Enhanced Transparency and Resistive Switching Characteristics in AZO/HfO2/Ti RRAM Device via Post Annealing Process
<p>(<b>a</b>) Schematic structure, (<b>b</b>) cross-section FE-SEM images, and (<b>c</b>) transmittance at wavelengths of 200 nm to 1100 nm of the proposed T-RRAM.</p> "> Figure 2
<p>Resistive switching characteristics of proposed T-RRAM (<b>a</b>) without RTA and (<b>b</b>) after RTA at 450 °C for 60 s in a nitrogen atmosphere. (<b>c</b>) Retention and (<b>d</b>) endurance characteristics of T-RRAM without RTA and after RTA.</p> "> Figure 3
<p>XPS spectra of the Ti 2p region of the Ti top electrode without RTA and after RTA.</p> "> Figure 4
<p>XRD patterns of as-deposited HfO<sub>2</sub> and Ti films and HfO<sub>2</sub> and Ti films after RTA, and (inset) average grain size of the HfO<sub>2</sub> and Ti films.</p> "> Figure 5
<p>SCLC mechanism at the positive bias of proposed T-RRAM (<b>a</b>) without RTA and (<b>b</b>) after RTA.</p> "> Figure 6
<p>Band diagram of proposed T-RRAM (<b>a</b>) in the low-voltage region, (<b>b</b>) medium-voltage region and (<b>c</b>) high-voltage region. (The orange arrows indicate the direction of the electric field).</p> "> Figure 7
<p>Nyquist plot of proposed T-RRAM at (<b>a</b>) HRS and (<b>b</b>) LRS.</p> "> Figure 8
<p>Equivalent circuit of proposed T-RRAM at (<b>a</b>) HRS and (<b>b</b>) LRS.</p> ">
Abstract
:1. Introduction
Device | Switching Type | Threshold Voltage | ON/OFF Ratio | Transparency | Ref. |
---|---|---|---|---|---|
AZO/SiOx/ITO | bipolar | 7.2 V | 16 | 85% | [4] |
AZO/ZnO/ITO | bipolar | 4.5 V | 14 | 80% | [5] |
ITO/SiCN/AZO | bipolar | 6.4 V | >1000 | 85 | [6] |
ITO/SiCN/AZO | bipolar | 6.4 V | >1000 | 85 | [10] |
AZO/CeO2/ITO | bipolar | −7 V | >10 | 92.5 | [11] |
2. Results and Discussion
3. Materials and Methods
3.1. Fabrication of AZO/HfO2/Ti T-RRAM
3.2. Analysis of Proposed T-RRAM Before and After RTA
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Abbey, T.; Giotis, C.; Serb, A.; Stathopoulos, S.; Prodromakis, T. Thermal effects on initial volatile response and relaxation dynamics of resistive ram devices. IEEE Electron Device Lett. 2022, 43, 386–389. [Google Scholar] [CrossRef]
- Chen, Q.; Zhang, Y.; Liu, S.; Han, T.; Chen, X.; Xu, Y.; Meng, Z.; Zhang, G.; Zheng, X.; Zhao, J. Switchable perovskite photovoltaic sensors for bioinspired adaptive machine vision. Adv. Intell. Syst. 2020, 2, 2000122. [Google Scholar] [CrossRef]
- Park, H.; Ju, D.; Mahata, C.; Emelyanov, A.; Koo, M.; Kim, S. Long-and Short-Term Memory Characteristics Controlled by Electrical and Optical Stimulations in InZnO-Based Synaptic Device for Reservoir Computing. Adv. Electron. Mater. 2024, 10, 2300911. [Google Scholar] [CrossRef]
- Fan, Z.-Y.; Tang, Z.; Fang, J.-L.; Jiang, Y.-P.; Liu, Q.-X.; Tang, X.-G.; Zhou, Y.-C.; Gao, J. Neuromorphic Computing of Optoelectronic Artificial BFCO/AZO Heterostructure Memristors Synapses. Nanomaterials 2024, 14, 583. [Google Scholar] [CrossRef]
- Ismail, M.; Rana, A.M.; Talib, I.; Tsai, T.-L.; Chand, U.; Ahmed, E.; Nadeem, M.Y.; Aziz, A.; Shah, N.A.; Hussain, M. Room-temperature fabricated, fully transparent resistive memory based on ITO/CeO2/ITO structure for RRAM applications. Solid State Commun. 2015, 202, 28–34. [Google Scholar] [CrossRef]
