Production and Optimization of Biosurfactant Properties Using Candida mogii and Licuri Oil (Syagrus coronata)
<p>Normal plot of residuals indicating the normal distribution of the model applied to optimize the reduction in surface tension by <span class="html-italic">C. mogii</span>.</p> "> Figure 2
<p>Pareto chart for STred according to the statistical analysis of the CCD carried out to evaluate the effect of independent variables’ concentration in the culture medium for the biosurfactant production.</p> "> Figure 3
<p>Profiles for predicted values and desirability for ST<sub>red</sub> based on the statistical analysis of the CCD adopted in this study.</p> "> Figure 4
<p>Response profiles for the interactions between variables: (<b>A</b>) licuri oil and glucose, (<b>B</b>) licuri oil and ammonium nitrate, (<b>C</b>) licuri oil and yeast extract, (<b>D</b>) glucose and ammonium nitrate, (<b>E</b>) glucose and yeast extract, and (<b>F</b>) ammonium nitrate and yeast extract.</p> "> Figure 5
<p>Temporal changes in biomass, yield and surface tension during cultivation of <span class="html-italic">C. mogii</span> in mineral medium.</p> "> Figure 6
<p>Critical micelle concentration of the biosurfactant from <span class="html-italic">C. mogii</span>.</p> "> Figure 7
<p>FT-IR spectrum of biosurfactant produced by <span class="html-italic">C. mogii</span> grown in an optimized medium containing licuri oil.</p> "> Figure 8
<p>NMR spectrum of biosurfactant produced by <span class="html-italic">C. mogii</span> grown in an optimized medium containing licuri oil: (<b>A</b>) <sup>1</sup>H and (<b>B</b>) <sup>13</sup>C.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Maintenance and Growth of the Microorganism
2.3. Yeast Inoculation
2.4. Biosurfactant Production Medium
2.5. Surface Tension Measurement
2.6. Growth Curve
2.7. Emulsification Index (E24)
2.8. Biosurfactant Isolation
2.9. Critical Micelle Concentration
2.10. Determination of Ionic Charge and Particle Size
2.11. Fourier Transform Infrared Spectroscopy (FT-IR)
2.12. Nuclear Magnetic Resonance Spectroscopy (NMR)
2.13. Phytotoxicity Assay
2.14. Antimicrobial Activity Potential
2.15. Statistical Analysis
3. Results and Discussion
3.1. Biosurfactant Production
3.2. Growth Curve Analysis
3.3. Emulsification Index and Critical Micelle Concentration
3.4. Biosurfactant Characterization
3.5. Phytotoxicity
3.6. Antimicrobial Activity
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ahmar Siddiqui, M.; Parnthong, J.; Kungsanant, S.; Chavadej, S.; Chaiprapat, S. Influences of specific surfactant structures on biohydrogen production from oily wastewater in batch and continuous anaerobic dark fermentation. Bioresour. Technol. 2022, 360, 127617. [Google Scholar] [CrossRef] [PubMed]
- Markandeywar, T.S.; Narang, R.K. Biosurfactant assisted synthesis and characterization of silver nanoparticles: In vitro investigation of their anti-oxidant, anti-inflammatory, anti-infective and wound healing potential. Inorg. Chem. Commun. 2024, 165, 112506. [Google Scholar] [CrossRef]
