The Influence of Rice Types and Boiling Time on Glycemic Index: An In Vivo Evaluation Using the ISO 2010 Method
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Test Samples
2.3. Experimental Design
3. Results
3.1. Preprandial Blood Glucose
3.2. Glycemic Response to Consumption of 50 g of Glucose
3.3. Glycemic Response to Rice Samples Consumption over Time
4. Discussions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Karachaliou, F.; Simatos, G.; Simatou, A. The Challenges in the Development of Diabetes Prevention and Care Models in Low-Income Settings. Front. Endocrinol. 2020, 11, 518. [Google Scholar] [CrossRef]
- Nikpour, S.; Mehrdad, N.; Sanjari, M.; Aalaa, M.; Heshmat, R.; Khabaz Mafinejad, M.; Larijani, B.; Nomali, M.; Najafi Ghezeljeh, T. Challenges of Type 2 Diabetes Mellitus Management From the Perspective of Patients: Conventional Content Analysis. Interact. J. Med. Res. 2022, 11, e41933. [Google Scholar] [CrossRef] [PubMed]
- Jenkins, D.J.A.; Willett, W.C.; Yusuf, S.; Hu, F.B.; Glenn, A.J.; Liu, S.; Mente, A.; Miller, V.; Bangdiwala, S.I.; Gerstein, H.C.; et al. Association of Glycaemic Index and Glycaemic Load with Type 2 Diabetes, Cardiovascular Disease, Cancer, and All-Cause Mortality: A Meta-Analysis of Mega Cohorts of More than 100 000 Participants. Lancet Diabetes Endocrinol. 2024, 12, 107–118. [Google Scholar] [CrossRef]
- Intenationl Diabetes Federation. IDF Diabetes Atlas; Intenationl Diabetes Federation: Brussels, Belgium, 2021. [Google Scholar]
- Fukagawa, N.K.; Ziska, L.H. Rice: Importance for Global Nutrition. J. Nutr. Sci. Vitaminol. 2019, 65, S2–S3. [Google Scholar] [CrossRef]
- Sen, S.; Chakraborty, R.; Kalita, P. Rice—Not Just a Staple Food: A Comprehensive Review on Its Phytochemicals and Therapeutic Potential. Trends Food Sci. Technol. 2020, 97, 265–285. [Google Scholar] [CrossRef]
- Xie, X.; Qi, L.; Xu, C.; Shen, Y.; Wang, H.; Zhang, H. Understanding How the Cooking Methods Affected Structures and Digestibility of Native and Heat-Moisture Treated Rice Starches. J. Cereal Sci. 2020, 95, 103085. [Google Scholar] [CrossRef]
- Ngo, T.V.; Kunyanee, K.; Luangsakul, N. Insights into Recent Updates on Factors and Technologies That Modulate the Glycemic Index of Rice and Its Products. Foods 2023, 12, 3659. [Google Scholar] [CrossRef]
- Statista Total Rice Consumption Worldwide from 2008/2009 to 2023/2024 (in 1000 Metric Tons). Available online: https://www.statista.com/statistics/255977/total-global-rice-consumption/ (accessed on 29 October 2024).
