The Influence of Abiotic Factors on the Distribution of Macrophytes in Small Water Bodies in Temperate Ecosystems
<p>Red dots indicate the sampling locations of the studies used throughout this review.</p> "> Figure 2
<p>Macrophyte gamma species richness of ditches, streams and ponds reported by four studies (see text for detail) [<a href="#B15-limnolrev-24-00036" class="html-bibr">15</a>,<a href="#B24-limnolrev-24-00036" class="html-bibr">24</a>,<a href="#B25-limnolrev-24-00036" class="html-bibr">25</a>,<a href="#B26-limnolrev-24-00036" class="html-bibr">26</a>]. The average species richness is provided, whilst bars for Williams et al. study from 2020 [<a href="#B15-limnolrev-24-00036" class="html-bibr">15</a>] show the range of annual species richness recorded over eight years of study.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Waterbody Type
3.2. Substrate
3.3. Water Velocity
3.4. Conductivity
3.5. Shade
3.6. Depth
3.7. Nutrient Content
3.7.1. Phosphorus
3.7.2. Nitrogen
3.8. Land Use
3.9. Hydroperiod
3.10. Isolation
3.11. Distance from Source
3.12. Size of Water Body
3.13. pH
4. Discussion
4.1. Key Findings
4.2. Knowledge Gaps
4.3. Importance of This Review
4.4. Challenges
4.5. Macrophyte Management Strategies
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Mandal, R.N.; Datta, A.K.; Sarangi, N. Diversity of Aquatic Macrophytes as Food and Feed Components to Herbivorous Fish—A Review. Indian J. Fish. 2010, 57, 65–73. [Google Scholar]
- Xie, Z.; Tang, T.; Ma, K.; Liu, R.; Qu, X.; Chen, J.; Cai, Q. Influence of Environmental Variables on Macroinvertebrates in a Macrophyte-Dominated Chinese Lake, with Emphasis on the Relationships Between Macrophyte Heterogeneity and Macroinvertebrate Patterns. J. Freshw. Ecol. 2005, 20, 503–512. [Google Scholar] [CrossRef]
- Nyström, P.; Hansson, J.; Månsson, J.; Sundstedt, M.; Reslow, C.; Broström, A. A Documented Amphibian Decline over 40 Years: Possible Causes and Implications for Species Recovery. Biol. Conserv. 2007, 138, 399–411. [Google Scholar]
- Burks, R.L.; Kyle, C.H.; Trawick, M.K. Pink Eggs and Snails: Field Oviposition Patterns of an Invasive Snail, Pomacea Insularum, Indicate a Preference for an Invasive Macrophyte. Hydrobiologia 2010, 646, 243–251. [Google Scholar] [CrossRef]
- dos Santos, A.M. Macroinvertebrate Associated with Macrophyte Beds in a Cerrado Stream. Limnetica 2019, 38, 639–652. [Google Scholar] [CrossRef]
- Schulz, M.; Kozerski, H.-P.; Pluntke, T.; Rinke, K. The Influence of Macrophytes on Sedimentation and Nutrient Retention in the Lower River Spree (Germany). Water Res. 2003, 37, 569–578. [Google Scholar] [CrossRef]
- Kozlowski, G.; Bondallaz, L. Urban Aquatic Ecosystems: Habitat Loss and Depletion of Native Macrophyte Diversity During the 20th Century in Four Swiss Cities. Urban Ecosyst. 2013, 16, 543–551. [Google Scholar] [CrossRef]