- Campbell, J. Entrainment. In Complete Casting Handbook; Elsevier: Amsterdam, The Netherlands, 2015; pp. 17–90. [Google Scholar] [CrossRef]
- Naveenkumar, R.; Baskar, G. Process optimization, green chemistry balance and technoeconomic analysis of biodiesel production from castor oil using heterogeneous nanocatalyst. Bioresour. Technol. 2021, 320, 124347. [Google Scholar] [CrossRef] [PubMed]
- Miao, Y.; To, M.H.; Siddiqui, M.A.; Wang, H.; Lodens, S.; Chopra, S.S.; Kaur, G.; Roelants, S.L.K.W.; Lin, C.S.K. Sustainable biosurfactant production from secondary feedstock—Recent advances, process optimization and perspectives. Front. Chem. 2024, 12, 1327113. [Google Scholar] [CrossRef]
- Marqués, A.M.; Pérez, L.; Farfán, M.; Pinazo, A. Green surfactants: Production, properties, and application in advanced medical technologies. In Biosurfactants for a Sustainable Future: Production and Applications in the Environment and Biomedicine; Sarma, H., Prasad, M.N.V., Eds.; Wiley: Hoboken, NJ, USA, 2021; ISBN 978-111967102-2; 978-111967100-8. [Google Scholar]
- Ahalliya, R.M.; Raja, F.S.D.; Rangasamy, K.; Arumugam, V.; Palanisamy, S.; Saikia, K.; Rathankumar, A.K.; Al-Dhabi, N.A.; Arasu, M.V. Production cost of traditional surfactants and biosurfactants. In Multifunctional Microbial Biosurfactants; Kumar, P., Dubey, R.C., Eds.; Springer Nature: Berlin/Heidelberg, Germany, 2023; ISBN 978-303131230-4; 978-303131229-8. [Google Scholar]
- Wojtowicz, K.; Steliga, T. The impact of a mixture of biosurfactants on the efficiency of the bioremediation of soil contaminated with petroleum hydrocarbons. Nafta—Gaz 2024, 80, 269–278. [Google Scholar] [CrossRef]
- Kashif, A.; Rehman, R.; Fuwad, A.; Shahid, M.K.; Dayarathne, H.N.P.; Jamal, A.; Aftab, M.N.; Mainali, B.; Choi, Y. Current advances in the classification, production, properties and applications of microbial biosurfactants—A critical review. Adv. Colloid Interface Sci. 2022, 306, 102718. [Google Scholar] [CrossRef] [PubMed]
- Araujo, J.M.M.; Monteiro, J.M.; Silva, D.H.d.S.; Veira, A.K.; Silva, M.R.C.; Ferraz, F.A.; Braga, F.H.R.; Siqueira, E.P.d.; Monteiro, A.d.S. Candida krusei M4CK produces a bioemulsifier that acts on melaleuca essential oil and aids in its antibacterial and antibiofilm activity. Antibiotics 2023, 12, 1686. [Google Scholar] [CrossRef] [PubMed]
- Almeida, D.G.; da Silva, R.d.C.F.S.; Meira, H.M.; Brasileiro, P.P.F.; Silva, E.J.; Luna, J.M.; Rufino, R.D.; Sarubbo, L.A. Production, characterization and commercial formulation of a biosurfactant from Candida tropicalis UCP0996 and its application in decontamination of petroleum pollutants. Processes 2021, 9, 885. [Google Scholar] [CrossRef]
- Pinto, M.I.S.; Guerra, J.M.C.; Meira, H.M.; Sarubbo, L.A.; de Luna, J.M. A biosurfactant from Candida bombicola: Its synthesis, characterization, and its application as a food emulsions. Foods 2022, 11, 561. [Google Scholar] [CrossRef]
