Occurrence and Characterization of Small Microplastics (<100 μm), Additives, and Plasticizers in Larvae of Simuliidae
<p>Sampling sites where blackfly larvae (Simuliidae) were collected; the Mignone and Treja rivers are located near Rome, in Lazio, Italy.</p> "> Figure 2
<p>The average abundance of SMPs per organism in the two species of blackfly larvae under examination, <span class="html-italic">Simulium equinum</span> and <span class="html-italic">Simulium ornatum</span> (20 organisms per species for each sampling site were analyzed). The fiducial interval according to Poisson’s distribution is reported for each species in the sampling sites studied. The distribution of polymers ingested is shown as well. Complete names of the polymers can be found in <a href="#toxics-10-00383-t001" class="html-table">Table 1</a>.</p> "> Figure 3
<p>Weight of ingested SMPs (ng SMPs/organism) by <span class="html-italic">S. equinum</span> and <span class="html-italic">S. ornatum</span> collected in the Treja and Mignone rivers.</p> "> Figure 4
<p>Aspect ratio (AR) of the polymers identified and quantified in specimens of <span class="html-italic">S. ornatum</span> (<b>a</b>,<b>c</b>) and <span class="html-italic">S. equinum</span> (<b>b</b>,<b>d</b>) under examination. The number of the spheroid, ellipsoid, and cylinder particle shapes is reported for the average abundance of each polymer identified and quantified via microscopic counting.</p> "> Figure 5
<p>The average abundance of APFs per organism in the two species of blackfly larvae under exam, <span class="html-italic">Simulium equinum</span> and <span class="html-italic">Simulium ornatum</span> (20 organisms per species for each sampling site was analyzed). The distribution of ingested additives, plasticizers, and other microlitter components is also shown. Rayon is a non-plastic synthetic fiber, which is preeminent in all the specimens studied. Simuliidae can ingest larger particles if compressible; some rayon fragments in <span class="html-italic">S. ornatum</span> in the Mignone River were >150 μm in length. The fiducial interval according to Poisson’s distribution is reported for each species in the sampling sites studied.</p> "> Figure 6
<p>Weight of ingested APFs (ng APFs/organism) by <span class="html-italic">S. equinum</span> and <span class="html-italic">S. ornatum</span> collected in the Treja and Mignone rivers.</p> "> Figure 7
<p>Aspect ratio (AR) of the APFs identified and quantified in specimens of <span class="html-italic">S. equinum</span> (<b>a</b>,<b>c</b>) and <span class="html-italic">S. ornatum</span> (<b>b</b>,<b>d</b>) under examination. The number of the spheroid, ellipsoid, and cylinder particle shapes is reported for the average abundance of each particle identified and quantified via microscopic counting.</p> ">
Abstract
:1. Introduction
2. Material and Methods
2.1. Sampling Sites and Macroinvertebrate Sampling
2.2. Quality Assurance and Quality Control (QA/QC)
2.3. Extraction, Purification, and Filtration of APFs and SMPs Ingested by Blackfly Larvae
2.4. Quantitative and Chemical Characterization of APFs and SMPs via Micro-FTIR
2.5. Statistical Analysis
3. Results
3.1. SMPs Ingested by Blackfly Larvae
3.2. APFs and Other Components of Micro-Litter Ingested by Blackfly Larvae
4. Discussion
4.1. SMPs Ingested by Blackfly Larvae
4.2. APFs Ingested by Blackfly Larvae
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Iannilli, V.; Pasquali, V.; Setini, A.; Corami, F. First evidence of microplastics ingestion in benthic amphipods from Svalbard. Environ. Res. 2019, 179, 108811. [Google Scholar] [CrossRef] [PubMed]
