang, Z.H. Comparative study of growth, cadmium accumulation and tolerance of three chickpea (Cicer arietinum L.) cultivars. Plants 2020, 9, 310. [Google Scholar] [CrossRef]
- Menhas, S.; Yang, X.; Hayat, K.; Ali, A.; Ali, E.F.; Shahid, M.; Zhou, P. Melatonin enhanced oilseed rape growth and mitigated Cd stress risk: A novel trial for reducing Cd accumulation by bioenergy crops. Environ. Pollut. 2022, 308, 119642. [Google Scholar] [CrossRef]
- Guo, Z.; Gao, Y.; Yuan, X.; Yuan, M.; Huang, L.; Wang, S.; Duan, C. Effects of heavy metals on stomata in plants: A review. Int. J. Mol. Sci. 2023, 24, 9302. [Google Scholar] [CrossRef]
- Farooq, A.; Nadeem, M.; Abbas, G.; Shabbir, A.; Khalid, M.S.; Javeed, H.M.R.; Akhtar, G. Cadmium partitioning, physiological and oxidative stress responses in marigold (Calendula calypso) grown on contaminated soil: Implications for phytoremediation. Bull. Environ. Contam. Toxicol. 2020, 105, 270–276. [Google Scholar] [CrossRef]
- Faraz, A.; Faizan, M.; Sami, F.; Siddiqui, H.; Hayat, S. Supplementation of salicylic acid and citric acid for alleviation of cadmium toxicity to Brassica juncea. J. Plant Growth Regul. 2020, 39, 641–655. [Google Scholar] [CrossRef]
- Fox, J.P.; Capen, J.D.; Zhang, W.; Ma, X.; Rossi, L. Effects of cerium oxide nanoparticles and cadmium on corn (Zea mays L.) seedlings physiology and root anatomy. NanoImpact 2020, 20, 100264. [Google Scholar] [CrossRef]
- Emamverdian, A.; Ding, Y.; Mokhberdoran, F.; Xie, Y. Heavy metal stress and some mechanisms of plant defense response. Sci. World J. 2015, 2015, 756120. [Google Scholar] [CrossRef] [PubMed]
- Ashraf, M.F.M.R.; Foolad, M.R. Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environ. Exp. Bot. 2007, 59, 206–216. [Google Scholar] [CrossRef]
- Adejumo, S.A.; Awoyemi, V.; Togun, A.O. Exogenous proline and hormone in combination with compost improves growth and tolerance of maize under heavy metal stress. Plants Environ. 2020, 2, 40–53. [Google Scholar] [CrossRef]
- Al-Mayahi, A.M.W. Triacontanol ‘TRIA’application to mitigate the adverse effects of drought and salinity stress under culture of date palm plants. Folia Oecologica 2024, 51, 250–262. [Google Scholar] [CrossRef]
- Siddique, A.; Dubey, A.P. Phyto-toxic effect of heavy metal (CdCl2) on seed germination, seedling growth and antioxidant defence metabolism in wheat (Triticum aestivum L.) variety HUW-234. Int. J. Bio-Resour. Stress Manag. 2017, 8, 261–267. [Google Scholar] [CrossRef]
Treatments | Growth Parameters | |||||