- Grillas, P.; Rhazi, L.; Lefebvre, G.; El Madihi, M.; Poulin, B. Foreseen Impact of Climate Change on Temporary Ponds Located Along a Latitudinal Gradient in Morocco. Inland Waters 2021, 11, 492–507. [Google Scholar] [CrossRef]
- Reitsema, R.E.; Preiner, S.; Meire, P.; Hein, T.; De Boeck, G.; Blust, R.; Schoelynck, J. Implications of Climate Change for Submerged Macrophytes: Effects of CO2, Flow Velocity and Nutrient Concentration on Berula Erecta. Aquat. Ecol. 2020, 54, 775–793. [Google Scholar] [CrossRef]
- Roche, H. Invasive Species Management—An Urban Case Study of Impatiens Glandulifera in Edinburgh City. Ph.D. Thesis, University of Edinburgh, Edinburgh, UK, 2015. [Google Scholar]
- Jarvie, H.P.; Smith, D.R.; Norton, L.R.; Edwards, F.K.; Bowes, M.J.; King, S.M.; Scarlett, P.; Davies, S.; Dils, R.M.; Bachiller-Jareno, N. Phosphorus and Nitrogen Limitation and Impairment of Headwater Streams Relative to Rivers in Great Britain: A National Perspective on Eutrophication. Sci. Total Environ. 2018, 621, 849–862. [Google Scholar] [CrossRef]
- Jahan, R.; Khan, S.; Haque, M.M.; Choi, J.K. Study of Harmful Algal Blooms in a Eutrophic Pond, Bangladesh. Environ. Monit. Assess. 2010, 170, 7–21. [Google Scholar] [CrossRef] [PubMed]
- Davies, B.; Biggs, J.; Williams, P.; Whitfield, M.; Nicolet, P.; Sear, D.; Bray, S.; Maund, S. Comparative Biodiversity of Aquatic Habitats in the European Agricultural Landscape. Agric. Ecosyst. Environ. 2008, 125, 1–8. [Google Scholar] [CrossRef]
- Herzon, I.; Helenius, J. Agricultural Drainage Ditches, Their Biological Importance and Functioning. Biol. Conserv. 2008, 141, 1171–1183. [Google Scholar] [CrossRef]
- Williams, P.; Whitfield, M.; Biggs, J.; Bray, S.; Fox, G.; Nicolet, P.; Sear, D. Comparative Biodiversity of Rivers, Streams, Ditches and Ponds in an Agricultural Landscape in Southern England. Biol. Conserv. 2004, 115, 329–341. [Google Scholar] [CrossRef]
- Riley, W.D.; Potter, E.C.E.; Biggs, J.; Collins, A.L.; Jarvie, H.P.; Jones, J.I.; Kelly-Quinn, M.; Ormerod, S.J.; Sear, D.A.; Wilby, R.L.; et al. Small Water Bodies in Great Britain and Ireland: Ecosystem Function, Human-Generated Degradation, and Options for Restorative Action. Sci. Total Environ. 2018, 645, 1598–1616. [Google Scholar] [CrossRef] [PubMed]
- Linders, J.; Adriaanse, P.; Allen, R.; Capri, E.; Gouy, V.; Hollis, J.; Jarvis, N.; Klein, M.; Lolos, P.; Maier, W.M.; et al. Focus Surface Water Scenarios in the EU Evaluation Process Under 91/414/EEC. In Report of the FOCUS Working Group on Surface Water Scenarios; European Commission: Brussels, Belgium, 2001; EC Document Reference SANCO/4802/2001-rev.2. [Google Scholar]
- Biggs, J.; von Fumetti, S.; Kelly-Quinn, M. The Importance of Small Waterbodies for Biodiversity and Ecosystem Services: Implications for Policy Makers. Hydrobiologia 2017, 793, 3–39. [Google Scholar] [CrossRef]
- Bornette, G.; Puijalon, S. Response of Aquatic Plants to Abiotic Factors: A Review. Aquat. Sci. 2011, 73, 1–14. [Google Scholar] [CrossRef]