- Ghosh, S.; Mallick, A.; Kole, A.; Chaudhury, P.; Garner, S.; Basak, D. Study on AZO coated flexible glass as TCO substrate. In Proceedings of the 2016 IEEE 43rd Photovoltaic Specialists Conference (PVSC), Portland, OR, USA, 5–10 June 2016; pp. 0634–0638. [Google Scholar]
- Kim, H.; Osofsky, M.; Prokes, S.; Glembocki, O.; Piqué, A. Optimization of Al-doped ZnO films for low loss plasmonic materials at telecommunication wavelengths. Appl. Phys. Lett. 2013, 102, 171103. [Google Scholar] [CrossRef]
- Zhang, L.; Hsu, Y.-Y.; Chen, F.T.; Lee, H.-Y.; Chen, Y.-S.; Chen, W.-S.; Gu, P.-Y.; Liu, W.-H.; Wang, S.-M.; Tsai, C.-H. Experimental investigation of the reliability issue of RRAM based on high resistance state conduction. Nanotechnology 2011, 22, 254016. [Google Scholar] [CrossRef]
- Zhao, J.; Li, Y.; Li, J.; Zhou, L. Role and optimization of thermal rapid annealing in Ta/TaOx/Ru based resistive switching memory. Vacuum 2021, 191, 110392. [Google Scholar] [CrossRef]
- Kumar, D.; Aluguri, R.; Chand, U.; Tseng, T.-Y. Conductive bridge random access memory characteristics of SiCN based transparent device due to indium diffusion. Nanotechnology 2018, 29, 125202. [Google Scholar] [CrossRef]
- Ismail, M.; Kim, S. Negative differential resistance effect and dual bipolar resistive switching properties in a transparent Ce-based devices with opposite forming polarity. Appl. Surf. Sci. 2020, 530, 147284. [Google Scholar] [CrossRef]
- Roy, S.; Ghosh, S.; Pradhan, D.; Sahu, P.; Kar, J. Investigation of morphological and electrical properties of RTA-processed TiO2 for memristor application. J. Sol-Gel Sci. Technol. 2020, 96, 702–717. [Google Scholar] [CrossRef]
- Jeong, D.G.; Park, E.; Jo, Y.; Yang, E.; Noh, G.; Lee, D.K.; Kim, M.J.; Jeong, Y.; Jang, H.J.; Joe, D.J. Grain boundary control for high-reliability HfO2-based RRAM. Chaos Solitons Fractals 2024, 183, 114956. [Google Scholar] [CrossRef]
- Ralls, K.; Skocpol, W.; Jackel, L.; Howard, R.; Fetter, L.; Epworth, R.; Tennant, D. Discrete resistance switching in submicrometer silicon inversion layers: Individual interface traps and low-frequency noise Phys. Rev. Lett. 1984, 52, 228. [Google Scholar] [CrossRef]
- Han, C.; Kwon, S.J.; Yim, J.; Kim, J.; Kim, S.; Jeong, S.; Park, E.C.; You, J.W.; Choi, R.; Kwon, D. Effects of RTA Rising Time on Ferroelectric Characteristics of HfZrO2. IEEE Trans. Electron Devices 2022, 69, 3499–3502. [Google Scholar] [CrossRef]
- Song, S.; Yang, T.; Liu, J.; Xin, Y.; Li, Y.; Han, S. Rapid thermal annealing of ITO films. Appl. Surf. Sci. 2011, 257, 7061–7064. [Google Scholar] [CrossRef]
- Hsu, H.-H.; Yen, S.-S.; Chiu, Y.-C.; Chiou, P.; Chang, C.-Y.; Cheng, C.-H.; Lai, Y.-C.; Chang, C.-P.; Lu, H.-H.; Chuang, C.-S. Correlation of thermal annealing effect, crystallinity and electrical characteristics in c-axis crystallized InGaZnO thin-film transistors. J. Alloys Compd. 2015, 643, S187–S192. [Google Scholar] [CrossRef]
- Hsu, C.-C.; Long, P.-X.; Lin, Y.-S. Enhancement of Resistive Switching Characteristics of Sol–Gel TiO x RRAM Using Ag Conductive Bridges. IEEE Trans. Electron Devices 2020, 68, 95–102. [Google Scholar] [CrossRef]
- Kiuchi, M.; Chayahara, A. Titanium nitride for transparent conductors. Appl. Phys. Lett. 1994, 64, 1048–1049. [Google Scholar] [CrossRef]
