Green Radish Polysaccharides Ameliorate Hyperlipidemia in High-Fat-Diet-Induced Mice via Short-Chain Fatty Acids Production and Gut Microbiota Regulation
<p>GRP reduced HFD-induced body weight gain; (<b>A</b>) representative pictures of mice; (<b>B</b>) hepatosomatic index of mice; (<b>C</b>) diagram of changes in mice body weight. * <span class="html-italic">p</span> < 0.05.</p> "> Figure 2
<p>Effects of GRP on serum biochemical indicators. The levels of TG, TC, HDL-C, AST, ALT, and LDL-C in the serum were evaluated (<b>A</b>–<b>F</b>). The results are expressed as means ± SD. Statistically significant results between all groups were expressed by lowercase letters. * <span class="html-italic">p</span> < 0.05.</p> "> Figure 3
<p>Effects of GRP on oxidative levels and inflammatory indicators. The levels of SOD, CAT, GSH-Px, TNF-α, IL-6, and LPS were evaluated (<b>A</b>–<b>F</b>). The results are expressed as means ± SD. Statistically significant results between all groups were expressed by lowercase letters. * <span class="html-italic">p</span> < 0.05 and ns: no significance.</p> "> Figure 4
<p>GRP ameliorates defects in gut, liver, and adipose tissue cells’ structure induced by high-fat diet. (<b>A</b>) Representative pictures of hematoxylin and eosin (H&E) staining for liver tissue. (<b>B</b>) Representative images of HE staining in the ileum of mice were shown. (<b>C</b>) Representative pictures of oil red O staining for liver fat. (<b>D</b>) Representative pictures of hematoxylin and eosin (H&E) staining for adipose tissue. Pictures were shown as 20× zoom, scale: 100 μm. (<b>E</b>) Change in the colon villi length of the mice in the three groups. (<b>F</b>) Mean size of mice adipocytes. Statistically significant results between groups are indicated by small letters. * <span class="html-italic">p</span> < 0.05.</p> "> Figure 5
<p>Effect of GRP on intestinal microbial structure in HFD-fed mice. (<b>A</b>) Statistical differences between the groups of alpha diversity; (<b>B</b>) Venn diagram of the ASVs for LFD, HFD, and GRP; (<b>C</b>) β-diversity PCA and PCoA results.</p> "> Figure 6
<p>GRP changed the composition of gut microbiota in HFD-fed mice. (<b>A</b>) Average relative abundance at the phylum level in each group. (<b>B</b>) Average relative abundance at the family level in each group. (<b>C</b>) Average relative abundance at the genus level in each group. (<b>D</b>) LEfSe analysis was conducted to identify fecal microbial taxa that accounted for the greatest differences among all the groups.</p> "> Figure 7
<p>Contents of fecal short-chain fatty acids in three mice groups; statistically significant results between all groups were expressed by lowercase letters. * <span class="html-italic">p</span> < 0.05.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of GRP
2.2. Animal Treatment and Experimental Design
2.3. Histopathological Analysis
2.4. Serum and Liver Index Biochemical Analysis
2.5. High-Throughput Sequencing Analysis of Intestinal Microbiota
2.6. Fecal SCFA Measurement
2.7. Statistical Analysis
3. Results and Discussion
3.1. Characterization of GRP
3.2. Effects of GRP on Body Weight and Organ Index of HFD-Fed Mice
3.3. Effects of GRP on the Serum Lipid Levels of HFD-Fed Mice
3.4. Effects of GRP on Oxidative Levels and Inflammatory Indicators in HFD-Fed Mice
