The Influence of Plant Growth-Stimulating Bacteria on the Glutathione-S-Transferase Activity and the Toxic Effect of the Herbicide Metsulfuron-Methyl in Wheat and Canola Plants
<p>The effect of treatment with bacteria, a low-molecular-weight fraction (LMF) of their culture fluid, and metsulfuron-methyl (MSM) on glutathione-S-transferases (GST) activity in leaf extracts of wheat (<b>a</b>) and canola (<b>b</b>); enzyme activities are presented as average and standard errors (n = 5, Duncan’s test); significantly different means are indicated by different letters (<span class="html-italic">p</span> ≤ 0.05); control—herbicide and bacteria were not used, DA1.2–strain Pseudomonas protegens DA1.2, CH4—strain <span class="html-italic">P. chlororaphis</span> CH4.</p> "> Figure 1 Cont.
<p>The effect of treatment with bacteria, a low-molecular-weight fraction (LMF) of their culture fluid, and metsulfuron-methyl (MSM) on glutathione-S-transferases (GST) activity in leaf extracts of wheat (<b>a</b>) and canola (<b>b</b>); enzyme activities are presented as average and standard errors (n = 5, Duncan’s test); significantly different means are indicated by different letters (<span class="html-italic">p</span> ≤ 0.05); control—herbicide and bacteria were not used, DA1.2–strain Pseudomonas protegens DA1.2, CH4—strain <span class="html-italic">P. chlororaphis</span> CH4.</p> "> Figure 2
<p>The effect of treatment with bacteria, a low-molecular-weight fraction (LMF) of their culture fluid, and metsulfuron-methyl (MSM) on acetolactate synthase (ALS) activity in leaves of wheat and canola; n = 5, U-test, significantly different (<span class="html-italic">p</span> ≤ 0.05) means within the “wheat” dataset and the “canola” dataset are indicated by different letters (lowercase and uppercase, respectively); control—herbicide and bacteria were not used, DA1.2 –strain <span class="html-italic">Pseudomonas protegens</span> DA1.2, CH4—strain <span class="html-italic">P. chlororaphis</span> CH4.</p> "> Figure 3
<p>Degradation of MSM after introduction of strains <span class="html-italic">Pseudomonas protegens</span> DA1.2rif and <span class="html-italic">P. chlororaphis</span> 4CHrif in: (<b>a</b>) plant-free soils; (<b>b</b>) wheat-sown soils. NB—soil not treated with bacteria, DA1.2rif—soil treated with the rifampicin-resistant strain <span class="html-italic">Pseudomonas protegens</span> DA1.2rif, CH4—soil treated with the rifampicin-resistant strain <span class="html-italic">P. chlororaphis</span> CH4rif; data are presented as mean ± SE (n = 5, Duncan’s test, <span class="html-italic">p</span> ≤ 0.05).</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Details
2.2. Microorganisms and Their Cultivation
2.3. Phytotoxicity Test
2.4. Determination of MSM Residues
2.5. In Vivo Activity of Acetolactate Synthase
2.6. Glutathione-S-Transferase Activity
2.7. Statistical Analysis
3. Results
3.1. GST Activity in Leaves Extracts of Bacteria-Treated Plants
3.2. Degradation of MSM in Soil
3.3. Degradation of MSM in Bacterial Cultures
3.4. Phytotoxicity of Soil Treated with Bacteria
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jia, L.; Jin, X.Y.; Zhao, L.X.; Fu, Y.; Ye, F. Research progress in the design and synthesis of herbicide safeners: A review. J. Agric. Food Chem. 2022, 70, 5499–5515. [Google Scholar] [CrossRef] [PubMed]