- Kim, G.; Cho, Y.; Kim, S. Short-term memory characteristics of TiN/WOX/FTO-based transparent memory device. Chin. J. Phys. 2024, 88, 1044–1052. [Google Scholar] [CrossRef]
- Zhou, Q.; Zhai, J. HfOx bipolar resistive memory with robust endurance using ZrNx as buttom electrode. Appl. Surf. Sci. 2013, 284, 644–650. [Google Scholar] [CrossRef]
- Lata, L.K.; Jain, P.K.; Chand, U.; Bhatia, D.; Shariq, M. Resistive switching characteristics of HfO2 based bipolar nonvolatile RRAM cell. Mater. Today Proc. 2020, 30, 217–220. [Google Scholar] [CrossRef]
- Shubhakar, K.; Mei, S.; Bosman, M.; Raghavan, N.; Ranjan, A.; O’Shea, S.J.; Pey, K.L. Conductive filament formation at grain boundary locations in polycrystalline HfO2-based MIM stacks: Computational and physical insight. Microelectron. Reliab. 2016, 64, 204–209. [Google Scholar] [CrossRef]
- Yuan, F.; Shen, S.; Zhang, Z.; Pan, L.; Xu, J. Interface-induced two-step RESET for filament-based multi-level resistive memory. Superlattices Microstruct. 2016, 91, 90–97. [Google Scholar] [CrossRef]
- Balatti, S.; Larentis, S.; Gilmer, D.; Ielmini, D. Multiple memory states in resistive switching devices through controlled size and orientation of the conductive filament. Adv. Mater. 2013, 25, 1474–1478. [Google Scholar] [CrossRef]
- Zhang, D.-l.; Wang, J.; Wu, Q.; Du, Y.; Holec, D. Ab initio study of oxygen vacancy filament formation at Ta/HfO2 interface. Surf. Interfaces 2024, 49, 104418. [Google Scholar] [CrossRef]
- Privitera, S.; Bersuker, G.; Lombardo, S.; Bongiorno, C.; Gilmer, D. Conductive filament structure in HfO2 resistive switching memory devices. Solid-State Electron. 2015, 111, 161–165. [Google Scholar] [CrossRef]
- Kumari, K.; Kar, S.; Thakur, A.D.; Ray, S. Role of an oxide interface in a resistive switch. Curr. Appl. Phys. 2022, 35, 16–23. [Google Scholar] [CrossRef]
- Chen, Y.; Pourtois, G.; Wang, X.P.; Adelmann, C.; Goux, L.; Govoreanu, B.; Pantisano, L.; Kubicek, S.; Altimime, L.; Jurczak, M. Switching by Ni filaments in a HfO2 matrix: A new pathway to improved unipolar switching RRAM. In Proceedings of the 2011 3rd IEEE International Memory Workshop (IMW), Monterey, CA, USA, 22–25 May 2011; pp. 1–4. [Google Scholar]
- Zhang, X.; Zhang, T.-Y.; Wong, M.; Zohar, Y. Rapid thermal annealing of polysilicon thin films. J. Microelectromech. Syst. 1998, 7, 356–364. [Google Scholar] [CrossRef]
- Wang, C.; Wu, H.; Gao, B.; Dai, L.; Deng, N.; Sekar, D.; Lu, Z.; Kellam, M.; Bronner, G.; Qian, H. Relaxation effect in RRAM arrays: Demonstration and characteristics. IEEE Electron Device Lett. 2015, 37, 182–185. [Google Scholar] [CrossRef]
- Strenz, R. Review and outlook on embedded NVM technologies–from evolution to revolution. In Proceedings of the 2020 IEEE International Memory Workshop (IMW), Dresden, Germany, 17–20 May 2020; pp. 1–4. [Google Scholar]
- Chin, A.; Lai, C.; Yang, H.; Chen, W.; Wu, Y.; Hwang, H. Extremely low voltage and high speed deep trapping MONOS memory with good retention. In Proceedings of the 2006 8th International Conference on Solid-State and Integrated Circuit Technology Proceedings, Shanghai, China, 23–26 October 2006; pp. 744–747. [Google Scholar]
- Roy, T.; Kant, K. Enhancing endurance of ssd based high-performance storage systems using emerging nvm technologies. In Proceedings of the 2020 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW), New Orleans, LA, USA, 18–22 May 2020; pp. 1070–1079. [Google Scholar]