---|---|---|---|---|---|---|
Shoot Length (cm) | Root Length (cm) | Total Length (cm) | Leaf Area (cm2) | No. of Leaves | Germination % | |
C | 5.44 ± 0.10 b | 3.12 ± 0.11 b | 9.57 ± 0.24 b | 3.94 ± 0.21 b | 5.50 ± 0.46 b | 84 ± 4.00 b |
Cd | 3.84 ± 0.15 a | 2.5 ± 0.09 a | 6.24 ± 0.25 a | 1.57 ± 0.10 a | 2.52 ± 0.40 a | 66 ± 3.00 a |
TRIA1 | 7.75 ±0.76 d | 4.65 ± 0.30 d | 12.4 ± 0.43 d | 5.93 ± 0.20 cd | 7.25 ± 0.27 d | 90 ± 2.00 bc |
TRIA2 | 9.11 ± 0.45 g | 5.76 ± 0.27 h | 14.87 ± 0.05 f | 7.98 ± 0.28 e | 10.5 ± 0.50 f | 100 ± 0.90 d |
TRIA3 | 8.54 ± 0.27 f | 5.01 ± 0.05 g | 13.55 ± 0.08 e | 6.12 ± 0.18 d | 8.25 ± 0.25 e | 95 ± 2.00 c |
TRIA1+Cd | 6.92 ± 0.07 c | 4.33 ± 0.20 c | 11.25 ± 0.05 c | 5.01 ± 0.19 c | 6 ± 0.84 c | 85 ± 5.50 b |
TRIA2+Cd | 8.12 ±0.75 e | 5.12 ± 0.06 f | 13.24 ± 0.27 e | 6.32 ± 0.34 d | 8.5 ± 0.40 e | 95 ± 3.00 cd |
TRIA3+Cd | 7.45 ± 0.36 d | 4.87 ± 0.50 e | 12.32 ± 0.30 d | 5.47 ± 0.07 c | 7 ± 0.42 d | 90 ± 4.00 bc |
Treatments | Shoot Fresh Weight (g plant−1) | Root Fresh Weight (g plant−1) | Total Fresh Weight (g plant−1) | Shoot Dry Weight (g plant−1) | Root Dry Weight (g plant−1) | Total Dry Weight (g plant−1) |
---|---|---|---|---|---|---|
C (control) | 0.94 ± 0.03 bc | 0.25 ± 0.02 b | 1.18 ± 0.02 b | 0.28 ± 0.02 b | 0.08 ± 0.02 b | 0.46 ± 0.01 b |
Cd | 0.38 ± 0.01 a | 0.16 ± 0.03 a | 0.53 ± 0.03 a | 0.18 ± 0.04 a | 0.04 ± 0.04 a | 0.30 ± 0.05 a |
TRIA1 | 1.23 ± 0.09 c | 0.46 ± 0.09 d | 1.69 ± 0.14 d | 0.68 ± 0.01 d | 0.25 ± 0.05 d | 0.93 ± 0.32 d |
TRIA2 | 2.85 ± 0.10 f | 0.72 ± 0.06 g | 3.57 ± 0.06 g | 1.13 ± 0.26 g | 0.53 ± 0.08 g | 1.66 ± 0.04 h |
TRIA3 | 2.21 ± 0.12 e | 0.58 ± 0.05 e | 2.79 ± 0.16 f | 0.84 ± 0.09 e | 0.39 ± 0.04 ef | 1.23 ± 0.05 f |
TRIA1+Cd | 1.01 ± 0.38 cd | 0.33 ± 0.09 c | 1.34 ± 0.33 c | 0.46 ± 0.32 c | 0.18 ± 0.15 c | 0.64 ± 0.04 c |
TRIA2+Cd | 2.17 ± 0.40 e | 0.61 ± 0.14 f | 2.78 ± 0.06 f | 0.91 ± 0.07 f | 0.41 ± 0.17 f | 1.32 ± 0.12 g |
TRIA3+Cd | 1.87 ± 0.08 d | 0.49 ± 0.32 d | 2.36 ± 0.09 | 0.68 ± 0.03 d | 0.34 ± 0.37 e | 1.02 ± 0.23 e |
Treatments | Chl a (mg g−1 FW) | Chl b (mg g−1 FW) | Total Chl (mg g−1 FW) | Carotenoids (mg g−1 FW) | Cd Uptake in Plant (mg/g) | AC Factor | MTI |
---|---|---|---|---|---|---|---|
C | 0.74 ± 0.04 b | 1.43 ± 0.14 b | 2.15 ± 0.15 b | 0.08 ± 0.02 a | - | - | - |
Cd | 0.45 ± 0.03 a | 0.81 ± 0.02 a | 1.27 ± 0.03 a | 0.03 ± 0.03 a | 0.84 ± 0.03 d | 42 ± 0.40 d | 55.56 ± 1.56 a |
TRIA 1 | 1.30 ± 0.03 c | 1.92 ± 0.06 cd | 3.21 ± 0.04 d | 0.13 ± 0.02 a | - | - | - |