- Hatzios, K.K.; Burgos, N. Metabolism-based herbicide resistance: Regulation by safeners. Weed Sci. 2004, 52, 454–467. [Google Scholar] [CrossRef]
- Kraehmer, H.; Laber, B.; Rosinger, C.; Schulz, A. Herbicides as weed control agents: State of the art: I. Weed control research and safener technology: The path to modern agriculture. Plant Physiol. 2014, 166, 1119–1131. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Ye, F.; Fu, Y. Research progress on the action mechanism of herbicide safeners: A review. J. Agric. Food Chem. 2023, 71, 3639–3650. [Google Scholar] [CrossRef]
- Duhoux, A.; Pernin, F.; Desserre, D.; Délye, C. Herbicide safeners decrease sensitivity to herbicides inhibiting acetolactate-synthase and likely activate non-target-site-based resistance pathways in the major grass weed Lolium sp. (Rye-grass). Front. Plant Sci. 2017, 8, 1310. [Google Scholar] [CrossRef]
- Deng, X. Current advances in the action mechanisms of safeners. Agronomy 2022, 12, 2824. [Google Scholar] [CrossRef]
- Zhou, Q.; Liu, W.; Zhang, Y.; Liu, K.K. Action mechanisms of acetolactate synthase-inhibiting herbicides. Pest. Biochem. Physiol. 2007, 89, 89–96. [Google Scholar] [CrossRef]
- Yu, H.; Guo, X.; Cui, H.; Chen, J.; Li, X. Metabolism difference is involved in mesosulfuron-methyl selectivity between Aegilops tauschii and Triticum aestivum. J. Agric. Food Chem. 2022, 71, 186–196. [Google Scholar] [CrossRef]
- Luo, Q.; Li, G.; Xiao, J.; Yin, C.; He, Y.; Wang, M.; Ma, C.; Zhu, C.; Xu, J. DFT study on the hydrolysis of metsulfuron-methyl: A sulfonylurea herbicide. J. Theor. Comput. Chem. 2018, 17, 1850050. [Google Scholar] [CrossRef]
- Li, Z.-J.; Xu, J.-X.; Muhammad, A.; Ma, G.-R. Effect of bound residues of metsulfuron-methyl in soil on rice growth. Chemosphere 2005, 58, 1177–1183. [Google Scholar] [CrossRef]
- Kaur, T.; Brar, L.S. Residual effect of wheat applied sulfonylurea herbicides on succeeding crops as affected by soil pH. Indian J. Weed Sci. 2014, 46, 241–243. [Google Scholar]
- Mehdizadeh, M.; Alebrahim, M.T.; Roushani, M.; Streibig, J.G. Evaluation of four different crops’ sensitivity to sul-fosulfuron and tribenuron methyl soil residues. Acta Agric. Scand. Sect. B Soil Plant Sci. 2016, 66, 706–713. [Google Scholar] [CrossRef]
- Motamedi, M.; Zahedi, M.; Karimmojeni, H.; Baldwin, T.C.; Motamedi, H. Rhizosphere-associated bacteria as biofertilizers in herbicide-treated alfalfa (Medicago sativa). J. Soil Sci. Plant Nutr. 2023, 23, 2585–2598. [Google Scholar] [CrossRef]
- Jiang, Z.; Jiang, D.; Zhou, Q.; Zheng, Z.; Cao, B.; Meng, Q.; Qu, J.; Wang, Y.; Zhang, Y. Enhancing the atrazine tolerance of Pennisetum americanum (L.) K. Schum by inoculating with indole-3-acetic acid producing strain Pseudomonas chlororaphis PAS18. Ecotoxicol. Environ. Saf. 2020, 202, 110854. [Google Scholar] [CrossRef]
- Bourahla, M.; Djebbar, R.; Kaci, Y.; Abrous-Belbachir, O. Alleviation of bleaching herbicide toxicity by PGPR strain isolated from wheat rhizosphere. Ann. Oradea Univ. Biol. Fascicle/Analele Univ. Din Oradea Fasc. Biol. 2018, 25, 74–83. [Google Scholar]