- Chen, A. Emerging nonvolatile memory (NVM) technologies. In Proceedings of the 2015 45th European Solid State Device Research Conference (ESSDERC), Graz, Austria, 14–18 September 2015; pp. 109–113. [Google Scholar]
- Kempen, T.; Waser, R.; Rana, V. 50x endurance improvement in taox rram by extrinsic doping. In Proceedings of the 2021 IEEE International Memory Workshop (IMW), Dresden, Germany, 16–19 May 2021; pp. 1–4. [Google Scholar]
- Sedghi, N.; Li, H.; Brunell, I.; Dawson, K.; Guo, Y.; Potter, R.; Gibbon, J.; Dhanak, V.; Zhang, W.; Zhang, J. Enhanced switching stability in Ta2O5 resistive RAM by fluorine doping. Appl. Phys. Lett. 2017, 111, 092904. [Google Scholar] [CrossRef]
- Lin, B.; Gao, B.; Pang, Y.; Yao, P.; Wu, D.; He, H.; Tang, J.; Qian, H.; Wu, H. A high-speed and high-reliability TRNG based on analog RRAM for IoT security application. In Proceedings of the 2019 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 7–11 December 2019; pp. 14.18.11–14.18.14. [Google Scholar]
- Zahoor, F.; Azni Zulkifli, T.Z.; Khanday, F.A. Resistive random access memory (RRAM): An overview of materials, switching mechanism, performance, multilevel cell (MLC) storage, modeling, and applications. Nanoscale Res. Lett. 2020, 15, 90. [Google Scholar] [CrossRef] [PubMed]
- Mao, L.-F. Investigating the effects of the interface defects on the gate leakage current in MOSFETs. Appl. Surf. Sci. 2008, 254, 6628–6632. [Google Scholar] [CrossRef]
- Zhao, L.; Liu, H.-x.; Wang, X.; Fei, C.-x.; Feng, X.-y.; Wang, Y.-t. Effects of Annealing Ambient on the Characteristics of LaAlO3 Films Grown by Atomic Layer Deposition. Nanoscale Res. Lett. 2017, 12, 108. [Google Scholar] [CrossRef] [PubMed]
- Cai, W.; Zhu, Z.; Wei, J.; Fang, Z.; Ning, H.; Zheng, Z.; Zhou, S.; Yao, R.; Peng, J.; Lu, X. A simple method for high-performance, solution-processed, amorphous ZrO2 gate insulator TFT with a high concentration precursor. Materials 2017, 10, 972. [Google Scholar] [CrossRef]
- Ha, S.; Lee, H.; Lee, W.-Y.; Jang, B.; Kwon, H.-J.; Kim, K.; Jang, J. Effect of annealing environment on the performance of sol–gel-processed ZrO2 RRAM. Electronics 2019, 8, 947. [Google Scholar] [CrossRef]
- Modreanu, M.; Sancho-Parramon, J.; Durand, O.; Servet, B.; Stchakovsky, M.; Eypert, C.; Naudin, C.; Knowles, A.; Bridou, F.; Ravet, M.-F. Investigation of thermal annealing effects on microstructural and optical properties of HfO2 thin films. Appl. Surf. Sci. 2006, 253, 328–334. [Google Scholar] [CrossRef]
- Eid, K.; Sliem, M.H.; Abdullah, A.M. Tailoring the defects of sub-100 nm multipodal titanium nitride/oxynitride nanotubes for efficient water splitting performance. Nanoscale Adv. 2021, 3, 5016–5026. [Google Scholar] [CrossRef]
- Park, M.H.; Chung, C.C.; Schenk, T.; Richter, C.; Opsomer, K.; Detavernier, C.; Adelmann, C.; Jones, J.L.; Mikolajick, T.; Schroeder, U. Effect of Annealing Ferroelectric HfO2 Thin Films: In Situ, High Temperature X-Ray Diffraction. Adv. Electron. Mater. 2018, 4, 1800091. [Google Scholar] [CrossRef]
- Fu, W.-E.; Chang, Y.-Q. Layer structure variations of ultra-thin HfO2 films induced by post-deposition annealing. Appl. Surf. Sci. 2011, 257, 7436–7442. [Google Scholar] [CrossRef]