- Nayar, S.; Madhu, S. Glycemic Index of Wheat and Rice Are Similar When Consumed as Part of a North Indian Mixed Meal. Indian J. Endocrinol. Metab. 2020, 24, 251. [Google Scholar] [CrossRef] [PubMed]
- Bhavadharini, B.; Mohan, V.; Dehghan, M.; Rangarajan, S.; Swaminathan, S.; Rosengren, A.; Wielgosz, A.; Avezum, A.; Lopez-Jaramillo, P.; Lanas, F.; et al. White Rice Intake and Incident Diabetes: A Study of 132,373 Participants in 21 Countries. Diabetes Care 2020, 43, 2643–2650. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Zhang, W.; Zhang, M.; Guan, L.; Ye, G. Improvement in Taste Quality of Rice Porridge Using Konjac Glucomannan. Foods 2024, 13, 3146. [Google Scholar] [CrossRef] [PubMed]
- Singhania, P.R.; Sen Ray, K. Relative Glycemic and Insulinemic Impact of Rice and Rice Products. Nutr. Food Sci. 2012, 42, 231–240. [Google Scholar] [CrossRef]
- Kaur, B.; Ranawana, V.; Henry, J. The Glycemic Index of Rice and Rice Products: A Review, and Table of GI Values. Crit. Rev. Food Sci. Nutr. 2016, 56, 215–236. [Google Scholar] [CrossRef] [PubMed]
- Seah, J.Y.H.; Koh, W.-P.; Yuan, J.-M.; van Dam, R.M. Rice Intake and Risk of Type 2 Diabetes: The Singapore Chinese Health Study. Eur. J. Nutr. 2019, 58, 3349–3360. [Google Scholar] [CrossRef]
- Siminiuc, R. The Influence of Biotechnological Strategies on Nutritional Aspect of Bakery Products. J. Eng. Sci. 2020, XXVII, 216–224. [Google Scholar] [CrossRef]
- Siminiuc, R.; Țurcanu, D. Provocări și Tendinţe în Dezvoltarea Produselor Fără Gluten/Challenges and Trends in Gluten-Free Product Development, 1st ed.; Echim ART SRL: Chisinau, Moldova, 2023; ISBN 978-9975-3595-3-5. [Google Scholar]
- WHO. A Healthy Lifestyle-WHO Recommendations; WHO: Geneva, Switzerland, 2010. [Google Scholar]
- AOAC International. Official Methods of Analysis of AOAC International, 18th ed.; Horwitz, W., AOAC International, Eds.; current through rev. 1, 2006; AOAC International: Gaithersburg, MD, USA, 2006; ISBN 978-0-935584-77-6. [Google Scholar]
- ISO: 26642:2010; Food Products—Determination of the Glycaemic Index (GI) and Recommendation for Food Classification. ISO: Geneva, Switzerland, 2010.
- Yamaguchi, T.; Kobayashi, M.; Mizutani, M.; Fujimura, S.; Enoki, Y. Effect of Cooking Conditions on Postprandial Glycemic Response and Eating Qualities of High-Amylose Rice “Koshinokaori”. Food Sci. Technol. Res. 2021, 27, 161–167. [Google Scholar] [CrossRef]
- Fan, C.; Cheng, L.; Hong, Y.; Li, Z.; Li, C.; Ban, X.; Gu, Z. Study on the Gelatinization and Digestive Characteristics of Wheat Starch and Potato Starch under Low Moisture Conditions. Int. J. Biol. Macromol. 2024, 269, 132192. [Google Scholar] [CrossRef]
- Trinidad, T.P.; Mallillin, A.C.; Encabo, R.R.; Sagum, R.S.; Felix, A.D.; Juliano, B.O. The Effect of Apparent Amylose Content and Dietary Fibre on the Glycemic Response of Different Varieties of Cooked Milled and Brown Rice. Int. J. Food Sci. Nutr. 2013, 64, 89–93. [Google Scholar] [CrossRef]