- Bornette, G.; Puijalon, S. Macrophytes: Ecology of Aquatic Plants. In Encyclopedia of Life Sciences; John Wiley & Sons: Hoboken, NJ, USA, 2009. [Google Scholar] [CrossRef]
- Dar, N.A.; Pandit, A.K.; Ganai, B.A. Factors Affecting the Distribution Patterns of Aquatic Macrophytes. Limnol. Rev. 2014, 14, 75–81. [Google Scholar] [CrossRef]
- Kottek, M.; Grieser, J.; Beck, C.; Rudolf, B.; Rubel, F. World Map of the Köppen-Geiger Climate Classification Updated. Meteorol. Z. 2006, 15, 259–263. [Google Scholar] [CrossRef]
- Mountford, O.; Graham, J. Fenland Flora. Fens of the Future, Cambridgeshire, UK. 2023; Unpublished raw data. [Google Scholar]
- Williams, P.; Biggs, J.; Stoate, C.; Szczur, J.; Brown, C.; Bonney, S. Nature Based Measures Increase Freshwater Biodiversity in Agricultural Catchments. Biol. Conserv. 2020, 244, 108515. [Google Scholar] [CrossRef]
- Bubíková, K.; Hrivnák, R. Comparative Macrophyte Diversity of Waterbodies in the Central European Landscape. Wetlands 2018, 38, 451–459. [Google Scholar] [CrossRef]
- Sun, J.; Doeser, A.; Cao, Y.; Lv, X.; Li, W.; Liu, F. Regional Macrophyte Diversity Is Shaped by Accumulative Effects Across Waterbody Types in Southern China. Aquat. Bot. 2022, 176, 103468. [Google Scholar] [CrossRef]
- Hrivnák, R.; Ot’ahel’ová, H.; Valachovič, M.; Pal’ove-Balang, P.; Kubinská, A. Others Effect of Environmental Variables on the Aquatic Macrophyte Composition Pattern in Streams: A Case Study from Slovakia. Fundam. Appl. Limnol. 2010, 177, 115–124. [Google Scholar] [CrossRef]
- Kuhar, U.; Gregorc, T.; Renčelj, M.; Šraj-Kržič, N.; Gaberščik, A. Distribution of Macrophytes and Condition of the Physical Environment of Streams Flowing through Agricultural Landscape in North-Eastern Slovenia. Limnologica 2007, 37, 146–154. [Google Scholar] [CrossRef]
- Svitok, M.; Hrivnák, R.; Kochjarová, J.; Oťaheľová, H.; Paľove-Balang, P. Environmental Thresholds and Predictors of Macrophyte Species Richness in Aquatic Habitats in Central Europe. Folia Geobot. 2016, 51, 227–238. [Google Scholar] [CrossRef]
- Weekes, L.; Matson, R.; Kelly, F.; FitzPatrick, Ú.; Kelly-Quinn, M. Composition and Characteristics of Macrophyte Assemblages in Small Streams in Ireland. Biol. Environ. Proc. R. Ir. Acad. 2014, 114B, 163–180. [Google Scholar] [CrossRef]
- Wentworth, C.K. A Scale of Grade and Class Terms for Clastic Sediments. J. Geol. 1922, 30, 377–392. [Google Scholar] [CrossRef]
- Baattrup-Pedersen, A.; Riis, T. Macrophyte Diversity and Composition in Relation to Substratum Characteristics in Regulated and Unregulated Danish Streams. Freshw. Biol. 1999, 42, 375–385. [Google Scholar] [CrossRef]
- Kuhar, U.; Germ, M.; Gaberščik, A. Habitat Characteristics of an Alien Species Elodea Canadensis in Slovenian Watercourses. Hydrobiologia 2010, 656, 205–212. [Google Scholar] [CrossRef]