- Sfriso, A.A.; Tomio, Y.; Rosso, B.; Gambaro, A.; Sfriso, A.; Corami, F.; Rastelli, E.; Corinaldesi, C.; Mistri, M.; Munari, C. Microplastic accumulation in benthic invertebrates in Terra Nova Bay (Ross Sea, Antarctica). Environ. Int. 2020, 137, 105587. [Google Scholar] [CrossRef]
- Fang, C.; Zheng, R.; Hong, F.; Jiang, Y.; Chen, J.; Lin, H.; Lin, L.; Lei, R.; Bailey, C.; Bo, J. Microplastics in three typical benthic species from the Arctic: Occurrence, characteristics, sources, and environmental implications. Environ. Res. 2021, 192, 110326. [Google Scholar] [CrossRef] [PubMed]
- Alfaro-Núñez, A.; Astorga, D.; Cáceres-Farías, L.; Bastidas, L.; Villegas, C.S.; Macay, K.C.; Christensen, J.H. Microplastic pollution in seawater and marine organisms across the Tropical Eastern Pacific and Galápagos. Sci. Rep. 2021, 11, 6424. [Google Scholar] [CrossRef]
- Cole, M.; Lindeque, P.; Fileman, E.; Halsband, C.; Goodhead, R.; Moger, J.; Galloway, T.S. Microplastic ingestion by zooplankton. Env. Sci. Technol. 2013, 47, 6646–6655. [Google Scholar] [CrossRef] [PubMed]
- Cho, Y.; Shim, W.J.; Jang, M.; Han, G.M.; Hong, S.H. Nationwide monitoring of microplastics in bivalves from the coastal environment of Korea. Environ. Poll. 2021, 270, 116175. [Google Scholar] [CrossRef] [PubMed]
- Corami, F.; Rosso, B.; Roman, M.; Picone, M.; Gambaro, A.; Barbante, C. Evidence of small microplastics (<100 μm) ingestion by Pacific oysters (Crassostrea gigas): A novel method of extraction, purification, and analysis using Micro-FTIR. Mar. Pollut. Bull. 2020, 160, 111606. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Yang, F.; Hassan Kazmi, S.S.U.; Zhao, Y.; Chen, M.; Wang, J. A review of microplastic pollution in seawater, sediments and organisms of the Chinese coastal and marginal seas. Chemosphere 2022, 286, 131677. [Google Scholar] [CrossRef]
- Hurley, R.R.; Woodward, J.C.; Rothwell, J.J. Ingestion of microplastics by freshwater Tubifex worms. Environ. Sci. Technol. 2017, 51, 12844–12851. [Google Scholar] [CrossRef]
- Windsor, F.M.; Tilley, R.M.; Tyler, C.R.; Ormerod, S.J. Microplastic ingestion by riverine macroinvertebrates. Sci. Total Environ. 2019, 646, 68–74. [Google Scholar] [CrossRef]
- Silva, C.J.M.; Silva, A.L.P.; Gravato, C.; Pestana, J.L.T. Ingestion of small-sized and irregularly shaped polyethylene microplastics affect Chironomus riparius life-history traits. Sci. Total Environ. 2019, 672, 862–868. [Google Scholar] [CrossRef] [PubMed]
- Akindele, E.O.; Ehlers, S.M.; Koop, J.H.E. Freshwater insects of different feeding guilds ingest microplastics in two Gulf of Guinea tributaries in Nigeria. Environ. Sci. Pollut. Res. 2020, 27, 33373–33379. [Google Scholar] [CrossRef] [PubMed]
- Corami, F.; Rosso, B.; Bravo, B.; Gambaro, A.; Barbante, C. A novel method for purification, quantitative analysis, and characterization of microplastic fibers using Micro-FTIR. Chemosphere 2020, 238, 124564. [Google Scholar] [CrossRef]
- Beiras, R.; Verdejo, E.; Campoy-López, P.; Vidal-Liñán, L. Aquatic toxicity of chemically defined microplastics can be explained by functional additives. J. Hazard. Mater. 2021, 406, 124338. [Google Scholar] [CrossRef] [PubMed]
- Adler, P.H. World Blackflies (Diptera: Simuliidae): A Comprehensive Revision of the Taxonomic and Geographical Inventory. 2021. Available online: https://biomia.sites.clemson.edu/pdfs/blackflyinventory.pdf (accessed on 7 July 2022).