3.5. Effects of GRP on Histopathology of Liver Epididymal Fat and Intestinal Tissue in HFD-Fed Mice
3.6. Effect of GRP on Intestinal Microbial Structure in HFD-Fed Mice
3.7. Effect of GRP on Intestinal Microbial Composition in HFD-Fed Mice
3.8. Effect of GRP on SFCAs in HFD-Fed Mice
3.9. Metabolite Pathway Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Stewart, J.; McCallin, T.; Martinez, J.; Chacko, S.; Yusuf, S. Hyperlipidemia. Pediatr. Rev. 2020, 41, 393–402. [Google Scholar] [CrossRef] [PubMed]
- Xu, P.; Zhai, Y.; Wang, J. The role of PPAR and its cross-talk with CAR and LXR in obesity and atherosclerosis. Int. J. Mol. Sci. 2018, 19, 1260. [Google Scholar] [CrossRef] [PubMed]
- Jeun, J.; Kim, S.; Cho, S.Y.; Jun, H.J.; Park, H.J.; Seo, J.G. Hypocholesterolemic effects of Lactobacillus plantarum KCTC3928 by increased bile acid excretion in C57BL/6 mice. Nutrition 2010, 26, 321–330. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Miao, H.; Feng, Y.L.; Zhao, Y.Y.; Lin, R.C. Metabolomics in dyslipidemia. Adv. Clin. Chem. 2014, 66, 101–119. [Google Scholar] [CrossRef] [PubMed]
- Han, Q.; Yeung, S.C.; Ip, M.S.M.; Mak, J.C.W. Dysregulation of cardiac lipid parameters in high-fat high-cholesterol diet-induced rat model. Lipids Health Dis. 2018, 17, 255. [Google Scholar] [CrossRef] [PubMed]
- Csonka, C.; Sárközy, M.; Pipicz, M.; Dux, L.; Csont, T. Modulation of hypercholesterolemia-induced oxidative/nitrative stress in the heart. Oxid. Med. Cell. Longev. 2016, 2016, 3863726. [Google Scholar] [CrossRef] [PubMed]
- Chu, S.M.; Shih, W.T.; Yang, Y.H.; Chen, P.C.; Chu, Y.H. Use of traditional Chinese medicine in patients with hyperlipidemia: A population-based study in Taiwan. J. Ethnopharmacol. 2015, 168, 129–135. [Google Scholar] [CrossRef]
- Sirtori, C.R. The pharmacology of statins. Pharmacol. Res. 2014, 88, 3–11. [Google Scholar] [CrossRef]
- Mancini, G.B.; Baker, S.; Bergeron, J.; Fitchett, D.; Frohlich, J.; Genest, J.; Gupta, M.; Hegele, R.A.; Ng, D.; Pearson, G.J.; et al. Diagnosis, prevention, and management of statin adverse effects and intolerance: Canadian consensus working group update. Can. J. Cardio 2016, 32, S35–S65. [Google Scholar] [CrossRef]
- Słupski, W.; Jawień, P.; Nowak, B. Botanicals in postmenopausal osteoporosis. Nutrients 2021, 13, 1609. [Google Scholar] [CrossRef]
- Đurić, L.; Milanović, M.; Milošević, N.; Stojanoska, M.; Milić, N. Herbs for treatment of hyperlipidemia: What is the evidence? Curr. Top. Nutraceutical Res. 2021, 19, 4146–4156. Available online: https://www.nchpjournals.com/Manuscript?id=1921 (accessed on 4 May 2021).
- Sobenin, I.A.; Myasoedova, V.A.; Iltchuk, M.I.; Zhang, D.W.; Orekhov, A.N. Therapeutic effects of garlic in cardiovascular atherosclerotic disease. Chin. J. Nat. Med. 2019, 17, 721–728. [Google Scholar] [CrossRef]
- Ahmed, S.F.; Abd Al Haleem, E.N.; El-Tantawy, W.H. Evaluation of the anti-atherogenic potential of egyptian artichoke leaf extract in hypercholesterolemic rats. Arch. Physiol. Biochem. 2022, 128, 163–174. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.E.; Wang, W.; Qin, J. Anti-hyperlipidemia of garlic by reducing the level of total cholesterol and low-density lipoprotein: A meta-analysis. Medicine 2018, 97, e0255. [Google Scholar] [CrossRef]