- Li, Z.; Fu, L.; Fu, B.; Shan, A. Effects of annealing on microstructure and mechanical properties of nano-grained titanium produced by combination of asymmetric and symmetric rolling. Mater. Sci. Eng. A 2012, 558, 309–318. [Google Scholar] [CrossRef]
- Potlog, T.; Dumitriu, P.; Dobromir, M.; Luca, D. XRD and XPS analysis of TiO2 thin films annealed in different environments. J. Mater. Sci. Eng. B 2014, 4, 163–170. [Google Scholar]
- Cui, X.; Tuokedaerhan, K.; Cai, H.; Lu, Z. Effect of annealing temperature on the microstructure and optical properties of lanthanum-doped hafnium oxide. Coatings 2022, 12, 439. [Google Scholar] [CrossRef]
- Khan, M.I.; Neha, T.R.; Billah, M.M. UV-irradiated sol-gel spin coated AZO thin films: Enhanced optoelectronic properties. Heliyon 2022, 8, e08743. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, N.M.; Sabah, F.A.; Abdulgafour, H.; Alsadig, A.; Sulieman, A.; Alkhoaryef, M. The effect of post annealing temperature on grain size of indium-tin-oxide for optical and electrical properties improvement. Results Phys. 2019, 13, 102159. [Google Scholar] [CrossRef]
- Tong, H.; Deng, Z.; Liu, Z.; Huang, C.; Huang, J.; Lan, H.; Wang, C.; Cao, Y. Effects of post-annealing on structural, optical and electrical properties of Al-doped ZnO thin films. Appl. Surf. Sci. 2011, 257, 4906–4911. [Google Scholar] [CrossRef]
- Gan, K.-J.; Liu, P.-T.; Ruan, D.-B.; Chiu, Y.-C.; Sze, S.M. Annealing effects on resistive switching of IGZO-based CBRAM devices. Vacuum 2020, 180, 109630. [Google Scholar] [CrossRef]
- Tsai, T.-L.; Chang, H.-Y.; Jiang, F.-S.; Tseng, T.-Y. Impact of post-oxide deposition annealing on resistive switching in HfO2-based oxide RRAM and conductive-bridge RAM devices. IEEE Electron Device Lett. 2015, 36, 1146–1148. [Google Scholar] [CrossRef]
- Hu, H.; Peng, C.; Krupanidhi, S. Effect of heating rate on the crystallization behavior of amorphous PZT thin films. Thin Solid Film. 1993, 223, 327–333. [Google Scholar] [CrossRef]
- Liu, K.-C.; Tzeng, W.-H.; Chang, K.-M.; Chan, Y.-C.; Kuo, C.-C.; Cheng, C.-W. Transparent resistive random access memory (T-RRAM) based on Gd2O3 film and its resistive switching characteristics. In Proceedings of the 2010 3rd International Nanoelectronics Conference (INEC), Hong Kong, China, 3–8 January 2010; pp. 898–899. [Google Scholar]
- Qi, Y.; Shen, Z.; Zhao, C.; Mitrovic, I.; Xu, W.; Lim, E.; Yang, L.; He, J.; Luo, T.; Huang, Y. Resistive switching behavior of solution-processed AlOx and GO based RRAM at low temperature. Solid-State Electron. 2020, 168, 107735. [Google Scholar] [CrossRef]
- Wu, L.; Liu, H.; Li, J.; Wang, S.; Wang, X. A multi-level memristor based on Al-doped HfO2 thin film. Nanoscale Res. Lett. 2019, 14, 177. [Google Scholar] [CrossRef]
- Son, D.-I.; Park, D.-H.; Choi, W.K.; Cho, S.-H.; Kim, W.-T.; Kim, T.W. Carrier transport in flexible organic bistable devices of ZnO nanoparticles embedded in an insulating poly (methyl methacrylate) polymer layer. Nanotechnology 2009, 20, 195203. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Luan, K.; He, Y. Effect of Annealing Temperature on the Resistive Characteristics of Ag/Hfo2/P+-Si Storage Units. Available online: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4623563 (accessed on 20 November 2024).