- Ribeiro, B.G.; de Veras, B.O.; dos Santos Aguiar, J.; Guerra, J.M.C.; Sarubbo, L.A. Biosurfactant produced by Candida utilis UFPEDA1009 with potential application in cookie formulation. Electron. J. Biotechnol. 2020, 46, 14–21. [Google Scholar] [CrossRef]
- Stoklosa, R.J.; Nghiem, N.P.; Latona, R.J. Xylose-enriched ethanol fermentation stillage from sweet sorghum for xylitol and astaxanthin production. Fermentation 2019, 5, 84. [Google Scholar] [CrossRef]
- Sirisansaneeyakul, S.; Kop, B.; Tochampa, W.; Wannawilai, S.; Chaveesuk, R.; Lee, W.C. Sodium benzoate stimulates xylitol production by Candida mogii. J. Taiwan Inst. Chem. Eng. 2014, 45, 734–743. [Google Scholar] [CrossRef]
- Gaur, V.K.; Sharma, P.; Sirohi, R.; Varjani, S.; Taherzadeh, M.J.; Chang, J.-S.; Yong Ng, H.; Wong, J.W.C.; Kim, S.-H. Production of biosurfactants from agro-industrial waste and waste cooking oil in a circular bioeconomy: An overview. Bioresour. Technol. 2022, 343, 126059. [Google Scholar] [CrossRef]
- Karnwal, A. Biosurfactant production using bioreactors from industrial byproducts. In Biosurfactants for a Sustainable Future: Production and Applications in the Environment and Biomedicine; Sarma, H., Prasad, M.N.V., Eds.; Wiley: Hoboken, NJ, USA, 2021; ISBN 978-111967102-2; 978-111967100-8. [Google Scholar]
- Lisboa, M.C.; Wiltshire, F.M.S.; Fricks, A.T.; Dariva, C.; Carrière, F.; Lima, Á.S.; Soares, C.M.F. Oleochemistry potential from brazil northeastern exotic plants. Biochimie 2020, 178, 96–104. [Google Scholar] [CrossRef]
- Haala, F.; Dielentheis-Frenken, M.R.E.; Brandt, F.M.; Karmainski, T.; Blank, L.M.; Tiso, T. Doe-based medium optimization for improved biosurfactant production with Aureobasidium pullulans. Front. Bioeng. Biotechnol. 2024, 12, 1379707. [Google Scholar] [CrossRef]
- Santos-Gandelman, J.F.; Cruz, K.; Crane, S.; Muricy, G.; Giambiagi-DeMarval, M.; Barkay, T.; Laport, M.S. Potential application in mercury bioremediation of a marine sponge-isolated Bacillus cereus strain pj1. Curr. Microbiol. 2014, 69, 374–380. [Google Scholar] [CrossRef]
- Najafi, A.R.; Rahimpour, M.R.; Jahanmiri, A.H.; Roostaazad, R.; Arabian, D.; Ghobadi, Z. Enhancing biosurfactant production from an indigenous strain of Bacillus mycoides by optimizing the growth conditions using a response surface methodology. Chem. Eng. J. 2010, 163, 188–194. [Google Scholar] [CrossRef]
- Darwesh, O.M.; Mahmoud, M.S.; Barakat, K.M.; Abuellil, A.; Ahmad, M.E. Improving the bioremediation technology of contaminated wastewater using biosurfactants produced by novel bacillus isolates. Heliyon 2021, 7, e08616. [Google Scholar] [CrossRef] [PubMed]
- Selva Filho, A.A.P.; Faccioli, Y.E.; Converti, A.; da Silva, R.D.C.F.S.; Sarubbo, L.A. Maximization of the production of a low-cost biosurfactant for application in the treatment of soils contaminated with hydrocarbons. Sustainability 2024, 16, 7970. [Google Scholar] [CrossRef]
- dos Santos Souza, T.G.; da Silva, M.M.; Feitoza, G.S.; de Melo Alcântara, L.F.; da Silva, M.A.; de Oliveira, A.M.; de Oliveira Farias de Aguiar, J.C.R.; do Amaral Ferraz Navarro, D.M.; de Aguiar Júnior, F.C.A.; da Silva, M.V.; et al. Biological safety of Syagrus coronata (mart.) Becc. Fixed oil: Cytotoxicity, acute oral toxicity, and genotoxicity studies. J. Ethnopharmacol. 2021, 272, 113941. [Google Scholar] [CrossRef]