- Chen, Y.K.; Cheung, C.; Reuhl, K.R.; Liu, A.B.; Lee, M.J.; Lu, Y.P.; Yang, C.S. Effects of green tea polyphenol (-)-epigallocatechin-3-gallate on newly developed high-fat/Western-style diet-induced obesity and metabolic syndrome in mice. J. Agric. Food. Chem. 2021, 59, 11862–11871. [Google Scholar] [CrossRef]
- Panahi, Y.; Ahmadi, Y.; Teymouri, M.; Johnston, T.P.; Sahebkar, A. Curcumin as a potential candidate for treating hyperlipidemia: A review of cellular and metabolic mechanisms. J. Cell. Physiol. 2018, 233, 141–152. [Google Scholar] [CrossRef] [PubMed]
- Qiang, Z.; Lee, S.O.; Ye, Z.; Wu, X.; Hendrich, S. Artichoke extract lowered plasma cholesterol and increased fecal bile acids in Golden Syrian hamsters. Phytother. Res. 2012, 26, 1048–1052. [Google Scholar] [CrossRef]
- Zou, J.; Zhang, S.; Li, P.; Zheng, X.; Feng, D. Supplementation with curcumin inhibits intestinal cholesterol absorption and prevents atherosclerosis in high-fat diet-fed apolipoprotein E knockout mice. Nutr. Res. 2018, 56, 32–40. [Google Scholar] [CrossRef] [PubMed]
- Guo, W.L.; Deng, J.C.; Pan, Y.Y.; Xu, J.X.; Hong, J.L.; Shi, F.F. Hypoglycemic and hypolipidemic activities of Grifola frondosa polysaccharides and their relationships with the modulation of intestinal microflora in diabetic mice induced by high-fat diet and streptozotocin. Int. J. Biol. Macromol. 2022, 153, 1231–1240. [Google Scholar] [CrossRef] [PubMed]
- Hu, W.B.; Zhao, J.; Chen, H.; Xiong, L.; Wang, W.J. Polysaccharides from Cyclocarya paliurus: Chemical composition and lipid-lowering effect on rats challenged with high-fat diet. J. Funct. Foods 2017, 36, 262–273. [Google Scholar] [CrossRef]
- Hou, C.Y.; Chen, L.L.; Yang, L.Z.; Ji, X.L. An insight into anti-inflammatory effects of natural polysaccharides. Int. J. Biol. Macromol. 2020, 153, 248–255. [Google Scholar] [CrossRef]
- National Bureau of Statistics of the People’s Republic of China. China Statistical Yearbook M; China China Statistics Press: Beijing, China, 2020; pp. 376–390. Available online: https://www.stats.gov.cn/sj/ndsj/2021/indexch.htm (accessed on 1 September 2021).
- Wang, L.Z.; He, Q.W. China Radish; Science and Technology Literature Press: Beijing, China, 2025; pp. 13–14. [Google Scholar]
- Liu, J.; Fan, G.; Feng, W. Nutrition and health care function of white radish. Chin. Food Nutr. 2002, 24, 46–47. [Google Scholar]
- Kang, J.N.; Kim, J.S.; Lee, S.M.; Won, S.Y.; Seo, M.S.; Kwon, S.J. Analysis of phenotypic characteristics and sucrose metabolism in the roots of Raphanus sativus L. Front. Plant Sci. 2021, 12, 716–782. [Google Scholar] [CrossRef]
- Al-Suod, H.; Ratiu, I.A.; Gadzała-Kopciuch, R.; Górecki, R.; Buszewski, B. Identification and quantification of cyclitols and sugars isolated from different morphological parts of Raphanus sativus L. Nat. Prod. Res. 2021, 37, 107–112. [Google Scholar] [CrossRef] [PubMed]
- Jing, P.; Song, L.H.; Shen, S.Q.; Zhao, S.J.; Pang, J.; Qian, B.J. Characterization of phytochemicals and antioxidant activities of red radish brines during lactic acid fermentation. Molecules 2014, 19, 9675–9688. [Google Scholar] [CrossRef] [PubMed]
- Ding, H.Y.; Liu, M.L. From root to seed: Unearthing the potential of carrot processing and comprehensive utilization. Food Sci. Nutr. 2024, 12, 8762–8778. [Google Scholar] [CrossRef]