- Lim, Z.X.; Cheong, K.Y. Effects of drying temperature and ethanol concentration on bipolar switching characteristics of natural Aloe vera-based memory devices. Phys. Chem. Chem. Phys. 2015, 17, 26833–26853. [Google Scholar] [CrossRef] [PubMed]
- Zhu, W.; Tamagawa, T.; Gibson, M.; Furukawa, T.; Ma, T. Effect of Al inclusion in HfO2 on the physical and electrical properties of the dielectrics. IEEE Electron Device Lett. 2002, 23, 649–651. [Google Scholar] [CrossRef]
- Lin, C.-L.; Chou, M.-Y.; Kang, T.-K.; Wu, S.-C. Electrical characteristics and TDDB breakdown mechanism of N2-RTA-treated Hf-based high-κ gate dielectrics. Microelectron. Eng. 2011, 88, 950–958. [Google Scholar] [CrossRef]
- Gogoi, P.; Srinivas, P.; Sharma, P.; Pamu, D. Optical, dielectric characterization and impedance spectroscopy of Ni-substituted MgTiO3 thin films. J. Electron. Mater. 2016, 45, 899–909. [Google Scholar] [CrossRef]
- Sahu, V.K.; Das, A.K.; Ajimsha, R.; Misra, P. On origin of resistive and capacitive contributions to impedance of memory states in Cu/TiO2/Pt RRAM devices by impedance spectroscopy. Ceram. Int. 2023, 49, 2215–2223. [Google Scholar] [CrossRef]
- Bai, J.; Xie, W.; Zhang, W.; Yin, Z.; Wei, S.; Qu, D.; Li, Y.; Qin, F.; Zhou, D.; Wang, D. Conduction mechanism and impedance analysis of HfOx-based RRAM at different resistive states. Appl. Surf. Sci. 2022, 600, 154084. [Google Scholar] [CrossRef]
- Wiśniewski, P.; Mazurak, A.; Jasiński, J.; Beck, R.B. Study of silicon-oxide RRAM devices based on complex impedance spectroscopy. Solid-State Electron. 2023, 208, 108732. [Google Scholar] [CrossRef]
- Wiśniewski, P.; Jasiński, J.; Mazurak, A.; Stonio, B.; Majkusiak, B. Investigation of electrical properties of the Al/SiO2/n++-Si resistive switching structures by means of static, admittance, and impedance spectroscopy measurements. Materials 2021, 14, 6042. [Google Scholar] [CrossRef]
- Wang, Z.; Yu, H.; Tran, X.A.; Fang, Z.; Wang, J.; Su, H. Transport properties of HfO2−x based resistive-switching memories. Phys. Rev. B—Condens. Matter Mater. Phys. 2012, 85, 195322. [Google Scholar] [CrossRef]
Device | Forming | Setting | Reset |
---|---|---|---|
Without RTA | 3.3 V | 2.4 V | −5.1 V |
After RTA | 2 V | 1 V | −2.7 V |
Component | HRS | LRS |
---|---|---|
R | ||
C | ||
L | - | |
R’ | ||
C’ | ||
L’ | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jang, Y.; Hwang, C.; Bang, S.; Kim, H.-D. Enhanced Transparency and Resistive Switching Characteristics in AZO/HfO2/Ti RRAM Device via Post Annealing Process. Inorganics 2024, 12, 299. https://doi.org/10.3390/inorganics12120299
Jang Y, Hwang C, Bang S, Kim H-D. Enhanced Transparency and Resistive Switching Characteristics in AZO/HfO2/Ti RRAM Device via Post Annealing Process. Inorganics. 2024; 12(12):299. https://doi.org/10.3390/inorganics12120299
Chicago/Turabian StyleJang, Yuseong, Chanmin Hwang, Sanggyu Bang, and Hee-Dong Kim. 2024. "Enhanced Transparency and Resistive Switching Characteristics in AZO/HfO2/Ti RRAM Device via Post Annealing Process" Inorganics 12, no. 12: 299. https://doi.org/10.3390/inorganics12120299
APA StyleJang, Y., Hwang, C., Bang, S., & Kim, H. -D. (2024). Enhanced Transparency and Resistive Switching Characteristics in AZO/HfO2/Ti RRAM Device via Post Annealing Process. Inorganics, 12(12), 299. https://doi.org/10.3390/inorganics12120299