- Rolon, A.S.; Rocha, O.; Maltchik, L. Do Effects of Landscape Factors on Coastal Pond Macrophyte Communities Depend on Species Traits? Aquat. Bot. 2012, 103, 115–121. [Google Scholar] [CrossRef]
- Bowden, W.B.; Glime, J.M.; Riis, T. Methods in Stream Ecology, Volume 1. In Macrophytes and Bryophytes; Academic Press: San Diego, CA, USA, 2017; pp. 243–271. ISBN 9780124165588. [Google Scholar]
- Li, Z.Q.; Kong, L.Y.; Yang, L.F.; Zhang, M.; Cao, T.; Xu, J.; Wang, Z.X.; Lei, Y. Effect of Substrate Grain Size on the Growth and Morphology of the Submersed Macrophyte Vallisneria natans L. Limnologica 2012, 42, 81–85. [Google Scholar] [CrossRef]
- Tremp, H. Spatial and Environmental Effects on Hydrophytic Macrophyte Occurrence in the Upper Rhine Floodplain (Germany). Hydrobiologia 2007, 586, 167–177. [Google Scholar] [CrossRef]
- Zelnik, I.; Kuhar, U.; Holcar, M.; Germ, M.; Gaberščik, A. Distribution of Vascular Plant Communities in Slovenian Watercourses. Water 2021, 13, 1071. [Google Scholar] [CrossRef]
- Vaughn, R.S.; Davis, L. Abiotic Controls of Emergent Macrophyte Density in a Bedrock Channel—The Cahaba River, AL (USA). Geomorphology 2015, 246, 146–155. [Google Scholar] [CrossRef]
- Riis, T.; Biggs, B.J.F. Hydrologic and Hydraulic Control of Macrophyte Establishment and Performance in Streams. Limnol. Oceanogr. 2003, 48, 1488–1497. [Google Scholar] [CrossRef]
- Westwood, C.G.; Teeuw, R.M.; Wade, P.M.; Holmes, N.T.H.; Guyard, P. Influences of Environmental Conditions on Macrophyte Communities in Drought-Affected Headwater Streams. River Res. Appl. 2006, 22, 703–726. [Google Scholar] [CrossRef]
- Riis, T.; Suren, A.M.; Clausen, B.; Sand-Jensen, K. Vegetation and Flow Regime in Lowland Streams. Freshw. Biol. 2008, 53, 1531–1543. [Google Scholar] [CrossRef]
- Kochjarová, J.; Novikmec, M.; Oťaheľová, H.; Hamerlík, L.; Svitok, M.; Hrivnák, M.; Senko, D.; Bubíková, K.; Matúšová, Z.; Paľove-Balang, P.; et al. Vegetation-Environmental Variable Relationships in Ponds of Various Origins along an Altitudinal Gradient. Pol. J. Environ. Stud. 2017, 26, 1575–1583. [Google Scholar] [CrossRef]
- Rolon, A.S.; Rocha, O.; Maltchik, L. Does Pine Occurrence Influence the Macrophyte Assemblage in Southern Brazil Ponds? Hydrobiologia 2011, 675, 157–165. [Google Scholar] [CrossRef]
- Mauchamp, A.; Gore, O.; Paillisson, J.-M.; Bergerot, B.; Bonis, A. Delineating the Influence of Water Conditions and Landscape on Plant Communities in Eutrophic Ditch Networks. Wetl. Ecol. Manag. 2021, 29, 417–432. [Google Scholar] [CrossRef]
- Feijoó, C.S.; Lombardo, R.J. Baseline Water Quality and Macrophyte Assemblages in Pampean Streams: A Regional Approach. Water Res. 2007, 41, 1399–1410. [Google Scholar] [CrossRef] [PubMed]
- Maltchik, L.; Rolon, A.S.; Stenert, C.; Machado, I.F.; Rocha, O. Can Rice Field Channels Contribute to Biodiversity Conservation in Southern Brazilian Wetlands? Int. J. Trop. Biol. Conserv. 2011, 59, 1895–1914. [Google Scholar] [CrossRef]