- da Silva, I.A.; de Almeida, F.C.G.; Alves, R.N.; Cunha, M.C.C.; de Oliveira, J.C.M.; Fernandes, M.L.B.; Sarubbo, L.A. The formulation of a natural detergent with a biosurfactant cultivated in a low-cost medium for use in coastal environmental remediation. Fermentation 2024, 10, 332. [Google Scholar] [CrossRef]
- Campos, J.M.; Stamford, T.L.M.; Sarubbo, L.A. Characterization and application of a biosurfactant isolated from Candida utilis in salad dressings. Biodegradation 2019, 30, 313–324. [Google Scholar] [CrossRef] [PubMed]
- Lima, B.G.A.; Santos, J.C.V.; Silva, R.R.; Caldas, M.C.F.; Meira, H.M.; Rufino, R.D.; Sarubbo, L.A.; Luna, J.M. Sustainable production of biosurfactant grown in medium with industrial waste and use for removal of oil from soil and seawater. Surfaces 2024, 7, 537–549. [Google Scholar] [CrossRef]
- Cooper, D.G.; Goldenberg, B.G. Surface-active agents from two bacillus species. Appl. Environ. Microbiol. 1987, 53, 224–229. [Google Scholar] [CrossRef]
- Tiquia, S.M.; Tam, N.F.Y.; Hodgkiss, I.J. Effects of composting on phytotoxicity of spent pig-manure sawdust litter. Environ. Pollut. 1996, 93, 249–256. [Google Scholar] [CrossRef]
- Bona, E.A.M.D.; Pinto, F.G.d.S.; Fruet, T.K.; Jorge, T.C.M.; Moura, A.C. Comparison of methods for evaluation of antimicrobial activity and determination of minimum inhibitory concentration (mic) of aqueous and ethanol plant extracts. Arq. Inst. Biol. 2014, 81, 218–225. [Google Scholar] [CrossRef]
- CLSI, Clinical and Laboratory Standards Institute. Performance Standards for Antimicrobial Disk Susceptibility Testing, 30th ed.; CLSI supplement M100; Clinical and Laboratory Standards Institute: Wayne, NY, USA, 2020. [Google Scholar]
- Zajic, J.E.; Seffens, W.; Panchal, C. Biosurfactants. Crit. Rev. Biotechnol. 1983, 1, 87–107. [Google Scholar] [CrossRef]
- da Silva, R.R.; Santos, J.C.V.; Meira, H.M.; Almeida, S.M.; Sarubbo, L.A.; Luna, J.M. Microbial biosurfactant: Candida bombicola as a potential remediator of environments contaminated by heavy metals. Microorganisms 2023, 11, 2772. [Google Scholar] [CrossRef]
- Fadhile Almansoory, A.; Abu Hasan, H.; Idris, M.; Sheikh Abdullah, S.R.; Anuar, N.; Musa Tibin, E.M. Biosurfactant production by the hydrocarbon-degrading bacteria (hdb) Serratia marcescens: Optimization using central composite design (ccd). J. Ind. Eng. Chem. 2017, 47, 272–280. [Google Scholar] [CrossRef]
- Anscombe, F.J. Graphs in statistical analysis. Am. Stat. 1973, 27, 17–21. [Google Scholar] [CrossRef]
- Derringer, G.; Suich, R. Simultaneous optimization of several response variables. J. Qual. Technol. 1980, 12, 214–219. [Google Scholar] [CrossRef]
- Yang, L.; Li, Y.; Zhang, X.; Liu, T.; Chen, J.; Wei, L.; Hua, Q. Metabolic profiling and flux distributions reveal a key role of acetyl-coa in sophorolipid synthesis by Candida bombicola. Biochem. Eng. J. 2019, 145, 74–82. [Google Scholar] [CrossRef]