TRIA 2 | 1.82 ± 0.05 e | 3.10 ± 0.06 f | 4.92 ± 0.02 g | 0.17 ± 0.02 a | - | - | - |
TRIA 3 | 1.42 ± 0.03 d | 2.68 ± 0.13 e | 4.11 ± 0.13 f | 0.12 ± 0.02 a | - | - | - |
TRIA 1+Cd | 1.08 ± 0.05 c | 1.72 ± 0.03 c | 2.79 ± 0.04 c | 0.10 ± 0.03 a | 0.67 ± 0.02 | 33.5 ± 0.57 c | 177.78 ± 1.14 b |
TRIA 2+Cd | 1.38 ± 0.07 d | 2.52 ± 0.03d e | 3.90 ± 0.04 e | 0.13 ± 0.02 a | 0.28 ± 0.01 a | 14 ± 0.60 a | 366.67 ± 0.90 d |
TRIA 3+Cd | 1.21 ± 0.01 c | 2.19 ± 0.01 d | 3.40 ± 0.01 d | 0.11 ± 0.01 a | 0.45 ± 0.02 b | 22.5 ± 0.27 b | 283.33 ± 0.07 c |
Treatments | Mg+2 (mg g−1) | Zn+2 (mg g−1) | K+ (mg g−1) | Na+ (mg g−1) |
---|---|---|---|---|
C | 0.34 ± 0.60 b | 0.34 ±0.20 b | 17.82 ±1.20 b | 1.81 ± 0.04 b |
Cd | 0.17 ± 0.27 a | 0.18 ± 0.40 a | 11.43 ± 0.09 a | 0.94 ± 0.08 a |
TRIA1 | 0.48 ± 0.60 c | 0.44 ± 0.05 c | 20.04 ± 0.43 d | 2.68 ± 0.16 c |
TRIA2 | 0.84 ± 0.64 g | 0.55 ± 0.08 d | 23.75 ± 0.09 f | 3.64 ± 0.09 d |
TRIA3 | 0.68 ± 0.16 e | 0.54 ± 0.26 d | 22.57 ± 0.05 e | 3.18 ± 0.07 d |
TRIA1 + Cd | 0.38 ± 0.09 b | 0.42 ± 0.31 c | 18.78 ± 0.44 c | 2.26 ± 0.03 c |
TRIA2 + Cd | 0.72 ± 0.40 f | 0.5 ± 0.07 cd | 22.49 ± 0.20 e | 3.05 ± 0.05 d |
TRIA3 + Cd | 0.56 ± 0.04 d | 0.47 ± 0.05 c | 20.36 ± 0.15 d | 2.72 ± 0.03 c |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mudassar, S.; Ahmed, S.; Sardar, R.; Yasin, N.A.; Jabbar, M.; Lackner, M. Exogenously Applied Triacontanol Mitigates Cadmium Toxicity in Vigna radiata L. by Optimizing Growth, Nutritional Orchestration, and Metal Accumulation. Toxics 2024, 12, 911. https://doi.org/10.3390/toxics12120911
Mudassar S, Ahmed S, Sardar R, Yasin NA, Jabbar M, Lackner M. Exogenously Applied Triacontanol Mitigates Cadmium Toxicity in Vigna radiata L. by Optimizing Growth, Nutritional Orchestration, and Metal Accumulation. Toxics. 2024; 12(12):911. https://doi.org/10.3390/toxics12120911
Chicago/Turabian StyleMudassar, Saba, Shakil Ahmed, Rehana Sardar, Nasim Ahmad Yasin, Muhammad Jabbar, and Maximilian Lackner. 2024. "Exogenously Applied Triacontanol Mitigates Cadmium Toxicity in Vigna radiata L. by Optimizing Growth, Nutritional Orchestration, and Metal Accumulation" Toxics 12, no. 12: 911. https://doi.org/10.3390/toxics12120911
APA StyleMudassar, S., Ahmed, S., Sardar, R., Yasin, N. A., Jabbar, M., & Lackner, M. (2024). Exogenously Applied Triacontanol Mitigates Cadmium Toxicity in Vigna radiata L. by Optimizing Growth, Nutritional Orchestration, and Metal Accumulation. Toxics, 12(12), 911. https://doi.org/10.3390/toxics12120911