- Van Onsem, S.; Triest, L. Turbidity, Waterfowl Herbivory, and Propagule Banks Shape Submerged Aquatic Vegetation in Ponds. Front. Plant Sci. 2018, 9, 1514. [Google Scholar] [CrossRef] [PubMed]
- Francová, K.; Šumberová, K.; Kučerová, A.; Čtvrtlíková, M.; Šorf, M.; Borovec, J.; Drozd, B.; Janauer, G.; Vrba, J. Macrophyte Assemblages in Fishponds Under Different Fish Farming Management. Aquat. Bot. 2019, 159, 103131. [Google Scholar] [CrossRef]
- Coldsnow, K.D.; Mruzek, J.L.; Stoler, A.B.; Relyea, R.A. Sublethal Impacts of Different Road Salts on a Freshwater Macrophyte: Altered Productivity, Acclimation, and Lag Effects. Freshw. Biol. 2023, 68, 1952–1962. [Google Scholar] [CrossRef]
- Simmons, J.A. Toxicity of Major Cations and Anions (Na+, K+, Ca2+, Cl−, and SO4(2−)) to a Macrophyte and an Alga. Environ. Toxicol. Chem. 2012, 31, 1370–1374. [Google Scholar] [CrossRef]
- Leyssen, A.; Denys, L.; Schneiders, A.; Mouton, A.M. Distribution and Environmental Requirements of Stream Habitat with Ranunculion Fluitantis and Callitricho-Batrachion Vegetation in Lower Belgium (Flanders). Aquat. Conserv. 2014, 24, 601–622. [Google Scholar] [CrossRef]
- Shaw, R.F.; Johnson, P.J.; Macdonald, D.W.; Feber, R.E. Enhancing the Biodiversity of Ditches in Intensively Managed UK Farmland. PLoS ONE 2015, 10, e0138306. [Google Scholar] [CrossRef]
- Sayer, C.; Andrews, K.; Shilland, E.; Edmonds, N.; Edmonds-Brown, R.; Patmore, I.; Emson, D.; Axmacher, J. The Role of Pond Management for Biodiversity Conservation in an Agricultural Landscape. Aquat. Conserv. 2012, 22, 626–638. [Google Scholar] [CrossRef]
- Everitt, D.T.; Burkholder, J.M. Seasonal Dynamics of Macrophyte Communities from a Stream Flowing over Granite Flatrock in North Carolina, USA. Hydrobiologia 1991, 222, 159–172. [Google Scholar] [CrossRef]
- Marschall, M.; Proctor, M.C.F. Are Bryophytes Shade Plants? Photosynthetic Light Responses and Proportions of Chlorophyll A, Chlorophyll B and Total Carotenoids. Ann. Bot. 2004, 94, 593–603. [Google Scholar] [CrossRef] [PubMed]
- Estébanez, B.; Medina, N.G.; Caparrós, R.; Monforte, L.; Del-Castillo-Alonso, M.-Á.; Martínez-Abaigar, J.; Núñez-Olivera, E. Spores Potentially Dispersed to Longer Distances Are More Tolerant to Ultraviolet Radiation: A Case Study in the Moss Genus Orthotrichum. Am. J. Bot. 2018, 105, 996–1008. [Google Scholar] [CrossRef] [PubMed]
- Haury, J. Patterns of Macrophyte Distribution within a Breton Brook Compared with Other Study Scales. Landsc. Urban Plan. 1995, 31, 349–361. [Google Scholar] [CrossRef]
- Rea, T.E.; Karapatakis, D.J.; Guy, K.K.; Pinder, J.E., III; Mackey, H.E., Jr. The Relative Effects of Water Depth, Fetch and Other Physical Factors on the Development of Macrophytes in a Small Southeastern US Pond. Aquat. Bot. 1998, 61, 289–299. [Google Scholar] [CrossRef]
- Jeffries, M.J. Pond Macrophyte Assemblages, Biodisparity and Spatial Distribution of Ponds in the Northumberland Coastal Plain, UK. Aquat. Conserv. 1998, 8, 657–667. [Google Scholar] [CrossRef]