- Bakaeva, M.; Chetverikov, S.; Timergalin, M.; Feoktistova, A.; Rameev, T.; Chetverikova, D.; Kenjieva, A.; Starikov, S.; Sharipov, D.; Hkudaygulov, G. PGP-Bacterium Pseudomonas protegens improves bread wheat growth and mitigates herbicide and drought stress. Plants 2022, 11, 3289. [Google Scholar] [CrossRef]
- Ahemad, M.; Khan, M.S. Ameliorative effects of Mesorhizobium sp. MRC4 on chickpea yield and yield components under different doses of herbicide stress. Pest. Biochem. Physiol. 2010, 98, 183–190. [Google Scholar] [CrossRef]
- Chennappa, G.; Sreenivasa, M.Y.; Nagaraja, H. Azotobacter salinestris: A novel pesticide-degrading and prominent bio-control PGPR bacteria. In Microorganisms for Green Revolution. Microorganisms for Sustainability; Panpatte, D., Jhala, Y., Shelat, H., Vyas, R., Eds.; Springer: Singapore, 2018; Volume 7, pp. 23–43. [Google Scholar] [CrossRef]
- Ali, S.A.; Kornaros, M.; Manni, A.; Al-Tohamy, R.; El-Raheem, A.; El-Shanshoury, R.; Matter, I.M.; Elsamahy, T.; Sobhy, M.; Sun, J. Advances in microorganisms-based biofertilizers: Major mechanisms and applications. In Biofertilizers; Rakshit, A., Meena, V.S., Parihar, M., Singh, H.B., Singh, A.K., Eds.; Woodhead Publishing: Cambridge, UK, 2021; Volume 1, pp. 371–385. [Google Scholar] [CrossRef]
- Boro, M.; Sannyasi, S.; Chettri, D.; Verma, A.K. Microorganisms in biological control strategies to manage microbial plant pathogens: A review. Arch. Microbiol. 2022, 204, 666. [Google Scholar] [CrossRef]
- Orozco-Mosqueda, M.d.C.; Santoyo, G.; Glick, B.R. Recent Advances in the Bacterial Phytohormone Modulation of Plant Growth. Plants 2023, 12, 606. [Google Scholar] [CrossRef]
- Bakaeva, M.; Chetverikov, S.; Starikov, S.; Kendjieva, A.; Khudaygulov, G.; Chetverikova, D. Effect of Plant Growth-Promoting Bacteria on Antioxidant Status, Acetolactate Synthase Activity, and Growth of Common Wheat and Canola Exposed to Metsulfuron-Methyl. J. Xenobiot. 2024, 14, 79–95. [Google Scholar] [CrossRef]
- Pons, N.; Barriuso, E. Fate of metsulfuron-methyl in soils in relation to pedo-climatic conditions. Pestic. Sci. 1998, 53, 311–323. [Google Scholar] [CrossRef]
- Zanardini, E.; Arnoldi, A.; Boschin, G.; Agostina, A.D.; Negri, M.; Sorlini, C. Degradation pathways of chlorsulfuron and metsulfuron-methil by a Pseudomonas fluorescens strain. Ann. Microbiol. 2002, 52, 25–38. [Google Scholar]
- Yu, Y.L.; Wang, X.; Luo, Y.M.; Yang, J.F.; Yu, J.Q. Fungal degradation of metsulfuron-methyl in pure cultures and soil. Chemosphere 2005, 60, 460–466. [Google Scholar] [CrossRef] [PubMed]
- Lei, Q.; Zhong, J.; Chen, S.F.; Wu, S.; Huang, Y.; Guo, P.; Mishra, S.; Bhatt, K.; Chen, S. Microbial degradation as a powerful weapon in the removal of sulfonylurea herbicides. Environ. Res. 2023, 235, 116570. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; He, J.; Sun, J.; Pan, J.; Sun, X.; Li, S. Isolation and characterization of a metsulfuron-methyl degrading bacterium Methylopila sp. S113. Int. Biodeter. Biodegrad. 2007, 60, 152–158. [Google Scholar] [CrossRef]
- Cycoń, M.; Mrozik, A.; Piotrowska-Seget, Z. Bioaugmentation as a strategy for the remediation of pesticide-polluted soil: A review. Chemosphere 2017, 172, 52–71. [Google Scholar] [CrossRef]