- Bhattarai, D.R.; Pardhan, N.G.; Chalise, B.; Pandey, Y.R.; Subedi, G.D. Selection of turnip variety for nutrition security in nepal. Int. J. Hortic. 2015, 5, 1–5. [Google Scholar] [CrossRef]
- Jiang, L.F. Cellulase-assisted extraction and antioxidant activity of polysaccharides from Rhizoma imperata. Carbohydr. Polym. 2014, 8, 99–102. [Google Scholar] [CrossRef]
- Yang, W.; Yang, Z.; Zou, Y.; Sun, X.; Huang, G. Extraction and deproteinization process of polysaccharide from purple sweet potato. Chem. Biol. Drug Des. 2022, 99, 111–117. [Google Scholar] [CrossRef] [PubMed]
- He, X.Z. Preparation, Characterisation and Antioxidant Study of Soybean Polysaccharides with Different Molecular Weights; East China Normal University: Shanghai, China, 2016. [Google Scholar]
- Li, X.; Zhan, G.; Wang, J.; Zhang, L. Deciphering the differentiated performance on electricity generation and COD degradation by Rhodopseudomonas-dominated bioanode in light or dark. Chemosphere 2024, 359, 142323. [Google Scholar] [CrossRef]
- Wan, M.L.Y.; Co, V.A.; El-Nezami, H. Dietary polyphenol impact on gut health and microbiota. Crit. Rev. Food Sci. Nutr. 2021, 61, 690–711. [Google Scholar] [CrossRef] [PubMed]
- Brændvang, M.; Gundersen, L. Efficient and regioselective N-1 alkylation of 4 -chloropyrazolo [3,4-d]pyrimidine. Tetrahedron Lett. 2007, 48, 3057–3059. [Google Scholar] [CrossRef]
- Zhu, C.; Song, W.; Tao, Z.; Liu, H.; Zhang, S.; Xu, W.; Li, H. Analysis of microbial diversity and composition in small intestine during different development times in ducks. Poult. Sci. 2020, 99, 1096–1106. [Google Scholar] [CrossRef] [PubMed]
- Han, X.; Guo, J.; You, Y.; Yin, M.; Ren, C. A fast and accurate way to determine short chain fatty acids in mouse feces based on GC-MS. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2018, 1099, 73–82. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Wang, H.; Zhu, M.J. A sensitive GC/MS detection method for analyzing microbial metabolites short chain fatty acids in fecal and serum samples. Talanta 2019, 196, 249–254. [Google Scholar] [CrossRef]
- Hsu, Y.L.; Chen, C.C.; Lin, Y.T.; Wu, W.K. Evaluation and optimization of sample handling methods for quantification of short-chain fatty acids in human fecal samples by GC-MS. J. Proteome Res. 2019, 18, 1948–1957. [Google Scholar] [CrossRef]
- Hao, F.; Chen, X. FXR and its role in liver tumors and liver regeneration. J. Huazhong Univ. Sci. Technol. Med. Sci. 2013, 3, 129–132. [Google Scholar]
- Chang, J.W.; Lee, H.W.; Kim, B.K.; Park, J.Y.; Kim, D.Y.; Ahn, S.H.; Han, K.H.; Kim, S.U. Hepatic steatosis index in the detection of fatty liver in patients with chronic hepatitis b receiving antiviral therapy. Gut Liver 2021, 15, 117–127. [Google Scholar] [CrossRef]
- Zheng, M.; Chao, X.; Zheng, Y.; Hong, T.; Wu, W.; Zhu, Y.; Ni, H.; Jiang, Z. A polysaccharide from edible red seaweed Bangia fusco-purpurea prevents obesity in high-fat diet-induced C57BL/6 mice. Int. J. Biol. Macromol. 2024, 283, 137545. [Google Scholar] [CrossRef] [PubMed]
- Donato, L.J.; Meeusen, J.W. Chapter 28—Lipids and lipoproteins. In Contemporary Practice in Clinical Chemistry; Academic Press: Cambridge, MA, USA, 2020; pp. 487–506. [Google Scholar] [CrossRef]