- Akasaka, M.; Takamura, N.; Mitsuhashi, H.; Kadono, Y. Effects of Land Use on Aquatic Macrophyte Diversity and Water Quality of Ponds. Freshw. Biol. 2010, 55, 909–922. [Google Scholar] [CrossRef]
- Lambers, H. Phosphorus Acquisition and Utilization in Plants. Annu. Rev. Plant Biol. 2022, 73, 17–42. [Google Scholar] [CrossRef]
- van Zuidam, J.P.; Peeters, E.T. Occurrence of Macrophyte Monocultures in Drainage Ditches Relates to Phosphorus in Both Sediment and Water. Springerplus 2013, 2, 564. [Google Scholar] [CrossRef]
- Johnson, R.K.; Angeler, D.G. Effects of Agricultural Land Use on Stream Assemblages: Taxon-Specific Responses of Alpha and Beta Diversity. Ecol. Indic. 2014, 45, 386–393. [Google Scholar] [CrossRef]
- Kosten, S.; Kamarainen, A.; Jeppesen, E.; Van Nes, E.H.; Peeters, E.T.H.M.; Mazzeo, N.; Sass, L.; Hauxwell, J.; Hansel-Welch, N.; Lauridsen, T.L.; et al. Climate-Related Differences in the Dominance of Submerged Macrophytes in Shallow Lakes. Glob. Chang. Biol. 2009, 15, 2503–2517. [Google Scholar] [CrossRef]
- Fathi, A. Role of Nitrogen (N) in Plant Growth, Photosynthesis Pigments, and N Use Efficiency: A Review. Agrisost 2022, 28, e3917. [Google Scholar] [CrossRef]
- Haworth, B.J.; Ashmore, M.R.; Headley, A.D. Effects of Nitrogen Deposition on Bryophyte Species Composition of Calcareous Grasslands. Water Air Soil Pollut. Focus 2007, 7, 111–117. [Google Scholar] [CrossRef]
- Arts, G.H.P.; van Smeden, J.; Wolters, M.F.; Belgers, J.D.M.; Matser, A.M.; Hommen, U.; Bruns, E.; Heine, S.; Solga, A.; Taylor, S. Seasonal Dynamics of the Macrophyte Test Species Myriophyllum Spicatum over Two Years in Experimental Ditches for Population Modeling Application in Risk Assessment. Integr. Environ. Assess. Manag. 2022, 18, 1375–1386. [Google Scholar] [CrossRef] [PubMed]
- Glime, J.M. Bryophyte Ecology; Michigan Technological University: Houghton, MI, USA, 2017; Volume 4, p. 5. [Google Scholar]
- Pereira, K.M.; Hefler, S.M.; Trentin, G.; Rolon, A.S. Influences of Landscape and Climatic Factors on Aquatic Macrophyte Richness and Composition in Ponds. Flora 2021, 279, 151811. [Google Scholar] [CrossRef]
- Hinojosa-Garro, D.; Mason, C.F.; Underwood, G.J.C. Others Macrophyte Assemblages in Ditches of Coastal Marshes in Relation to Land-Use, Salinity and Water Quality. Fundam. Appl. Limnol. 2008, 172, 325. [Google Scholar] [CrossRef]
- Francová, K.; Šumberová, K.; Kučerová, A.; Šorf, M. Drivers of Plant Species Composition of Ecotonal Vegetation in Two Fishpond Management Types. Wetl. Ecol. Manag. 2021, 29, 93–110. [Google Scholar] [CrossRef]
- Pätzig, M.; Kalettka, T.; Glemnitz, M.; Berger, G. What Governs Macrophyte Species Richness in Kettle Hole Types? A Case Study from Northeast Germany. Limnologica 2012, 42, 340–354. [Google Scholar] [CrossRef]
- MacArthur, R.H.; Wilson, E.O. The Theory of Island Biogeography; Princeton University Press: Princeton, NJ, USA, 1967. [Google Scholar]