- Li, C.; Lv, T.; Liu, W.; Zang, H.; Cheng, Y.; Li, D. Efficient degradation of chlorimuron-ethyl by a bacterial consortium and shifts in the aboriginal microorganism community during the bioremediation of contaminated-soil. Ecotoxicol. Environ. Saf. 2017, 139, 423–430. [Google Scholar] [CrossRef]
- Ha, D.D.; Nguyen, T.O. Application of Methylopila sp. DKT for bensulfuron-methyl degradation and peanut growth promotion. Curr. Microbiol. 2020, 77, 1466–1475. [Google Scholar] [CrossRef]
- Zhang, J.J.; Yang, H. Metabolism and detoxification of pesticides in plants. Sci. Total Environ. 2021, 790, 148034. [Google Scholar] [CrossRef]
- Nakka, S.; Godar, A.S.; Thompson, C.R.; Peterson, D.E.; Jugulam, M. Rapid detoxification via glutathione S-transferase (GST) conjugation confers a high level of atrazine resistance in Palmer amaranth (Amaranthus palmeri). Pest Manag. Sci. 2017, 73, 2236–2243. [Google Scholar] [CrossRef]
- Evans Jr, A.F.; O’Brien, S.R.; Ma, R.; Hager, A.G.; Riggins, C.W.; Lambert, K.N.; Riechers, D.E. Biochemical characterization of metabolism-based atrazine resistance in Amaranthus tuberculatus and identification of an expressed GST associated with resistance. Plant Biotechnol. J. 2017, 15, 1238–1249. [Google Scholar] [CrossRef] [PubMed]
- Dücker, R.; Lümmen, P.; Wolf, T.; Brabetz, V.; Beffa, R. An intronless tau class glutathione transferase detoxifies several herbicides in flufenacet-resistant ryegrass. Plant Physiol. 2024, 196, 1254–1267. [Google Scholar] [CrossRef] [PubMed]
- Cicero, L.L.; Madesis, P.; Tsaftaris, A.; Piero, A.R.L. Tobacco plants over-expressing the sweet orange tau glutathione transferases (CsGSTUs) acquire tolerance to the diphenyl ether herbicide fluorodifen and to salt and drought stresses. Phytochemistry 2015, 116, 69–77. [Google Scholar] [CrossRef] [PubMed]
- Pascal, S.; Scalla, R. Purification and characterization of a safener-induced glutathione S-transferase from wheat (Triticum aestivum). Physiol. Plant. 1999, 106, 17–27. [Google Scholar] [CrossRef]
- DeRidder, B.P.; Dixon, D.P.; Beussman, D.J.; Edwards, R.; Goldsbrough, P.B. Induction of glutathione S-transferases in Arabidopsis by herbicide safeners. Plant Physiol. 2002, 130, 1497–1505. [Google Scholar] [CrossRef]
- Chetverikov, S.P.; Chetverikova, D.V.; Bakaeva, M.D.; Kenjieva, A.A.; Starikov, S.N.; Sultangazin, Z.R. A promising herbicide resistant bacterial strain of Pseudomonas protegens for stimulation of the growth of agricultural cereal grains. Appl. Biochem. Microbiol. 2021, 57, 110–116. [Google Scholar] [CrossRef]
- Chetverikov, S.P.; Chetverikova, D.V.; Kenjieva, A.A.; Bakaeva, M.D. New herbicide-tolerant strains of microorganisms for the protection of crops. Agrochem. Ecol. Probl. 2020, 4, 35–39. (In Russian) [Google Scholar] [CrossRef]
- Bossi, R.; Seiden, P.; Andersen, S.M.; Jacobsen, C.S.; Streibig, J.C. Analysis of metsulfuron-methyl in soil by liquid chromatography/tandem mass spectrometry. Application to a field dissipation study. J. Agric. Food Chem. 1999, 47, 4462–4468. [Google Scholar] [CrossRef]
- Simpson, D.; Stoller, E.; Wax, L. An in vivo Acetolactate Synthase Assay. Weed Technol. 1995, 9, 17–22. [Google Scholar] [CrossRef]
