Removal of the Active Pharmaceutical Substance Entecavir from Water via the Fenton Reaction or Action by the Cyanobacterium Microcystis novacekii
<p>Chromatograms of entecavir degradation using a Fenton-like reagent at different reaction times. Legend: Visualization of entecavir removal over time. Reaction time—(<b>A</b>) initial (time zero—no addition of Fe-EDTA); (<b>B</b>) 90 s; (<b>C</b>) 300 s; (<b>D</b>) 600 s; (<b>E</b>) chromatogram overlay.</p> "> Figure 2
<p>Growth curve of <span class="html-italic">Microcystis novacekii</span> exposed to entecavir at different concentrations.</p> "> Figure 3
<p>Removal of entecavir at different concentrations by the action of <span class="html-italic">Microcystis novacekii</span>, expressed by medians and standard errors.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Supplies and Equipment for ETV Quantification
2.2. Degradation with Fenton’s Reagent
2.3. Removal with Microcystis novacekii
2.4. Statistical Analysis
3. Results and Discussion
3.1. Degradation by Fenton Reaction
3.2. Microbiological Removal by the Action of the Cyanobacterium Microcystis novacekii
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shaw, T.; Locarnini, S. Entecavir for the treatment of chronic hepatitis B. Expert Rev. Anti-Infect. Ther. 2004, 2, 853–871. [Google Scholar] [CrossRef] [PubMed]
- Yamanaka, G.; Wilson, T.; Innaimo, S.; Bisacchi, G.S.; Egli, P.; Rinehart, J.K.; Zahler, R.; Colonno, R.J. Metabolic studies on BMS-200475, a new antiviral compound active against hepatitis B virus. Antimicrob. Agents Chemother. 1999, 43, 190–193. [Google Scholar] [CrossRef] [PubMed]
- WHO. Global Hepatitis Report 2024: Action for Access in Low- and Middle-Income Countries; World Health Organization, Department of Global HIV, Hepatitis and Sexually Transmited Infections Programmes: Geneva, Switzerland, 2024; p. 239. [Google Scholar]
- Brasil. Viral Hepatitis Epidemiological Bulletin; Secretariat of Sanitary Surveillance/Ministry of Health: Brasília, Brazil, 2023.
- Sims, K.A.; Woodland, A.M. Entecavir: A new nucleoside analog for the treatment of chronic hepatitis B infection. Pharmacotherapy 2006, 26, 1745–1757. [Google Scholar] [CrossRef] [PubMed]
- NCBI. PubChem Compound Summary for CID 135398508, Entecavir. National Center for Biotechnology Information. 2022. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/Entecavir (accessed on 27 September 2022).
- Yao, L.; Dou, W.Y.; Ma, Y.F.; Liu, Y.S. Development and validation of sensitive methods for simultaneous determination of 9 antiviral drugs in different various environmental matrices by UPLC-MS/MS. Chemosphere 2021, 282, 131047. [Google Scholar] [CrossRef] [PubMed]
- Akkari, A.C.S.; Munhoz, I.P.; Tomioka, J.; Dos Santos, N.M.B.F.; Dos Santos, R.F. Pharmaceutical innovation: Differences between Europe, USA and ‘pharmerging’ countries. Gest. Prod. 2016, 23, 365–380. [Google Scholar] [CrossRef]
- Kornis, G.E.M.; Braga, M.H.; de Paula, P.A.B. Recent transformations in the pharmaceutical industry: An examination of the global and Brazilian experience in the 21st century. Physis 2014, 24, 885–908. [Google Scholar] [CrossRef]
- Rashed, M.N. Persistent Organic Pollutants (POPs); IntechOpen: Rijeka, Croatia, 2022; 172p. [Google Scholar] [CrossRef]
- Jain, S.; Kumar, P.; Vyas, R.K.; Pandit, P.; Dalai, A.K. Occurrence and removal of antiviral drugs in environment: A review. Water Air Soil Pollut. 2013, 224, 1410. [Google Scholar] [CrossRef]