- Bosiacka, B.; Pieńkowski, P. Do Biogeographic Parameters Matter? Plant Species Richness and Distribution of Macrophytes in Relation to Area and Isolation of Ponds in NW Polish Agricultural Landscape. Hydrobiologia 2012, 689, 79–90. [Google Scholar] [CrossRef]
- Biggs, J.; Williams, P.; Whitfield, M.; Nicolet, P.; Weatherby, A. 15 Years of Pond Assessment in Britain: Results and Lessons Learned from the Work of Pond Conservation. Aquat. Conserv. 2005, 15, 693–714. [Google Scholar] [CrossRef]
- Jeffries, M. The Spatial and Temporal Heterogeneity of Macrophyte Communities in Thirty Small, Temporary Ponds over a Period of Ten Years. Ecography 2008, 31, 765–775. [Google Scholar] [CrossRef]
- Whelan, M.J.; Linstead, C.; Worrall, F.; Ormerod, S.J.; Durance, I.; Johnson, A.C.; Johnson, D.; Owen, M.; Wiik, E.; Howden, N.J.K.; et al. Is Water Quality in British Rivers “better than at Any Time since the End of the Industrial Revolution”? Sci. Total Environ. 2022, 843, 157014. [Google Scholar] [CrossRef] [PubMed]
- Møller, T.R.; Rørdam, C.P. Species Numbers of Vascular Plants in Relation to Area, Isolation and Age of Ponds in Denmark. Oikos 1985, 45, 8–16. [Google Scholar] [CrossRef]
- Wang, X.-K.; Wang, B.-J.; Liu, X.-N.; Zhang, L.-Q. Effects of River Width Changes on Flow Characteristics Based on Flume Experiment. J. Mt. Sci. 2016, 13, 361–368. [Google Scholar] [CrossRef]
- Sechriest, R. Relationship Between Total Alkalinity, Conductivity, Original pG and Buffer Action of Natural Water. Ohio J. Sci. 1960, 50, 303–308. [Google Scholar]
- James, R.K.; Hepburn, C.D.; Pritchard, D.; Richards, D.K.; Hurd, C.L. Water Motion and pH Jointly Impact the Availability of Dissolved Inorganic Carbon to Macroalgae. Sci. Rep. 2022, 12, 21947. [Google Scholar] [CrossRef]
- Hardion, L.; Chanez, E.; Staentzel, C.; Combroux, I.; Beisel, J.-N.; Espinosa Prieto, A.; Béral, H.; Trémolières, M.; Grac, C. An Infraspecific Dimension of Bioindication? Comparison Between Genotypes and Ecological Distribution of Potamogeton Coloratus. Aquat. Bot. 2021, 171, 103373. [Google Scholar] [CrossRef]
- Fay, P.A.; Guntenspergen, G.R.; Olker, J.H.; Johnson, W.C. Climate Change Impacts on Freshwater Wetland Hydrology and Vegetation Cover Cycling Along a Regional Aridity Gradient. Ecosphere 2016, 7, e01504. [Google Scholar] [CrossRef]
- Zipper, S.C.; Hammond, J.C.; Shanafield, M.; Zimmer, M.; Datry, T.; Nathan Jones, C.; Kaiser, K.E.; Godsey, S.E.; Burrows, R.M.; Blaszczak, J.R.; et al. Pervasive Changes in Stream Intermittency Across the United States. Environ. Res. Lett. 2021, 16, 084033. [Google Scholar] [CrossRef]
- Whitehead, P.; Butterfield, D.; Wade, A. Potential Impacts of Climate Change on River Water Quality; Environment Agency: Bristol, UK, 2008; ISBN 9781844329069. [Google Scholar]
- Barron, J.; Ashton, C. The Effect of Temperature on Conductivity Measurement; Reagecon Diagnostics Ltd.: Shannon, Ireland, 2007. [Google Scholar]