- Liu, X.-Q.; Yu, C.-Y.; Dong, J.-G.; Hu, S.-W.; Xu, A.-X. Acetolactate synthase-inhibiting gametocide amidosulfuron causes chloroplast destruction, tissue autophagy, and elevation of ethylene release in rapeseed. Front. Plant Sci. 2017, 8, 1625. [Google Scholar] [CrossRef]
- dos Santos, R.N.; Machado, B.R.; Hefler, S.M.; Zanette, J. Glutathione S-transferase activity in aquatic macrophytes and halophytes and biotransformation potential for biocides. J. Plant Res. 2021, 134, 577–584. [Google Scholar] [CrossRef] [PubMed]
- Habig, W.H.; Jakoby, W.B. Assays for differentiation of glutathione S-transferases. Methods Enzymol. 1981, 77, 398–405. [Google Scholar] [CrossRef] [PubMed]
- Khanna, K.; Jamwal, V.L.; Kohli, S.K.; Gandhi, S.G.; Ohri, P.; Bhardwaj, R.; Wijaya, L.; Alyemeni, M.N.; Ahmad, P. Role of plant growth promoting Bacteria (PGPRs) as biocontrol agents of Meloidogyne incognita through improved plant defense of Lycopersicon esculentum. Plant Soil 2019, 436, 325–345. [Google Scholar] [CrossRef]
- Singha, L.P.; Sinha, N.; Pandey, P. Rhizoremediation prospects of polyaromatic hydrocarbon degrading rhizobacteria, that facilitate glutathione and glutathione-S-transferase mediated stress response, and enhance growth of rice plants in pyrene contaminated soil. Ecotoxicol. Environ. Saf. 2018, 164, 579–588. [Google Scholar] [CrossRef]
- Gaafar, R.M.; Osman, M.E.-A.H.; Abo-Shady, A.M.; Almohisen, I.A.A.; Badawy, G.A.; El-Nagar, M.M.F.; Ismail, G.A. Role of Antioxidant Enzymes and Glutathione S-Transferase in Bromoxynil Herbicide Stress Tolerance in Wheat Plants. Plants 2022, 11, 2679. [Google Scholar] [CrossRef]
- Moons, A. Regulatory and Functional Interactions of Plant Growth Regulators and Plant Glutathione S-Transferases (GSTs). Vitam. Horm. 2005, 72, 155–202. [Google Scholar] [CrossRef]
- Bočová, B.; Huttová, J.; Mistrík, I.; Tamás, L. Auxin signalling is involved in cadmium-induced glutathione-S-transferase activity in barley root. Acta Physiol. Plant. 2013, 35, 2685–2690. [Google Scholar] [CrossRef]
- Wagner, U.; Edwards, R.; Dixon, D.P.; Mauch, F. Probing the diversity of the Arabidopsis glutathione S-transferase gene family. Plant Mol. Biol. 2002, 49, 515–532. [Google Scholar] [CrossRef]
- Zhao, Y.-W.; Wang, C.-K.; Huang, X.-Y.; Hu, D.-G. Genome-Wide Analysis of the Glutathione S-Transferase (GST) Genes and Functional Identification of MdGSTU12 Reveals the Involvement in the Regulation of Anthocyanin Accumulation in Apple. Genes 2021, 12, 1733. [Google Scholar] [CrossRef]
- Yang, T.T.; Zhang, H.W.; Wang, J.; Li, X.Y.; Li, X.; Su, Z.C. High bioremediation potential of strain Chenggangzhangella methanolivorans CHL1 for soil polluted with metsulfuron-methyl or tribenuron-methyl in a pot experiment. Environ. Sci. Pollut. Res. 2021, 28, 4731–4738. [Google Scholar] [CrossRef]
- Zhang, H.; Chen, Q.F.; Shang, N.; Li, N.; Niu, Q.H.; Hong, Q.; Huang, X. The enhanced mechanisms of Hansschlegelia zhihuaiae S113 degrading bensulfuron-methyl in maize rhizosphere by three organic acids in root exudates. Ecotoxicol. Environ. Saf. 2021, 223, 112622. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.J.; Chen, Y.F.; Fang, T.; Zhou, N.Y. Co-metabolic degradation of tribenuron methyl, a sulfonylurea herbicide, by Pseudomonas sp. strain NyZ42. Int. Biodeter. Biodegr. 2013, 76, 36–40. [Google Scholar] [CrossRef]