- Zhyvotovska, A.; Yusupov, D.; McFarlane, S. Introductory Chapter: Overview of Lipoprotein Metabolism; IntechOpen: New York, NY, USA, 2019; pp. 1–7. [Google Scholar] [CrossRef]
- Jomard, A.; Osto, E. High density lipoproteins: Metabolism, function, and therapeutic potential. Front. Cardiovasc. Med. 2020, 7, 39. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Zhang, Y.; Xu, M.; Wang, Y.; Cheng, S.; Liebrecht, A. Anti-diabetic activity of Vaccinium bracteatum Thunb. leaves’ polysaccharide in STZ-induced diabetic mice. Int. J. Biol. Macromol. 2013, 61, 317–321. [Google Scholar] [CrossRef]
- Singh, R.; Devi, S.; Gollen, R. Role of free radical in atherosclerosis, diabetes and dyslipidaemia: Larger-than-life. Diabetes Metab. Res. Rev. 2015, 31, 113–126. [Google Scholar] [CrossRef]
- Sookoian, S.; Pirola, C.J. Liver enzymes, metabolomics and genome-wide association studies: From systems biology to the personalized medicine. World J. Gastroenterol. 2015, 21, 711–725. [Google Scholar] [CrossRef]
- Schieber, M.; Chandel, N.S. ROS function in redox signaling and oxidative stress. Curr. Biol. 2014, 24, R453–R462. [Google Scholar] [CrossRef]
- Forman, H.J.; Zhang, H. Targeting oxidative stress in disease: Promise and limitations of antioxidant therapy. Nat. Rev. Drug Discov. 2021, 20, 689–709. [Google Scholar] [CrossRef] [PubMed]
- Martemucci, G.; Costagliola, C.; Mariano, M.; D’andrea, L.; Napolitano, P.; D’Alessandro, A.G. Free radical properties, source and targets, antioxidant consumption and health. Oxygen 2022, 2, 48–78. [Google Scholar] [CrossRef]
- Yoon, H.; Shaw, J.L.; Haigis, M.C.; Greka, A. Lipid metabolism in sickness and in health: Emerging regulators of lipotoxicity. Mol. Cell. 2021, 81, 3708–3730. [Google Scholar] [CrossRef]
- Méndez-García, L.A.; Cid-Soto, M.; Aguayo-Guerrero, J.A.; Carrero-Aguirre, M. Low serum interleukin-6 is a differential marker of obesity-related metabolic dysfunction in women and men. J. Interferon Cytokine Res. 2020, 40, 131–138. [Google Scholar] [CrossRef] [PubMed]
- Tsuru, H.; Osaka, M.; Hiraoka, Y.; Yoshida, M. HFD-induced hepatic lipid accumulation and inflammation are decreased in Factor D deficient mouse. Sci. Rep. 2020, 10, 17593. [Google Scholar] [CrossRef]
- Daniel, H.; Gholami, A.; Berry, D. High-fat diet alters gut microbiota physiology in mice. Isme J. 2014, 8, 295–308. [Google Scholar] [CrossRef] [PubMed]
- Paik, D.; Yao, L.; Zhang, Y.; Bae, S.; D’Agostino, G.D.; Zhang, M. Human gut bacteria produce TH17-modulating bile acid metabolites. Nature 2022, 603, 907–912. [Google Scholar] [CrossRef]
- Wu, J. Effect of WAF and DA on Lipid-Lowering, Anti-Inflammatory and Intestinal Microbiota in High-Fat Mice; Jilin University: Changchun, China, 2023. [Google Scholar]
- Vacca, M.; Celano, G.; Calabrese, F.M.; Portincasa, P.; Gobbetti, M.; De Angelis, M. The controversial role of human gut lachnospiraceae. Microorganisms 2020, 8, 573. [Google Scholar] [CrossRef]
- Liu, X.; Mao, B.; Gu, J.; Wu, J.; Cui, S.; Wang, G. Blautia-a new functional genus with potential probiotic properties? Gut Microbes 2021, 13, 1875796. [Google Scholar] [CrossRef] [PubMed]
- Mao, B.; Guo, W.; Cui, S.; Zhang, Q.; Zha, J. Blautia producta displays potential probiotic properties against dextran sulfate sodium-induced colitis in mice. Food. Sci. Hum. Well 2023, 13, 709–720. [Google Scholar] [CrossRef]