- Abbasi, H.; Sharafi, H.; Alidost, L.; Bodagh, A.; Zahiri, H.S.; Noghabi, K.A. Response surface optimization of biosurfactant produced by Pseudomonas aeruginosa ma01 isolated from spoiled apples. Prep. Biochem. Biotechnol. 2013, 43, 398–414. [Google Scholar] [CrossRef]
- Taowkrue, E.; Songdech, P.; Maneerat, S.; Soontorngun, N. Enhanced production of yeast biosurfactant sophorolipids using yeast extract or the alternative nitrogen source soybean meal. Ind. Crops Prod. 2024, 210, 118089. [Google Scholar] [CrossRef]
- Vedaraman, N.; Venkatesh, N. Production of surfactin by Bacillus subtilis MTCC 2423 from waste frying oils. Braz. J. Chem. Eng. 2011, 28, 175–180. [Google Scholar] [CrossRef]
- Amiri, F.; Habibi, A. Free fatty acids in sunflower oil soap stock progressed the sophorolipid production by Candida catenulata. Can. J. Chem. Eng. 2024, 102, 53–64. [Google Scholar] [CrossRef]
- Jadhav, J.V.; Pratap, A.P.; Kale, S.B. Evaluation of sunflower oil refinery waste as feedstock for production of sophorolipid. Process Biochem. 2019, 78, 15–24. [Google Scholar] [CrossRef]
- Xu, F.; Chen, Y.; Zou, X.; Chu, J.; Tian, X. Precise fermentation coupling with simultaneous separation strategy enables highly efficient and economical sophorolipids production. Bioresour. Technol. 2023, 388, 129719. [Google Scholar] [CrossRef] [PubMed]
- El-Shahed, M.M.S.; Mohamed, S.H.; Sadik, M.W.; Mabrouk, M.I.; Sedik, M.Z. Applications of Candida tropicalis bioactive biosurfactant produced using simple substrate medium. Egypt. J. Bot. 2022, 62, 371–387. [Google Scholar] [CrossRef]
- Ankulkar, R.; Chavan, M. Characterisation and application studies of sophorolipid biosurfactant by Candida tropicalis ra1. J. Pure Appl. Microbiol. 2019, 13, 1653–1665. [Google Scholar] [CrossRef]
- Ribeiro, B.G.; Guerra, J.M.C.; Sarubbo, L.A. Biosurfactants: Production and application prospects in the food industry. Biotechnol. Prog. 2020, 36, e3030. [Google Scholar] [CrossRef] [PubMed]
- Bezerra, K.G.O.; Durvala, I.J.B.; Silva, I.A.; Almeida, F.C.G.; Melo, Y.T.F.; Rufino, R.D.; Sarubbo, L.A. Emulsifying capacity of biosurfactants from Chenopodium quinoa and Pseudomonas aeruginosa UCP 0992 with focus of application in the cosmetic industry. Chem. Eng. Trans. 2020, 79, 211–216. [Google Scholar] [CrossRef]
- Durval, I.J.B.; Resende, A.H.M.; Ostendorf, T.A.; Oliveira, K.G.O.; Luna, J.M.; Rufino, R.D.; Sarubbo, L.A. Application of Bacillus cereus UCP 1615 biosurfactant for increase dispersion and removal of motor oil from contaminated sea water. Chem. Eng. Trans. 2019, 74, 319–324. [Google Scholar] [CrossRef]
- Silva, I.A.; Fortunato, J.G.L.A.; Almeida, F.C.G.; Alves, R.N.; Cunha, M.C.C.; Rufino, R.D.; Fernandes, M.L.B.; Sarubbo, L.A. Production and application of a new biosurfactant for solubilisation and mobilisation of residual oil from sand and seawater. Processes 2024, 12, 1605. [Google Scholar] [CrossRef]