- Boschin, G.; D’Agostina, A.; Arnoldi, A.; Marotta, E.; Zanardini, E.; Negri, M.; Valle, A.; Sorlini, C. Biodegradation of chlorsulfuron and metsulfuron-methyl by Aspergillus niger in laboratory conditions. J. Environ. Sci. Health Part B 2003, 38, 737–746. [Google Scholar] [CrossRef] [PubMed]
- Wang, N.X.; Tang, Q.; Ai, G.M.; Wang, Y.N.; Wang, B.J.; Zhao, Z.P.; Liu, S.J. Biodegradation of tribenuron methyl that is mediated by microbial acidohydrolysis at cell-soil interface. Chemosphere 2012, 86, 1098–1105. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Walker, R.; Schicklberger, M.; Nico, P.S.; Fox, P.M.; Karaoz, U.; Chakraborty, R.; Brodie, E.L. Microbial phosphorus mobilization strategies across a natural nutrient limitation gradient and evidence for linkage with iron solubilization traits. Front. Microbiol. 2021, 12, 572212. [Google Scholar] [CrossRef] [PubMed]
- Amadou, I.; Houben, D.; Faucon, M.-P. Unravelling the Role of Rhizosphere Microbiome and Root Traits in Organic Phosphorus Mobilization for Sustainable Phosphorus Fertilization. A Review. Agronomy 2021, 11, 2267. [Google Scholar] [CrossRef]
- Eceiza, M.V.; Barco-Antoñanzas, M.; Gil-Monreal, M.; Huybrechts, M.; Zabalza, A.; Cuypers, A.; Royuela, M. Role of oxidative stress in the physiology of sensitive and resistant Amaranthus palmeri populations treated with herbicides inhibiting acetolactate synthase. Front. Plant Sci. 2023, 13, 1040456. [Google Scholar] [CrossRef]
- Sasse, J.; Martinoia, E.; Northen, T. Feed Your Friends: Do Plant Exudates Shape the Root Microbiome? Trends Plant Sci. 2018, 23, 25–41. [Google Scholar] [CrossRef]
- Bulgarelli, D.; Schlaeppi, K.; Spaepen, S.; Van Themaat, E.V.L.; Schulze-Lefert, P. Structure and functions of the bacterial microbiota of plants. Annu. Rev. Plant Biol. 2013, 64, 807–838. [Google Scholar] [CrossRef]
- Hassan, M.K.; McInroy, J.A.; Kloepper, J.W. The Interactions of Rhizodeposits with Plant Growth-Promoting Rhizobacteria in the Rhizosphere: A Review. Agriculture 2019, 9, 142. [Google Scholar] [CrossRef]
- Santoyo, G.; Urtis-Flores, C.A.; Loeza-Lara, P.D.; Orozco-Mosqueda, M.d.C.; Glick, B.R. Rhizosphere Colonization Determinants by Plant Growth-Promoting Rhizobacteria (PGPR). Biology 2021, 10, 475. [Google Scholar] [CrossRef]
Variant | Herbicide | Strain | Low-Molecular-Weight Fraction | Pots (0.5 L) |
---|---|---|---|---|
Control | − * | − | − | 10 |
MSM | MSM | − | − | 10 |
DA1.2 | MSM | P. protegens DA1.2 | − | 10 |
4CH | MSM | P. chlororaphis 4CH | − | 10 |
LMF DA1.2 | MSM | − | LMF of P. protegens DA1.2 | 10 |
LMF 4CH | MSM | − | LMF of P. chlororaphis 4CH | 10 |
Variant | Herbicide | Plant | Strain | Pots (1 L) |
---|---|---|---|---|
NB | MSM | − * | − | 5 |
DA1.2 rif | rifampicin-resistant Pseudomonas protegens DA1.2rif | 5 | ||
4CH rif | rifampicin-resistant P. chlororaphis 4CHrif | 5 | ||
NB + W | MSM | wheat | − | 5 |
DA1.2rif +W | rifampicin-resistant P. protegens DA1.2rif | 5 | ||
4CHrif + W | rifampicin-resistant P. chlororaphis 4CHrif | 5 |
Properties | Bacterial Strains | |
---|---|---|
DA1.2 | 4CH | |
Indole-3-acetic acid production, mg∙L−1 | 0.870 ± 0.044 | 0.837 ± 0.040 |