- Ciadamidaro, S.; Mancini, L.; Rivosecchi, L. Black flies (Diptera, Simuliidae) as ecological indicators of stream ecosystem health in an urbanizing area (Rome, Italy). Ann. Ist. Super Sanità 2016, 52, 269–276. [Google Scholar] [CrossRef] [PubMed]
- Hart, D.D.; Merz, R.A.; Genovese, S.J.; Clark, B.D. Feeding postures of suspension-feeding larval black flies: The conflicting demands of drag and food acquisition. Oecologia 1991, 85, 457–463. [Google Scholar] [CrossRef] [PubMed]
- Currie, D.C.; Craig, D.A. Feeding strategies of larval Black Flies. In Black Flies. Ecology, Population Management and Annotated World; Kim, K.C., Merritt, R.W., Eds.; The Pennsylvania University Press: Philadelphia, PA, USA, 1986; pp. 155–170. [Google Scholar]
- Al-Azzawi, M.S.M.; Kefer, S.; Weißer, J.; Reichel, J.; Schwaller, C.; Glas, K.; Knoop, O.; Drewes, J.E. Validation of sample preparation methods for microplastic analysis in wastewater matrices—reproducibility and standardization. Water 2020, 12, 2445. [Google Scholar] [CrossRef]
- Corami, F.; Rosso, B.; Morabito, E.; Rensi, V.; Gambaro, A.; Barbante, C. Small microplastics (<100 μm), plasticizers and additives in seawater and sediments: Oleo-extraction, purification, quantification, and polymer characterization using Micro-FTIR. Sci. Total Environ. 2021, 797, 148937. [Google Scholar] [CrossRef]
- Andersen, R.R. Algal Culturing Technique; Elsevier Press: Amsterdam, The Netherlands, 2005; pp. 1–589. [Google Scholar]
- Brierley, B.; Carvalho, L.; Davies, S.; Krokowski, J. Guidance on the Quantitative Analysis of Phytoplankton in Freshwater Samples; NERC Open Research Archive: Edgewater, MD, USA, 2007; pp. 1–24. [Google Scholar]
- Comtois, P.; Alcazar, P.; Neron, D. Pollen counts statistics and its relevance to precision. Aerobiologia 1999, 15, 19–28. [Google Scholar] [CrossRef]
- Gough, H.L.; Stahl, D.A. Optimization of direct cell counting in sediment. J. Microbiol. Methods 2003, 52, 39–46. [Google Scholar] [CrossRef]
- Mazziotti, C.; Fiocca, A.; Vadrucci, M.R. Phytoplankton in transitional waters: Sedimentation and Counting methods. TWB J. 2013, 2, 90–99. [Google Scholar]
- Lisle, J.T.; Hamilton, M.A.; Willse, A.R.; McFeters, G.A. Comparison of Fluorescence Microscopy and Solid-Phase Cytometry Methods for Counting Bacteria in Water. Appl. Environ. Microbiol. 2004, 70, 5343–5348. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Muthukrishnan, T.; Govender, A.; Dobretsov, S.; Abed, R.M.M. Evaluating the Reliability of Counting Bacteria Using Epifluorescence Microscopy. J. Mar. Sci. Eng. 2017, 5, 4. [Google Scholar] [CrossRef] [Green Version]
- Huppertsberg, S.; Knepper, T.P. Instrumental analysis of microplastics—benefits and challenges. Anal. Bioanal. Chem. 2018, 410, 6343–6352. [Google Scholar] [CrossRef] [PubMed]
- Oßmann, B.E.; Sarau, G.; Holtmannspötter, H.; Pischetsrieder, M.; Christiansen, S.H.; Dicke, W. Small-sized microplastics and pigmented particles in bottled mineral water. Water Res. 2018, 141, 307–316. [Google Scholar] [CrossRef] [PubMed]
- Tong, H.; Jiang, Q.; Hu, X.; Zhong, X. Occurrence and identification of microplastics in tap water from China. Chemosphere 2020, 252, 126493. [Google Scholar] [CrossRef]
- Imhof, H.K.; Laforsch, C.; Wiesheu, A.C.; Schmid, J.; Anger, P.M.; Niessner, R.; Ivleva, N.P. Pigments and plastic in limnetic ecosystems: A qualitative and quantitative study on microparticles of different size classes. Water Res. 2016, 98, 64–74. [Google Scholar] [CrossRef]