- Zenel, A.M.; Stewart, M.L. High Amylose White Rice Reduces Post-Prandial Glycemic Response but Not Appetite in Humans. Nutrients 2015, 7, 5362–5374. [Google Scholar] [CrossRef]
- Li, H.-T.; Zhang, W.; Zhu, H.; Chao, C.; Guo, Q. Unlocking the Potential of High-Amylose Starch for Gut Health: Not All Function the Same. Fermentation 2023, 9, 134. [Google Scholar] [CrossRef]
- Varghese, S.; Awana, M.; Mondal, D.; Rubiya, M.H.; Melethil, K.; Singh, A.; Krishnan, V.; Thomas, B. Amylose–Amylopectin Ratio: Comprehensive Understanding of Structure, Physicochemical Attributes, and Applications of Starch. In Handbook of Biopolymers; Thomas, S., Ar, A., Jose Chirayil, C., Thomas, B., Eds.; Springer Nature: Singapore, 2023; pp. 1305–1334. ISBN 978-981-19070-9-8. [Google Scholar]
- Wang, Y.; Ou, X.; Al-Maqtari, Q.A.; He, H.-J.; Othman, N. Evaluation of Amylose Content: Structural and Functional Properties, Analytical Techniques, and Future Prospects. Food Chem. X 2024, 24, 101830. [Google Scholar] [CrossRef]
- Kumari, A.; Roy, A. Impact of the Degree of Starch Gelatinization on the Texture, Soaking, and Cooking Characteristics of High Amylose Rice: An Experimental and Numerical Study. J. Food Meas. Charact. 2023, 18, 8200–8217. [Google Scholar] [CrossRef]
- Dipnaik, K.; Kokare, P. Ratio of Amylose and Amylopectin as Indicators of Glycaemic Index and in Vitro Enzymatic Hydrolysis of Starches of Long, Medium and Short Grain Rice. Int. J. Res. Med. Sci. (IJRMS) 2017, 5, 4502. [Google Scholar] [CrossRef]
- Reed, M.O.; Ai, Y.; Leutcher, J.L.; Jane, J. Effects of Cooking Methods and Starch Structures on Starch Hydrolysis Rates of Rice. J. Food Sci. 2013, 78, 12165. [Google Scholar] [CrossRef] [PubMed]
- Mohamed, I.O. Effects of Processing and Additives on Starch Physicochemical and Digestibility Properties. Carbohydr. Polym. Technol. Appl. 2021, 2, 100039. [Google Scholar] [CrossRef]
- Robyt, J.F. Enzymes and Their Action on Starch. In Starch; Elsevier: Amsterdam, The Netherlands, 2009; pp. 237–292. ISBN 978-0-12-746275-2. [Google Scholar]
- Lin, A.H.-M.; Lee, B.-H.; Nichols, B.L.; Quezada-Calvillo, R.; Rose, D.R.; Naim, H.Y.; Hamaker, B.R. Starch Source Influences Dietary Glucose Generation at the Mucosal α-Glucosidase Level. Am. Soc. Biochem. Mol. Biol. 2012, 287, 36917–36921. [Google Scholar] [CrossRef]
- Shukla, A.P.; Iliescu, R.G.; Thomas, C.E.; Aronne, L.J. Food Order Has a Significant Impact on Postprandial Glucose and Insulin Levels. Diabetes Care 2015, 38, e98–e99. [Google Scholar] [CrossRef] [PubMed]
- Eleazu, C.O. The Concept of Low Glycemic Index and Glycemic Load Foods as Panacea for Type 2 Diabetes Mellitus; Prospects, Challenges and Solutions. Afr. Health Sci. 2016, 16, 468. [Google Scholar] [CrossRef] [PubMed]