Siderophores production (CAS agar), mm of zone | 13 ± 4 | 8 ± 2 |
Calcium phosphate solubilization, mm of zone | 21 ± 3 | 19 ± 3 |
Nitrogenase activity, nmol C2H4∙h−1∙mL−1 | 21.3 ± 3.6 | 30.5 ± 4.4 |
Treatments | Incubation Period, Day | |||
---|---|---|---|---|
10 | 30 | 60 | ||
Without plants | DA1.2 rif * | (7.2 ± 0.5)∙104 | (5.7 ± 0.3)∙104 | (1.5 ± 0.1)∙103 |
4CH rif | (2.8 ± 0.4)∙105 | (1.8 ± 0.2)∙104 | (3.0 ± 0.3)∙103 | |
Wheat plants | DA1.2 rif | (1.3 ± 0.2)∙105 | (6.0 ± 0.7)∙104 | (1.2 ± 0.1)∙103 |
4CH rif | (1.8 ± 0.2)∙105 | (6.8 ± 0.8)∙103 | (4.1 ± 0.5)∙103 | |
Wheat plants (rhizosphere) | DA1.2 rif | (4.9 ± 0.6)∙105 | (1.1 ± 0.2)∙105 | (7.7 ± 0.5)∙103 |
4CH rif | (3.8 ± 0.4)∙106 | (8.0 ± 0.3)∙105 | (5.3 ± 0.4)∙104 |
Bacterial Strain | Nutrient Medium | pH | MSM Removal, % | Cell Growth, CFU∙mL−1 |
---|---|---|---|---|
DA1.2 | M9 | 6.9 | 2.7 ± 0.9 a** | (1.8 ± 0.3)∙105 |
M9 + glucose + peptone | 7.2 * | 8.4 ± 0.4 b | (4.5 ± 0.4)∙108 | |
M9 + glucose + peptone | 6.2 | 96.3 ± 6.6 d | (1.4 ± 0.2)∙108 | |
4CH | M9 | 6.8 | 3.5 ± 1.2 a | (5.0 ± 0.6)∙104 |
M9 + glucose + peptone | 7.0 * | 35.3 ± 0.9 c | (2.8 ± 0.2)∙108 | |
M9 + glucose + peptone | 5.8 | 97.6 ± 4.8 d | (6.0 ± 0.5)∙108 |
Treatments | Weight of Shoots, mg | ALS Activity, Units∙h−1∙g−1 | |||
---|---|---|---|---|---|
Beet | Canola | Beet | Canola | ||
Without plants | NB * | 71 ± 9 a** | 240 ± 14 a | 0.34 ± 0.05 a | 0.54 ± 0.04 a |
DA1.2 rif | 236 ± 20 d | 462 ± 25 c | 1.17 ± 0.12 c | 1.56 ± 0.11 c | |
4CH rif | 220 ± 16 d | 478 ± 24 c | 0.87 ± 0.07 bc | 1.48 ± 0.10 c | |
Wheat plants | NB | 92 ± 8 b | 221 ± 17 a | 0.40 ± 0.05 a | 0.57 ± 0.07 a |
DA1.2 rif | 172 ± 15 c | 370 ± 23 b | 0.79 ± 0.06 b | 0.98 ± 0.08 b | |
4CH rif | 239 ± 17 d | 514 ± 18 cd | 0.99 ± 0.07 c | 1.72 ± 0.14 c | |
Herbicide-free control | 273 ± 21 f | 535 ± 27 d | 1.69 ± 0.14 d | 2.23 ± 0.21 d |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chetverikova, D.; Bakaeva, M.; Starikov, S.; Kendjieva, A.; Chetverikov, S. The Influence of Plant Growth-Stimulating Bacteria on the Glutathione-S-Transferase Activity and the Toxic Effect of the Herbicide Metsulfuron-Methyl in Wheat and Canola Plants. Toxics 2024, 12, 886. https://doi.org/10.3390/toxics12120886
Chetverikova D, Bakaeva M, Starikov S, Kendjieva A, Chetverikov S. The Influence of Plant Growth-Stimulating Bacteria on the Glutathione-S-Transferase Activity and the Toxic Effect of the Herbicide Metsulfuron-Methyl in Wheat and Canola Plants. Toxics. 2024; 12(12):886. https://doi.org/10.3390/toxics12120886
Chicago/Turabian StyleChetverikova, Darya, Margarita Bakaeva, Sergey Starikov, Aliya Kendjieva, and Sergey Chetverikov. 2024. "The Influence of Plant Growth-Stimulating Bacteria on the Glutathione-S-Transferase Activity and the Toxic Effect of the Herbicide Metsulfuron-Methyl in Wheat and Canola Plants" Toxics 12, no. 12: 886. https://doi.org/10.3390/toxics12120886
APA StyleChetverikova, D., Bakaeva, M., Starikov, S., Kendjieva, A., & Chetverikov, S. (2024). The Influence of Plant Growth-Stimulating Bacteria on the Glutathione-S-Transferase Activity and the Toxic Effect of the Herbicide Metsulfuron-Methyl in Wheat and Canola Plants. Toxics, 12(12), 886. https://doi.org/10.3390/toxics12120886