- Bharti, S.K.; Kumar, D.; Anand, S.; Barman, S.C.; Kumar, N. Characterization and morphological analysis of individual aerosol of PM10 in urban area of Lucknow, India. Micron 2017, 103, 90–98. [Google Scholar] [CrossRef]
- Hamacher-Barth, E.; Jansson, K.; Leck, C. A method for sizing submicrometer particles in air collected on Formvar films and imaged by scanning electron microscope. Atmos. Meas. Tech. 2013, 6, 3459–3475. [Google Scholar] [CrossRef] [Green Version]
- Filella, M. Questions of size and numbers in environmental research on microplastics: Methodological and conceptual aspects. Environ. Chem. 2015, 12, 527–538. [Google Scholar] [CrossRef] [Green Version]
- Courtene-Jones, W.; Quinn, B.; Gary, S.F.; Mogg, A.O.M.; Narayanaswamy, B.E. Microplastic pollution identified in deep-sea water and ingested by benthic invertebrates in the Rockall Trough, North Atlantic Ocean. Environ. Poll. 2017, 231, 271–280. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leads, R.R.; Weinstein, J.E. Occurrence of tire wear particles and other microplastics within the tributaries of the Charleston Harbor Estuary, South Carolina, USA. Mar. Poll. Bull. 2019, 145, 569–582. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro-Brasil, D.R.G.; Schlemmer, B.L.; Veloso, G.K.O.; Pio de Matos, T.; Silva de Lima, E.; Dias-Silva, K. The impacts of plastics on aquatic insects. Sci. Total Environ. 2022, 813, 152436. [Google Scholar] [CrossRef] [PubMed]
- Ehlers, S.; Manz, W.; Koop, J. Microplastics of different characteristics are incorporated into the larval cases of the freshwater caddisfly Lepidostoma basale. Aquat. Biol. 2019, 28, 67–77. [Google Scholar] [CrossRef] [Green Version]
- Gallitelli, L.; Cesarini, G.; Cera, A.; Sighicelli, M.; Lecce, F.; Menegoni, P.; Scalici, M. Transport and Deposition of Microplastics and Mesoplastics along the River Course: A Case Study of a Small River in Central Italy. Hydrology 2020, 7, 90. [Google Scholar] [CrossRef]
- Khosrovyan, A.; Gabrielyan, B.; Kahru, A. Ingestion and effects of virgin polyamide microplastics on Chironomus riparius adult larvae and adult zebrafish Danio rerio. Chemosphere 2020, 259, 127456. [Google Scholar] [CrossRef]
- Immerschitt, I.; Martens, A. Ejection, ingestion and fragmentation of mesoplastic fibres to microplastics by Anax imperator larvae (Odonata: Aeshnidae). Odonatologica 2021, 49, 57–66. [Google Scholar]
- Stanković, J.; Milošević, D.; Savić-Zdraković, D.; Yalçın, G.; Yildiz, D.; Beklioğlu, M.; Jovanović, B. Exposure to a microplastic mixture is altering the life traits and is causing deformities in the non-biting midge Chironomus riparius meigen (1804). Environ. Pollut. 2020, 262, 114248. [Google Scholar] [CrossRef]
- Ziajahromi, S.; Kumar, A.; Neale, P.A.; Leusch, F.D.L. Effects of polyethylene microplastics on the acute toxicity of a synthetic pyrethroid to midge larvae (Chironomus tepperi) in synthetic and river water. Sci. Total Environ. 2019, 671, 971–975. [Google Scholar] [CrossRef]
- Chinfak, N.; Sompongchaiyakul, P.; Charoenpong, C.; Shi, H.; Yeemin, T.; Zhang, J. Abundance, composition, and fate of microplastics in water, sediment, and shellfish in the Tapi-Phumduang River system and Bandon Bay, Thailand. Sci. Total Environ. 2021, 781, 146700. [Google Scholar] [CrossRef]
- Pegado, T.D.S.E.S.; Schmid, K.; Winemiller, K.O.; Chelazzi, D.; Cincinelli, A.; Dei, T.G.L. First evidence of microplastic ingestion by fishes from the Amazon River estuary. Mar. Poll. Bull. 2018, 133, 814–821. [Google Scholar] [CrossRef] [PubMed]