- Ncube, S.; Madikizela, L.M.; Chimuka, L.; Nindi, M.M. Environmental fate and ecotoxicological effects of antiretrovirals: A current global status and future perspectives. Water Res. 2018, 145, 231–247. [Google Scholar] [CrossRef] [PubMed]
- Ghernaout, D.; Elboughdiri, N.; Ghareba, S. Fenton Technology for Wastewater Treatment: Dares and Trends. Open Access Libr. J. 2020, 7, e6045. [Google Scholar] [CrossRef]
- Vorontsov, A.V. Advancing Fenton and photo-Fenton water treatment through the catalyst design. J. Hazard. Mater. 2019, 372, 103–112. [Google Scholar] [CrossRef] [PubMed]
- Parsons, S. Advanced Oxidation Processes for Water and Wastewater Treatment; IWA Publishing: London, UK, 2005; 370p. [Google Scholar] [CrossRef]
- Messele, S.A.; Bengoa, C.; Stüber, F.E.; Giralt, J.; Fortuny, A.; Fabregat, A.; Font, J. Enhanced Degradation of Phenol by a Fenton-Like System (Fe/EDTA/H2O2) at Circumneutral pH. Catalysts 2019, 9, 474. [Google Scholar] [CrossRef]
- Kazimierowicz, J.; Dębowski, M.; Zieliński, M. Effect of Pharmaceutical Sludge Pre-Treatment with Fenton/Fenton-like Reagents on Toxicity and Anaerobic Digestion Efficiency. Int. J. Environ. Res. Public Health 2023, 20, 271. [Google Scholar] [CrossRef] [PubMed]
- Monsalvo, V.M.; Lopez, J.; Munoz, M.; de Pedro, Z.M.; Casas, J.A.; Mohedano, A.F.; Rodriguez, J.J. Application of Fenton-like oxidation as pre-treatment for carbamazepine biodegradation. Chem. Eng. J. 2015, 264, 856–862. [Google Scholar] [CrossRef]
- Touliabah, H.E.S.; El-Sheekh, M.M.; Ismail, M.M.; El-Kassas, H. A Review of Microalgae-and Cyanobacteria-Based Biodegradation of Organic Pollutants. Molecules 2022, 27, 1141. [Google Scholar] [CrossRef] [PubMed]
- Mustafa, S.; Nawaz, H.; Maqbool, M.; Iqbal, M. Microalgae biosorption, bioaccumulation and biodegradation efficiency for the remediation of wastewater and carbon dioxide mitigation: Prospects, challenges and opportunities. J. Water Process Eng. 2021, 41, 102009. [Google Scholar] [CrossRef]
- Lakhani, S.; Acharya, D.; Sakariya, R.; Sharma, D.; Patel, P.; Shah, M.; Prajapati, M. A comprehensive study of bioremediation for pharmaceutical wastewater treatment. Clean. Chem. Eng. 2022, 4, 100073. [Google Scholar] [CrossRef]
- Ahmad, I.Z. The usage of Cyanobacteria in wastewater treatment: Prospects and limitations. Lett. Appl. Microbiol. 2022, 75, 718–730. [Google Scholar] [CrossRef] [PubMed]
- Ummalyma, S.B.; Pandey, A.; Sukumaran, R.K.; Sahoo, D. Bioremediation by Microalgae: Current and Emerging Trends for Effluents Treatments for Value Addition of Waste Streams. In Biosynthetic Technology and Environmental Challenges; Springer: Singapore, 2017; pp. 355–375. [Google Scholar] [CrossRef]
- Wang, Q.; Liu, W.; Li, X.; Wang, R.; Zhai, J. Carbamazepine toxicity and its co-metabolic removal by the cyanobacteria Spirulina platensis. Sci. Total Environ. 2020, 706, 135686. [Google Scholar] [CrossRef] [PubMed]
- Pan, M.; Lyu, T.; Zhan, L.; Matamoros, V.; Angelidaki, I.; Cooper, M.; Pan, G. Mitigating antibiotic pollution using cyanobacteria: Removal efficiency, pathways and metabolism. Water Res. 2021, 190, 116735. [Google Scholar] [CrossRef]
- Zhou, T.; Cao, L.; Zhang, Q.; Liu, Y.; Xiang, S.; Liu, T.; Ruan, R. Effect of chlortetracycline on the growth and intracellular components of Spirulina platensis and its biodegradation pathway. J. Hazard. Mater. 2021, 413, 125310. [Google Scholar] [CrossRef] [PubMed]
- Hamed, S.M.; Hozzein, W.N.; Selim, S.; Mohamed, H.S.; AbdElgawad, H. Dissipation of pyridaphenthion by cyanobacteria: Insights into cellular degradation, detoxification and metabolic regulation. J. Hazard. Mater. 2021, 402, 123787. [Google Scholar] [CrossRef] [PubMed]