- Guillén, S.; Oria, R.; Salvador, M. Impact of Cooking Temperature on In Vitro Starch Digestibility of Rice Varieties with Different Amylose Contents. Pol. J. Food Nutr. Sci. 2018, 68, 319–325. [Google Scholar] [CrossRef]
- Duijsens, D.; Verkempinck, S.H.E.; De Coster, A.; Pälchen, K.; Hendrickx, M.; Grauwet, T. How Cooking Time Affects In Vitro Starch and Protein Digestibility of Whole Cooked Lentil Seeds versus Isolated Cotyledon Cells. Foods 2023, 12, 525. [Google Scholar] [CrossRef]
- Murillo, S.; Mallol, A.; Adot, A.; Juárez, F.; Coll, A.; Gastaldo, I.; Roura, E. Culinary Strategies to Manage Glycemic Response in People with Type 2 Diabetes: A Narrative Review. Front. Nutr. 2022, 9, 1025993. [Google Scholar] [CrossRef]
- Ranawana, D.V.; Henry, C.J.K.; Lightowler, H.J.; Wang, D. Glycaemic Index of Some Commercially Available Rice and Rice Products in Great Britain. Int. J. Food Sci. Nutr. 2009, 60, 99–110. [Google Scholar] [CrossRef] [PubMed]
- Wu, W.; Qiu, J.; Wang, A.; Li, Z. Impact of Whole Cereals and Processing on Type 2 Diabetes Mellitus: A Review. Crit. Rev. Food Sci. Nutr. 2020, 60, 1447–1474. [Google Scholar] [CrossRef] [PubMed]
- Miao, M.; Hamaker, B.R. Food Matrix Effects for Modulating Starch Bioavailability. Annu. Rev. Food Sci. Technol. 2021, 12, 169–191. [Google Scholar] [CrossRef]
- Zhang, C.; Xue, W.; Li, T.; Wang, L. Understanding the Relationship between the Molecular Structure and Physicochemical Properties of Soft Rice Starch. Foods 2023, 12, 3611. [Google Scholar] [CrossRef] [PubMed]
- Hebishy, E.; Buchanan, D.; Rice, J.; Oyeyinka, S.A. Variation in Amylose Content in Three Rice Variants Predominantly Influences the Properties of Sushi Rice. Food Meas. 2024, 18, 4545–4557. [Google Scholar] [CrossRef]
- Subramaniam, J.; Mohd Yosof, B.-N.; Hui-Beng, N. Relationship between Amylose Content and Glycemic Index of Commonly Consumed White Rice. J. Agric. Vet. Sci. 2014, 7, 12–18. [Google Scholar]
- Thilakarathna, G.C.; Navarathne, S.B.; Wickramasinghe, I. Identification of Important Physical Properties and Amylose Content in Commercially Available Improved and Traditional Rice Varieties in Sri Lanka. Int. J. Adv. Eng. Res. Sci. 2017, 4, 186–194. [Google Scholar] [CrossRef]
- Sinthuja, R.; Prasantha, B.D.R.; Hettiarachchi, A. Comparative Study of Grain Quality Characteristics of Some Selected Traditional and Improved Rice Varieties in Sri Lanka: A Review. Sri Lanka J. Food Agric. 2021, 7, 13–30. [Google Scholar] [CrossRef]
Rice Sample | Rice Mass Containing 50 g CHO, g | Water | Rice/Water Ratio | BT 1 *, min | BT 2, min | Mass After Boiling, g |
---|---|---|---|---|---|---|
WRGR | 64.3 | 394 | 1/5.7 | 10 | 20 | 462.96 |
PWMGR | 65.8 | 366 | 1/5.7 | 25 | 35 | 430.10 |
WLGR | 66.7 | 360 | 1/5.7 | 13 | 23 | 423.13 |
WGLGR | 69.0 | 396 | 1/5.7 | 20 | 30 | 465.36 |
Parameters | M.U. | WRGR | PWMGR | WLGR | WGLGR |
---|---|---|---|---|---|