- Iannilli, V.; Corami, F.; Grasso, P.; Lecce, F.; Buttinelli, M.; Setini, A. Plastic abundance and seasonal variation on the shorelines of three volcanic lakes in Central Italy: Can amphipods help detect contamination? Environ. Sci. Poll. Res. 2020, 27, 14711–14722. [Google Scholar] [CrossRef] [PubMed]
- Savoca, S.; Matanović, K.; d’Angelo, G.; Vetri, V.; Anselmo, S.; Bottari, T.; Mancuso, M.; Kužir, S.; Spanò, N.; Capillo, G.; et al. Ingestion of plastic and non-plastic microfibers by farmed gilthead sea bream (Sparus aurata) and common carp (Cyprinus carpio) at different life stages. Sci. Total Environ. 2021, 782, 146851. [Google Scholar] [CrossRef]
- Bétard, F. Insects as zoogeomorphic agents: An extended review. Earth Surf. Processes Landf. 2021, 46, 89–109. [Google Scholar] [CrossRef]
- Hamann, L.; Blanke, A. Suspension feeders: Diversity, principles of particle separation and biomimetic potential. J. R. Soc. Interface 2022, 19, 20210741. [Google Scholar] [CrossRef]
- Hamidian, A.H.; Ozumchelouei, E.J.; Feizi, F.; Wu, C.; Zhang, Y.; Yang, M. A review on the characteristics of microplastics in wastewater treatment plants: A source for toxic chemicals. J. Clean. Prod. 2021, 295, 126480. [Google Scholar] [CrossRef]
- Wong, J.K.H.; Lee, K.K.; Tang, K.H.D.; Yap, P.-S. Microplastics in the freshwater and terrestrial environments: Prevalence, fates, impacts and sustainable solutions. Sci. Total Environ. 2020, 719, 137512. [Google Scholar] [CrossRef]
- Huang, W.; Song, B.; Liang, J.; Niu, Q.; Zeng, G.; Shen, M.; Deng, J.; Luo, Y.; Wen, X.; Zhang, Y. Microplastics and associated contaminants in the aquatic environment: A review on their ecotoxicological effects, trophic transfer, and potential impacts to human health. J. Hazard. Mater. 2020, 405, 124187. [Google Scholar] [CrossRef]
HDPE | High Density Polyethylene |
PA | Nylon 6 |
PFA | Pefluoroalcoxy Fluorocarbon |
PPA | Polyphtalamide |
PES | Polyester |
ECTFE | Ethylene chlorotrifluoroethylene |
PC/ABS | Polycarbonate/Acrylonitrile Styrene Butadiene |
ARAMID | Aramid |
PO | Olefin fiber |
PEAA-Zn | Polyethylene acrylic acid copolymer—Zinc salt |
EVOH | Ethyl vinyl alcohol |
MODACRILIC | Modacrilic |
PP | Polypropylene |
PEA | Polyethylacrylate |
PAA | Polyarylamide |
EPM | Ethylene propylene rubber |
PBA | Polybutylacrylate |
FKM | Fluoroelastomer |
PA 12 | Grilamid tr 55 |
PTFE | Polytetrafluoroethylene |
BR | Butadien rubber |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Corami, F.; Rosso, B.; Iannilli, V.; Ciadamidaro, S.; Bravo, B.; Barbante, C. Occurrence and Characterization of Small Microplastics (<100 μm), Additives, and Plasticizers in Larvae of Simuliidae. Toxics 2022, 10, 383. https://doi.org/10.3390/toxics10070383
Corami F, Rosso B, Iannilli V, Ciadamidaro S, Bravo B, Barbante C. Occurrence and Characterization of Small Microplastics (<100 μm), Additives, and Plasticizers in Larvae of Simuliidae. Toxics. 2022; 10(7):383. https://doi.org/10.3390/toxics10070383
Chicago/Turabian StyleCorami, Fabiana, Beatrice Rosso, Valentina Iannilli, Simone Ciadamidaro, Barbara Bravo, and Carlo Barbante. 2022. "Occurrence and Characterization of Small Microplastics (<100 μm), Additives, and Plasticizers in Larvae of Simuliidae" Toxics 10, no. 7: 383. https://doi.org/10.3390/toxics10070383
APA StyleCorami, F., Rosso, B., Iannilli, V., Ciadamidaro, S., Bravo, B., & Barbante, C. (2022). Occurrence and Characterization of Small Microplastics (<100 μm), Additives, and Plasticizers in Larvae of Simuliidae. Toxics, 10(7), 383. https://doi.org/10.3390/toxics10070383