- Radha, P.; Suhazsini, P.; Prabhu, K.; Jayakumar, A.; Kandasamy, R. Chicken tallow, a renewable source for the production of biosurfactant by Yarrowia lipolytica MTCC9520, and its application in silver nanoparticle synthesis. J. Surfactants Deterg. 2020, 23, 119–135. [Google Scholar] [CrossRef]
- Pinto, I.; Buss, A. Ζ potential as a measure of asphalt emulsion stability. Energy Fuels 2020, 34, 2143–2151. [Google Scholar] [CrossRef]
- Lima, R.A.; Silva Andrade, R.F.; Antunes, A.A.; Casullo, H.A.; Jara, A.M.A.T.; Berguer, L.R.R.; de Campos-Takaki, G.M. Biosurfactants Production by Candida Glabrata Strains Using Industrial Wastes as Carbon and Nitrogen Sources; World Scientific Publishing Co.: Singapore, 2012; ISBN 978-981440504-1; 9814405035; 978-981440503-4. [Google Scholar]
- Ganji, Z.; Beheshti-Maal, K.; Massah, A.; Emami-Karvani, Z. A novel sophorolipid-producing Candida keroseneae GBME-IAUF-2 as a potential agent in microbial enhanced oil recovery (meor). FEMS Microbiol. Lett. 2020, 367, fnaa144. [Google Scholar] [CrossRef]
- Mendes, P.M.; Ribeiro, J.A.; Martins, G.A.; Lucia, T.; Araujo, T.R.; Fuentes-Guevara, M.D.; Corrêa, L.B.; Corrêa, É.K. Phytotoxicity test in check: Proposition of methodology for comparison of different method adaptations usually used worldwide. J. Environ. Manag. 2021, 291, 112698. [Google Scholar] [CrossRef]
- Matosinhos, R.D.; Cesca, K.; Carciofi, B.A.M.; de Oliveira, D.; de Andrade, C.J. The biosurfactants mannosylerythritol lipids (mels) as stimulant on the germination of Lactuca sativa L. Agriculture 2023, 13, 1646. [Google Scholar] [CrossRef]
- Nogueira Felix, A.K.; Martins, J.J.L.; Lima Almeida, J.G.; Giro, M.E.A.; Cavalcante, K.F.; Maciel Melo, V.M.; Loiola Pessoa, O.D.; Ponte Rocha, M.V.; Rocha Barros Gonçalves, L.; Saraiva de Santiago Aguiar, R. Purification and characterization of a biosurfactant produced by Bacillus subtilis in cashew apple juice and its application in the remediation of oil-contaminated soil. Colloids Surf. B Biointerfaces 2019, 175, 256–263. [Google Scholar] [CrossRef]
- Joshi, S.G.; Paff, M.; Friedman, G.; Fridman, G.; Fridman, A.; Brooks, A.D. Control of methicillin-resistant Staphylococcus aureus in planktonic form and biofilms: A biocidal efficacy study of nonthermal dielectric-barrier discharge plasma. Am. J. Infect. Control 2010, 38, 293–301. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Warden, A.R.; Huang, J.; Wang, W.; Ding, X. Colorimetric and electrochemical detection of Escherichia coli and antibiotic resistance based on a p-benzoquinone-mediated bioassay. Anal. Chem. 2019, 91, 7524–7530. [Google Scholar] [CrossRef] [PubMed]
- Kothe, C.I.; Pessoa, J.P.; Malheiros, P.S.; Tondo, E.C. Assessing the growth of Staphylococcus aureus and Escherichia coli on fruits and vegetables. J. Infect. Dev. Ctries 2019, 13, 480–486. [Google Scholar] [CrossRef] [PubMed]
- EUCAST The European Committee on Antimicrobial Susceptibility Testing. Breakpoint Tables for Interpretation of MICs and Zone Diameters. Version 14.0. 2024. Available online: https://www.eucast.org/clinical_breakpoints (accessed on 3 December 2024).