- Santos, M.J.O.; Souza, C.O.; Marcelino, H.R. Blue technology for a sustainable pharmaceutical industry: Microalgae for bioremediation and pharmaceutical production. Algal Res. 2023, 69, 102931. [Google Scholar] [CrossRef]
- Campos, M.M.C.; Faria, V.H.F.; Teodoro, T.S.; Barbosa, F.A.R. Evaluation of the capacity of the cyanobacterium Microcystis novacekii to remove atrazine from a culture medium Evaluation of the capacity of the cyanobacterium Microcystis novacekii to remove atrazine from a culture medium. J. Environ. Sci. Health Part B 2013, 48, 101–107. [Google Scholar] [CrossRef] [PubMed]
- Fioravante, I.A.; Barbosa, F.A.R.; Augusti, R.; Magalhães, S.M.S. Removal of methyl parathion by cyanobacteria Microcystis novacekii under culture conditions. J. Environ. Monit. 2010, 12, 1302–1306. [Google Scholar] [CrossRef] [PubMed]
- Xiao, M.; Li, M.; Reynolds, C.S. Colony formation in the cyanobacterium Microcystis. Biol. Rev. 2018, 93, 1399–1420. [Google Scholar] [CrossRef] [PubMed]
- Fioravante, I.A.; Albergaria, B.; Teodoro, T.S.; Magalhães, S.M.S.; Barbosa, F.; Augusti, R. Removal of 17α-ethinylestradiol from a sterile WC medium by the cyanobacteria Microcystis novacekii. J. Environ. Monitiring 2012, 14, 2362–2366. [Google Scholar] [CrossRef] [PubMed]
- Silva, S.R.; Barbosa, F.A.R.; Mol, M.P.G.; Magalhães, S.M.S. Toxicity for Aquatic Organisms of Antiretroviral Tenofovir Disoproxil. J. Environ. Prot. 2019, 10, 1565–1577. [Google Scholar] [CrossRef]
- Lin, S.H.; Lo, C.C. Fenton process for treatment of desizing wastewater. Water Res. 1997, 31, 2050–2056. [Google Scholar] [CrossRef]
- Merz, J.H.; Waters, W.A. The oxidation of aromatic compounds by means of the free hydroxyl radical. J. Chem. Soc. 1949, 2427–2433. [Google Scholar] [CrossRef]
- Carmichael, W.W.; Gorham, P.R. An improved method for obtaining axenic clones of planktonic blue-green algae. J. Phycol. 1974, 10, 238–240. [Google Scholar] [CrossRef]
- Ritz, C.; Baty, F.; Streibig, J.C.; Gerhard, D. Dose-response analysis using R. PLoS ONE 2015, 10, e0146021. [Google Scholar] [CrossRef] [PubMed]
- Sauder, D.C.; DeMars, C.E. An Updated Recommendation for Multiple Comparisons. Adv. Methods Pract. Psychol. Sci. 2019, 2, 26–44. [Google Scholar] [CrossRef]
- Ghiselli, G.; Jardim, W.F.; Litter, M.I.; Mansilla, H.D. Destruction of EDTA using Fenton and photo-Fenton-like reactions under UV-A irradiation. J. Photochem. Photobiol. Chem. 2004, 167, 59–67. [Google Scholar] [CrossRef]
- Hua, J.; Huang, M. Heterogeneous Fenton-like degradation of EDTA in an aqueous solution with enhanced COD removal under neutral pH. Water Sci. Technol. 2020, 81, 2432–2440. [Google Scholar] [CrossRef] [PubMed]
- Xu, R.; Huang, X.; Li, H.; Su, M.; Chen, D. Simultaneous Removal of Thallium and EDTA by Fenton Process. IOP Conf. Ser. Earth Environ. Sci. 2018, 111, 012034. [Google Scholar] [CrossRef]
- Mackuľak, T.; Mosný, M.; Grabic, R.; Golovko, O.; Koba, O.; Birošová, L. Fenton-like reaction: A possible way to efficiently remove illicit drugs and pharmaceuticals from wastewater. Environ. Toxicol. Pharmacol. 2015, 39, 483–488. [Google Scholar] [CrossRef] [PubMed]
- Giri, A.S.; Golder, A.K. Fenton, photo-fenton, H2O2 Photolysis, and TiO2 Photocatalysis for Dipyrone Oxidation: Drug Removal, Mineralization, Biodegradability, and Degradation Mechanism. Ind. Eng. Chem. Res. 2014, 53, 1351–1358. [Google Scholar] [CrossRef]