- Zhong, X.; Zhao, Y.; Huang, L. Remodeling of the gut microbiome by Lactobacillus johnsonii alleviates the development of acute myocardial infarction. Front. Microbiol. 2023, 14, 1140498. [Google Scholar] [CrossRef] [PubMed]
- Xie, B.; Zu, X.; Wang, Z.; Xu, X. Ginsenoside Rc ameliorated atherosclerosis via regulating gut microbiota and fecal metabolites. Front. Pharmacol. 2022, 13, 990476. [Google Scholar] [CrossRef]
- Wang, R.; Liu, M.; Ren, G. Zhilong huoxue tongyu capsules’ effects on ischemic stroke: An assessment using fecal 16S rRNA gene sequencing and untargeted serum metabolomics. Front. Pharmacol. 2022, 13, 1052110. [Google Scholar] [CrossRef] [PubMed]
- Dalile, B.; Van Oudenhove, L.; Vervliet, B.; Verbeke, K. The role of short-chain fatty acids in microbiota-gut-brain communication. Nat. Rev. Gastroenterol. Hepatol. 2019, 16, 461–478. [Google Scholar] [CrossRef]
- Adak, A.; Khan, M.R. An insight into gut microbiota and its functionalities. Cell Mol. Life Sci. 2019, 76, 473–493. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Gao, S.; Chen, J.; Albrecht, E.; Zhao, R.; Yang, X. Maternal butyrate supplementation induces insulin resistance associated with enhanced intramuscular fat deposition in the offspring. Oncotarget 2017, 8, 13073–13084. [Google Scholar] [CrossRef] [PubMed]
- Al-Lahham, S.H.; Peppelenbosch, M.P.; Roelofsen, H.; Vonk, R.J.; Venema, K. Biological effects of propionic acid in humans; metabolism, potential applications and underlying mechanisms. Biochim. Biophys. Acta 2010, 1801, 1175–1183. [Google Scholar] [CrossRef]
- Zhao, Z.; Qin, J.; Qian, Y.; Huang, C. FFAR2 expressing myeloid-derived suppressor cells drive cancer immunoevasion. J. Hematol. Oncol. 2024, 17, 9. [Google Scholar] [CrossRef] [PubMed]
- Luu, M.; Pautz, S.; Kohl, V.; Singh, R.; Romero, R.; Lucas, S. The short-chain fatty acid pentanoate suppresses autoimmunity by modulating the metabolic-epigenetic crosstalk in lymphocytes. Nat. Commun. 2019, 10, 760. [Google Scholar] [CrossRef] [PubMed]
- Heimann, E.; Nyman, M.; Pålbrink, A.K.; Lindkvist-Petersson, K.; Degerman, E. Branched short-chain fatty acids modulate glucose and lipid metabolism in primary adipocytes. Adipocyte 2016, 5, 359–368. [Google Scholar] [CrossRef]
- Li, H.; Yu, X.H.; Ou, X.; Ouyang, X.P.; Tang, C.K. Hepatic cholesterol transport and its role in non-alcoholic fatty liver disease and atherosclerosis. Prog. Lipid Res. 2021, 83, 101109. [Google Scholar] [CrossRef]
- Schmidt, A.F.; Joshi, R.; Gordillo-Marañón, M. Biomedical consequences of elevated cholesterol-containing lipoproteins and apolipoproteins on cardiovascular and non-cardiovascular outcomes. Commun. Med. 2023, 3, 9. [Google Scholar] [CrossRef]
- Pei, K.; Gui, T.; Kan, D.; Feng, H.; Jin, Y.; Yang, Y.; Zhang, Q.; Du, Z.; Gai, Z.; Wu, J.; et al. An overview of lipid metabolism and nonalcoholic fatty liver disease. Biomed. Res. Int. 2020, 2020, 4020249. [Google Scholar] [CrossRef] [PubMed]
- Bruno, S.; Cheikh, S.; Raymond, R.; Jean-Christophe, L. Gut microbiota diversity according to dietary habits and geographical provenance. Hum. Microbiome J. 2018, 7, 1–9. [Google Scholar] [CrossRef]