- Barrantes, K.; Araya, J.J.; Chacón, L.; Procupez-Schtirbu, R.; Lugo, F.; Ibarra, G.; Soto, V.H. Antiviral, antimicrobial, and antibiofilm properties of biosurfactants. In Biosurfactants for a Sustainable Future: Production and Applications in the Environment and Biomedicine; Sarma, H., Prasad, M.N.V., Eds.; Wiley: Hoboken, NJ, USA, 2021; Volume 5, pp. 245–268. [Google Scholar]
- Haetinger, V.S.; Dalmoro, Y.K.; Godoy, G.L.; Lang, M.B.; de Souza, O.F.; Aristimunha, P.; Stefanello, C. Optimizing cost, growth performance, and nutrient absorption with a bio-emulsifier based on lysophospholipids for broiler chickens. Poult. Sci. 2021, 100, 101025. [Google Scholar] [CrossRef]
Variables | Levels | ||||
---|---|---|---|---|---|
−1.41 | −1 | 0 | +1 | +1.41 | |
A (%) | 0.50 | 2.00 | 3.50 | 5.00 | 6.50 |
B (%) | 1.00 | 4.00 | 7.00 | 10.0 | 13.0 |
C (%) | 0.05 | 0.20 | 0.35 | 0.50 | 0.65 |
D (%) | 0.05 | 0.20 | 0.35 | 0.50 | 0.65 |
Run | A (%) | B (%) | C (%) | D (%) | STexp | STred (Observed) | STred (Predicted) |
---|---|---|---|---|---|---|---|
1 | 5.00 | 4.00 | 0.50 | 0.20 | 45.244 | 25.783 | 26.564 |
2 | 2.00 | 10.0 | 0.20 | 0.20 | 35.603 | 34.921 | 34.065 |
3 | 2.00 | 4.00 | 0.50 | 0.20 | 42.707 | 28.472 | 26.428 |
4 | 2.00 | 4.00 | 0.20 | 0.50 | 37.063 | 32.576 | 31.603 |
5 | 3.50 | 7.00 | 0.35 | 0.35 | 36.258 | 30.321 | 31.291 |
6 | 3.50 | 13.0 | 0.35 | 0.35 | 40.081 | 32.145 | 30.512 |
7 | 3.50 | 7.00 | 0.35 | 0.35 | 44.847 | 31.438 | 31.291 |
8 | 2.00 | 10.0 | 0.20 | 0.50 | 40.347 | 31.098 | 31.768 |
9 | 5.00 | 10.0 | 0.20 | 0.50 | 47.587 | 31.265 | 32.167 |
10 | 5.00 | 4.00 | 0.20 | 0.20 | 33.577 | 23.592 | 23.732 |
11 | 6.50 | 7.00 | 0.35 | 0.35 | 45.396 | 31.254 | 30.296 |
12 | 5.00 | 4.00 | 0.50 | 0.50 | 28.397 | 42.782 | 42.496 |
13 | 2.00 | 4.00 | 0.50 | 0.50 | 44.044 | 34.116 | 35.119 |
14 | 5.00 | 4.00 | 0.20 | 0.50 | 39.914 | 37.602 | 36.601 |
15 | 3.50 | 7.00 | 0.05 | 0.35 | 46.688 | 30.924 | 31.393 |
16 | 2.00 | 10.0 | 0.50 | 0.20 | 40.258 | 26.332 | 28.784 |
17 | 0.50 | 7.00 | 0.35 | 0.35 | 42.068 | 29.111 | 29.760 |
18 | 3.50 | 1.00 | 0.35 | 0.35 | 39.925 | 31.265 | 32.589 |
19 | 3.50 | 7.00 | 0.35 | 0.35 | 39.914 | 32.115 | 31.291 |
20 | 5.00 | 10.0 | 0.50 | 0.50 | 39.034 | 30.921 | 32.33 |
21 | 5.00 | 10.0 | 0.50 | 0.20 | 40.885 | 24.491 | 24.323 |
22 | 5.00 | 10.0 | 0.20 | 0.20 | 38.39 | 26.775 | 27.223 |
23 | 3.50 | 7.00 | 0.35 | 0.05 | 48.848 | 22.331 | 22.088 |
24 | 2.00 | 4.00 | 0.20 | 0.20 | 35.39 | 25.935 | 25.976 |
25 | 3.50 | 7.00 | 0.35 | 0.65 | 39.064 | 35.789 | 35.722 |
26 | 3.50 | 7.00 | 0.65 | 0.35 | 40.585 | 32.786 | 32.008 |
27 | 2.00 | 10.0 | 0.50 | 0.50 | 39.741 | 30.832 | 29.550 |