- Hu, Y.; Li, Y.; He, J.; Liu, T.; Zhang, K.; Huang, X.; Kong, L.; Liu, J. EDTA-Fe (III) Fenton-like oxidation for the degradation of malachite green. J. Environ. Manag. 2018, 226, 256–263. [Google Scholar] [CrossRef]
- United-Nations. Globally Harmonized System of Classification and Labelling of Chemicals (GHS), 10th ed.; United Nations Publications: New York, NY, USA; Geneva, Switzerland, 2023; 592p. [Google Scholar]
- Duo, L.; Yin, L.; Zhang, C.; Zhao, S. Chemosphere Ecotoxicological responses of the earthworm Eisenia fetida to EDTA addition under turfgrass growing conditions. Chemosphere 2019, 220, 56–60. [Google Scholar] [CrossRef]
- Oviedo, C.; Rodríguez, J. EDTA: The chelating agent under environmental scrutiny. Quim. Nova 2003, 26, 901–905. [Google Scholar] [CrossRef]
- Pascual, G.; Sano, D.; Sakamaki, T.; Nishimura, O. Effects of chemical interaction of nutrients and EDTA on metals toxicity to Pseudokirckneriella subcapitata. Ecotoxicol. Environ. Saf. 2020, 203, 110966. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zhou, M. A critical review of the application of chelating agents to enable Fenton and Fenton-like reactions at high pH values. J. Hazard. Mater. 2019, 362, 436–450. [Google Scholar] [CrossRef] [PubMed]
- Crini, G.; Lichtfouse, E. Advantages and disadvantages of techniques used for wastewater treatment. Environ. Chem. Lett. 2019, 17, 145–155. [Google Scholar] [CrossRef]
- von Sperling, M. Biological Wastewater Treatment Series—Waste Stabilisation Ponds. IWA: London, UK, 2007; 177p. [Google Scholar]
- Le Van, V.; Srivastava, A.; Ko, S.R.; Ahn, C.Y.; Oh, H.M. Microcystis colony formation: Extracellular polymeric substance, associated microorganisms, and its application. Bioresour. Technol. 2022, 360, 127610. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Show, P.L.; Ngo, H.H.; Ho, S.H. Algae-mediated antibiotic wastewater treatment: A critical review. Environ. Sci. Ecotechnol. 2022, 9, 100145. [Google Scholar] [CrossRef]
- Dalmora, S.L.; Sangoi, M.S.; Nogueira, D.R.; Silva, L.M. Determination of Entecavir in Tablet Dosage Form. J. AOAC Int. 2010, 93, 523–530. [Google Scholar] [CrossRef] [PubMed]
- Malipatil, S.M.; Athanikar, B.S.; Dipali, M. Pharma Science Monitor. Pharma Sci. Monit. Int. J. Pharm Sci. 2012, 3, 2085–2104. [Google Scholar]
- Subashchandrabose, S.R.; Ramakrishnan, B.; Megharaj, M.; Venkateswarlu, K.; Naidu, R. Mixotrophic cyanobacteria and microalgae as distinctive biological agents for organic pollutant degradation. Environ. Int. 2013, 51, 59–72. [Google Scholar] [CrossRef] [PubMed]
- Bai, X.; Acharya, K. Removal of trimethoprim, sulfamethoxazole, and triclosan by the green alga Nannochloris sp. J. Hazard. Mater. 2016, 315, 70–75. [Google Scholar] [CrossRef] [PubMed]
- Xiong, Q.; Hu, L.X.; Liu, Y.S.; Zhao, J.L.; He, L.Y.; Ying, G.G. Microalgae-based technology for antibiotics removal: From mechanisms to application of innovational hybrid systems. Environ. Int. 2021, 155, 106594. [Google Scholar] [CrossRef] [PubMed]
- Nie, J.; Sun, Y.; Zhou, Y.; Kumar, M.; Usman, M.; Li, J.; Shao, J.; Wang, L.; Tsang, D.C.W. Bioremediation of water containing pesticides by microalgae: Mechanisms, methods, and prospects for future research. Sci. Total Environ. 2020, 707, 136080. [Google Scholar] [CrossRef] [PubMed]
- Silva, S.; Moreira, C.; Vasconcelos, O.; Mol, M.; Barbosa, F.; Magalhães, S. Biodegradation of the antiviral tenofovir disoproxyl by a cyanobacteria/bacteria culture. Res. Sq. 2022, 1–18. [Google Scholar] [CrossRef]
- Abed, R.M.M. International Biodeterioration & Biodegradation Interaction between cyanobacteria and aerobic heterotrophic bacteria in the degradation of hydrocarbons. Int. Biodeterior. Biodegrad. 2010, 64, 58–64. [Google Scholar] [CrossRef]