- Wang, Y.; Yao, W.; Li, B.; Qian, S.; Wei, B.; Gong, S.; Wang, J.; Liu, M.; Wei, M. Nuciferine modulates the gut microbiota and prevents obesity in high-fat diet-fed rats. Exp. Mol. Med. 2020, 52, 1959–1975. [Google Scholar] [CrossRef] [PubMed]
- Tan, J.; McKenzie, C.; Potamitis, M.; Thorburn, A.N.; Mackay, C.R.; Macia, L. The role of short-chain fatty acids in health and disease. Adv Immunol. 2014, 121, 91–119. [Google Scholar] [CrossRef] [PubMed]
- Ge, T.; Yao, X.; Zhao, H.; Yang, W. Gut microbiota and neuropsychiatric disorders: Implications for neuroendocrine-immune regulation. Pharmacol. Res. 2021, 173, 105909. [Google Scholar] [CrossRef]
- Zheng, J.; Chen, J.; Jian, W. Pathway analysis of plasma metabolomics in patients with blood stasis of coronary heart disease. Shizhen Natl. Med. 2015, 26, 485–487. [Google Scholar]
- Li, Y.; Gruber, J.J.; Litzenburger, U.M.; Zhou, Y.; Miao, Y.R.; LaGory, E.L.; Li, A.M.; Hu, Z.; Yip, M.; Hart, L.S.; et al. Acetate supplementation restores chromatin accessibility and promotes tumor cell differentiation under hypoxia. Cell Death Dis. 2020, 11, 102. [Google Scholar] [CrossRef]
- Canfora, E.E.; Meex, R.C.R.; Venema, K.; Blaak, E.E. Gut microbial metabolites in obesity, NAFLD and T2DM. Nature reviews. Endocrinology 2019, 15, 261–273. [Google Scholar] [CrossRef] [PubMed]
- Lucas, K.A.; Filley, J.R.; Erb, J.M.; Graybill, E.R.; Hawes, J.W. Peroxisomal metabolism of propionic acid and isobutyric acid in plants. J. Biol. Chem. 2007, 282, 24980–24989. [Google Scholar] [CrossRef]
- Wongkittichote, P.; Ah Mew, N.; Chapman, K.A. Propionyl-CoA carboxylase—A review. Mol. Genet. Metab. 2017, 122, 145–152. [Google Scholar] [CrossRef]
- Akram, M. Citric acid cycle and role of its intermediates in metabolism. Cell Biochem. Biophys. 2014, 68, 475–478. [Google Scholar] [CrossRef] [PubMed]
- Taylor, C.T.; Colgan, S.P. Regulation of immunity and inflammation by hypoxia in immunological niches. Nat. Rev. Immunol. 2017, 17, 774–785. [Google Scholar] [CrossRef] [PubMed]
- Alabduladhem, T.O.; Bordoni, B. Physiology, Krebs Cycle. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2024; Updated 23 November 2022. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Geng, X.; Tian, W.; Zhuang, M.; Shang, H.; Gong, Z.; Li, J. Green Radish Polysaccharides Ameliorate Hyperlipidemia in High-Fat-Diet-Induced Mice via Short-Chain Fatty Acids Production and Gut Microbiota Regulation. Foods 2024, 13, 4113. https://doi.org/10.3390/foods13244113
Geng X, Tian W, Zhuang M, Shang H, Gong Z, Li J. Green Radish Polysaccharides Ameliorate Hyperlipidemia in High-Fat-Diet-Induced Mice via Short-Chain Fatty Acids Production and Gut Microbiota Regulation. Foods. 2024; 13(24):4113. https://doi.org/10.3390/foods13244113
Chicago/Turabian StyleGeng, Xiong, Weina Tian, Miaomiao Zhuang, Huayan Shang, Ziyi Gong, and Jianrong Li. 2024. "Green Radish Polysaccharides Ameliorate Hyperlipidemia in High-Fat-Diet-Induced Mice via Short-Chain Fatty Acids Production and Gut Microbiota Regulation" Foods 13, no. 24: 4113. https://doi.org/10.3390/foods13244113
APA StyleGeng, X., Tian, W., Zhuang, M., Shang, H., Gong, Z., & Li, J. (2024). Green Radish Polysaccharides Ameliorate Hyperlipidemia in High-Fat-Diet-Induced Mice via Short-Chain Fatty Acids Production and Gut Microbiota Regulation. Foods, 13(24), 4113. https://doi.org/10.3390/foods13244113