Source | Sum of Squares | df | Mean Square | F-Value | p-Value |
---|---|---|---|---|---|
Model | 482.70 | 14 | 34.478 | 14.775 | <0.0001 s |
A—Licuri oil | 0.43068 | 1 | 0.43068 | 0.18456 | 0.6751 ns |
B—Glucose | 6.4719 | 1 | 6.4719 | 2.7734 | 0.1217 ns |
C—Ammonium nitrate | 0.56703 | 1 | 0.56703 | 0.24299 | 0.6309 ns |
D—Yeast extract | 278.85 | 1 | 278.85 | 119.50 | <0.0001 s |
AB | 21.139 | 1 | 21.139 | 9.0588 | 0.0108 s |
AC | 5.6656 | 1 | 5.6656 | 2.4279 | 0.1451 ns |
AD | 52.443 | 1 | 52.443 | 22.473 | 0.0004 s |
BC | 32.864 | 1 | 32.864 | 14.083 | 0.0027 s |
BD | 62.794 | 1 | 62.794 | 26.909 | 0.0002 s |
CD | 9.3866 | 1 | 9.3866 | 4.0224 | 0.0679 ns |
A2 | 2.1293 | 1 | 2.1293 | 0.91246 | 0.3583 ns |
B2 | 0.089298 | 1 | 0.089298 | 0.038267 | 0.8481 ns |
C2 | 0.22281 | 1 | 0.22281 | 0.095483 | 0.7626 ns |
D2 | 7.5920 | 1 | 7.5920 | 3.2534 | 0.0964 ns |
Lack of fit | 26.361 | 10 | 2.6361 | 3.2119 | 0.26069 ns |
Pure error | 1.6415 | 2 | 0.82074 | ||
R2 = 0.9451; R2adj = 0.8812; adeq. precision = 17.924 |
Hydrocarbon | E24 (%) | Hydrocarbon | E24 (%) |
---|---|---|---|
Canola oil | 75.43 ± 0.61 | Waste engine oil | 80.48 ± 7.74 |
Licuri oil | 82.38 ± 15.49 | Diesel | 8.81 ± 0.74 |
Soybean oil | 5.79 ± 0.13 | Kerosene | 3.28 ± 0.05 |
Concentration | Germination | Root Growth | GI |
---|---|---|---|
1/2 CMC | 89.29% a | 99.73% a | 89.05% a |
CMC | 92.86% a | 95.88% a | 89.03% a |
2× CMC | 92.86% a | 89.01% b | 82.65% b |
Sample | Inhibition Zone of Growth (mm) | |
---|---|---|
S. aureus | E. coli | |
Metabolic liquid | 13 | 8 |
1/2 CMC | 6 | 6 |
1 CMC | 15 | 12 |
2 CMC | 16 | 18 |
Negative control | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
da Silva, P.F.F.; da Silva, R.R.; Sarubbo, L.A.; Guerra, J.M.C. Production and Optimization of Biosurfactant Properties Using Candida mogii and Licuri Oil (Syagrus coronata). Foods 2024, 13, 4029. https://doi.org/10.3390/foods13244029
da Silva PFF, da Silva RR, Sarubbo LA, Guerra JMC. Production and Optimization of Biosurfactant Properties Using Candida mogii and Licuri Oil (Syagrus coronata). Foods. 2024; 13(24):4029. https://doi.org/10.3390/foods13244029
Chicago/Turabian Styleda Silva, Peterson F. F., Renata R. da Silva, Leonie A. Sarubbo, and Jenyffer M. C. Guerra. 2024. "Production and Optimization of Biosurfactant Properties Using Candida mogii and Licuri Oil (Syagrus coronata)" Foods 13, no. 24: 4029. https://doi.org/10.3390/foods13244029
APA Styleda Silva, P. F. F., da Silva, R. R., Sarubbo, L. A., & Guerra, J. M. C. (2024). Production and Optimization of Biosurfactant Properties Using Candida mogii and Licuri Oil (Syagrus coronata). Foods, 13(24), 4029. https://doi.org/10.3390/foods13244029