- Fang, Y.; Lin, G.; Liu, Y.; Zhang, J. Advanced treatment of antibiotic-polluted wastewater by a consortium composed of bacteria and mixed cyanobacteria. Environ. Pollut. 2024, 344, 123293. [Google Scholar] [CrossRef]
- Rempel, A.; Gutkoski, J.P.; Nazari, M.T.; Biolchi, G.N.; Cavanhi, V.A.F.; Treichel, H.; Colla, L.M. Science of the Total Environment Current advances in microalgae-based bioremediation and other technologies for emerging contaminants treatment. Sci. Total Environ. 2021, 772, 144918. [Google Scholar] [CrossRef] [PubMed]
- Zymanczyk-Duda, E.; Samson, S.O.; Brzezinska-Rodak, M.; Klimek-Ochab, M. Versatile Applications of Cyanobacteria in Biotechnology. Microorganisms 2022, 10, 2318. [Google Scholar] [CrossRef] [PubMed]
- He, Q.; Wang, W.; Xu, Q.; Liu, Z.; Teng, J.; Yan, H.; Liu, X. Microcystins in Water: Detection, Microbial Degradation Strategies, and Mechanisms. Int. J. Environ. Res. Public Health 2022, 19, 13175. [Google Scholar] [CrossRef] [PubMed]
Description | Result |
---|---|
CAS No | 142217-69-4 |
Molecular structure | |
Molecular weight | 277.28 g/mol |
Chemical formula | C12H15N5O3 |
pKa | 8.0 |
LogKow | −0.8 |
Time (s) | Concentration Median (mg/L) (SE) | Efficiency (%) | p-Value |
---|---|---|---|
0 | 60.3 (35.2) | - | - |
5 | 12.9 (19.4) | 78.6 | 0.07 |
40 | 15.1 (16.4) | 75.0 | 0.14 |
90 | 0 | 100.0 | <0.05 |
180 | 0 | 100.0 | <0.05 |
300 | 0 | 100.0 | <0.05 |
600 | 0 | 100.0 | <0.05 |
Exposure (mg/L) | % Efficiency (EP) | ||||
---|---|---|---|---|---|
Period (Days) | |||||
4 | 7 | 14 | 21 | 30 | |
1.2 | 17.1 (0.9) | 17.8 (0.4) | 17.8 (0.2) | 23.0 (0.3) | 28.9 (0.3) |
12 | 13.6 (0.1) | 18.1 (10.2) | 12.5 (2.6) | 19.2 (0.4) * | 24.5 (0.6) * |
24 | 13.7 (6.4) | 16.8 (27.0) | 16.1 (2.1) * | 22.5 (0.8) * | 22.8 (1.2) * |
60 | 15.4 (1.6) | 16.0 (2.0) | 16.2 (6.7) | 26.7 (33.6) | 28.0 (1.2) |
120 | 14.4 (4.0) | 14.4 (2.5) | 16.6 (3.6) | 48.7 (70.0) | 21.5 (9.0) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Souza, C.R.d.; Souza-Silva, G.; Moreira, C.P.d.S.; Vasconcelos, O.M.S.R.; Nunes, K.P.; Pereira, C.A.J.; Mol, M.P.G.; Silveira, M.R. Removal of the Active Pharmaceutical Substance Entecavir from Water via the Fenton Reaction or Action by the Cyanobacterium Microcystis novacekii. Toxics 2024, 12, 885. https://doi.org/10.3390/toxics12120885
Souza CRd, Souza-Silva G, Moreira CPdS, Vasconcelos OMSR, Nunes KP, Pereira CAJ, Mol MPG, Silveira MR. Removal of the Active Pharmaceutical Substance Entecavir from Water via the Fenton Reaction or Action by the Cyanobacterium Microcystis novacekii. Toxics. 2024; 12(12):885. https://doi.org/10.3390/toxics12120885
Chicago/Turabian StyleSouza, Cléssius Ribeiro de, Gabriel Souza-Silva, Carolina Paula de Souza Moreira, Olívia Maria S. R. Vasconcelos, Kenia Pedrosa Nunes, Cíntia Aparecida J. Pereira, Marcos Paulo Gomes Mol, and Micheline Rosa Silveira. 2024. "Removal of the Active Pharmaceutical Substance Entecavir from Water via the Fenton Reaction or Action by the Cyanobacterium Microcystis novacekii" Toxics 12, no. 12: 885. https://doi.org/10.3390/toxics12120885
APA StyleSouza, C. R. d., Souza-Silva, G., Moreira, C. P. d. S., Vasconcelos, O. M. S. R., Nunes, K. P., Pereira, C. A. J., Mol, M. P. G., & Silveira, M. R. (2024). Removal of the Active Pharmaceutical Substance Entecavir from Water via the Fenton Reaction or Action by the Cyanobacterium Microcystis novacekii. Toxics, 12(12), 885. https://doi.org/10.3390/toxics12120885