Moisture | % | 13.3 | 13.6 | 13.7 | 12.8 |
Protein | % | 7 | 7.51 | 7 | 7.5 |
Fat | % | 1 | 1 | 1 | 2.68 |
AvCHO | % | 77.8 | 76 | 75 | 72.5 |
Amylose | % | 13 | 20 | 22 | 26 |
Amylopectin | % | 87 | 80 | 78 | 74 |
Dietary fiber | % | 0.7 | 1.75 | 2.2 | 3.4 |
Energy value | Kcal (per 100 g) | 324.2 | 351.31 | 354.86 | 344.12 |
Fasting Glucose (mmol/L) | Postprandial Glycemic Response After Consuming 50 g of Glucose | |||||||
Test 1 | Test 2 | Test 3 | Average Values per 3 Tests | |||||
Mean± STDEV | CV | Mean± STDEV | CV | Mean± STDEV | CV | Mean± STDEV | CV | |
4.61 ± 0.16 | 3.46 | 4.69 ± 0.17 | 3.69 | 4.63 ± 0.19 | 4.08 | 4.64 ± 0.04 | 0.9 | |
Intra-individual results (per participant across multiple tests) | ||||||||
Participants | Mean± STDEV | CV | Mean± STDEV | CV | Mean± STDEV | CV | Mean± STDEV | CV |
P. 1 | 6.31 ± 1.82 | 28.88 | 6.40 ± 1.79 | 28.55 | 6.54 ± 1.86 | 28.44 | 6.42 ± 0.18 | 2.88 |
P. 2 | 6.47 ± 1.33 | 20.53 | 6.56 ± 1.41 | 21.55 | 6.51 ± 1.37 | 21.00 | 6.51 ± 0.19 | 2.95 |
P. 3 | 6.8 ± 1.86 | 27.38 | 6.81 ± 1.81 | 26.26 | 6.83 ± 1.79 | 26.19 | 6.81 ± 0.14 | 2.10 |
P. 4 | 7.01 ± 1.84 | 26.18 | 6.97 ± 1.87 | 26.79 | 7.00 ± 1.85 | 26.50 | 7.00 ± 0.15 | 2.16 |
P. 5 | 6.64 ± 1.77 | 26.70 | 6.64 ± 1.77 | 26.70 | 6.61 ± 1.83 | 27.62 | 6.63 ± 0.16 | 2.42 |
P. 6 | 6.17 ± 1.81 | 29.31 | 6.40 ± 1.81 | 28.25 | 6.54 ± 1.75 | 26.81 | 6.37 ± 0.17 | 2.75 |
P. 7 | 6.43 ± 1.41 | 21.98 | 6.44 ± 1.39 | 21.63 | 6.37 ± 1.44 | 22.54 | 6.41 ± 0.19 | 3.04 |
P. 8 | 6.77 ± 1.84 | 26.84 | 6.80 ± 1.87 | 27.49 | 6.77 ± 1.84 | 27.24 | 6.78 ± 0.06 | 0.81 |
P. 9 | 7.01 ± 1.90 | 27.09 | 6.99 ± 1.90 | 27.15 | 6.96 ± 1.92 | 27.56 | 6.99 ± 0.07 | 0.96 |
P. 10 | 6.53 ± 1.86 | 28.03 | 6.57 ± 1.80 | 27.33 | 6.59 ± 1.86 | 28.22 | 6.56 ± 0.07 | 0.99 |
Inter-individual results (between participants) | ||||||||
6.62 ± 0.28 | 4.30 | 6.66 ± 0.22 | 3.35 | 6.67 ± 0.21 | 3.09 | 6.65 ± 0.23 | 3.51 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vîrlan, A.; Coșciug, L.; Țurcanu, D.; Siminiuc, R. The Influence of Rice Types and Boiling Time on Glycemic Index: An In Vivo Evaluation Using the ISO 2010 Method. Foods 2025, 14, 12. https://doi.org/10.3390/foods14010012
Vîrlan A, Coșciug L, Țurcanu D, Siminiuc R. The Influence of Rice Types and Boiling Time on Glycemic Index: An In Vivo Evaluation Using the ISO 2010 Method. Foods. 2025; 14(1):12. https://doi.org/10.3390/foods14010012
Chicago/Turabian StyleVîrlan, Anna, Lidia Coșciug, Dinu Țurcanu, and Rodica Siminiuc. 2025. "The Influence of Rice Types and Boiling Time on Glycemic Index: An In Vivo Evaluation Using the ISO 2010 Method" Foods 14, no. 1: 12. https://doi.org/10.3390/foods14010012
APA StyleVîrlan, A., Coșciug, L., Țurcanu, D., & Siminiuc, R. (2025). The Influence of Rice Types and Boiling Time on Glycemic Index: An In Vivo Evaluation Using the ISO 2010 Method. Foods, 14(1), 12. https://doi.org/10.3390/foods14010012