- Bahuguna, Y.M.; Gairola, S.; Semwal, D.P.; Uniyal, P.L.; Bhatt, A.B. Diversity of Lower Plants; Dreamtech Press: New Delhi, India, 2013; Volume 2013, pp. 279–296. [Google Scholar]
- Dražina, T.; Špoljar, M.; Primc, B.; Habdija, I. Small-Scale Patterns of Meiofauna in a Bryophyte Covered Tufa Barrier (Plitvice Lakes, Croatia). Limnologica 2013, 43, 405–416. [Google Scholar] [CrossRef]
- Choudhury, M.I.; McKie, B.G.; Hallin, S.; Ecke, F. Mixtures of Macrophyte Growth Forms Promote Nitrogen Cycling in Wetlands. Sci. Total Environ. 2018, 635, 1436–1443. [Google Scholar] [CrossRef] [PubMed]
- Middelboe, A.L.; Markager, S. Depth Limits and Minimum Light Requirements of Freshwater Macrophytes. Freshw. Biol. 1997, 37, 553–568. [Google Scholar] [CrossRef]
- Czuba, J.A.; Allen, G.H. When Does a Stream Become a River? River Res. Appl. 2023, 39, 1925–1929. [Google Scholar] [CrossRef]
- Bae, M.-J.; Kwon, Y.; Hwang, S.-J.; Chon, T.-S.; Yang, H.-J.; Kwak, I.-S.; Park, J.-H.; Ham, S.-A.; Park, Y.-S. Relationships Between Three Major Stream Assemblages and Their Environmental Factors in Multiple Spatial Scales. Int. J. Limnol. 2011, 47, S91–S105. [Google Scholar] [CrossRef]
- Smith, L.P.; Clarke, L.E.; Weldon, L.; Robson, H.J. An Evidence-Based Study Mapping the Decline in Freshwater Ponds in the Severn Vale Catchment in the UK Between 1900 and 2019. Hydrobiologia 2022, 849, 4637–4649. [Google Scholar] [CrossRef]
- Lee, H.; Pugh, T.A.M.; Patacca, M.; Seo, B.; Winkler, K.; Rounsevell, M. Three Billion New Trees in the EU’s Biodiversity Strategy: Low Ambition, but Better Environmental Outcomes? Environ. Res. Lett. 2023, 18, 034020. [Google Scholar] [CrossRef]
Web of Science Search Terms | Initial No. of Results | No. of Results After Reading the Title and Removing Duplicates | No. of Results After Reading Abstract | No. of Results After Reading Full Text |
---|---|---|---|---|
ALL = (pond) AND TS = (macrophyte) AND TS = (distribution) | 126 | 17 | 9 | 7 |
ALL = (ditch) AND TS = (macrophyte) AND TS = (distribution) | 11 | 2 | 2 | 1 |
ALL = (stream) AND TS = (macrophyte) AND TS = (distribution) | 199 | 29 | 15 | 14 |
ALL = (temperate) AND TS = (assemblage) AND TI = (macrophyte) | 13 | 4 | 2 | 1 |
ALL = (temperate) AND TS = (distribution) AND TI = (macrophyte) | 18 | 1 | 0 | 0 |
ALL = (pond) AND TS = (assemblage) AND TS = (macrophyte) | 142 | 13 | 10 | 8 |
ALL = (ditch) AND TS = (assemblage) AND TS = (macrophyte) | 19 | 4 | 3 | 3 |
ALL = (stream) AND TS = (assemblage) AND TS = (macrophyte) | 212 | 9 | 8 | 5 |
39 |
Category | Factor | Vascular Macrophytes | Bryophytes | No. of Papers | |||
---|---|---|---|---|---|---|---|
Emergent a | Free-Floating b | Rooted Submerged c | Submerged with Floating Leaves d | ||||
Water body morphology | Substrate size | - - | 0 | - | +/- | ++ | 8 |
Water velocity | - - | - - | - | +/- | + | 9 | |
Shade | - - | - - | - - | - - | + + | 5 | |
Depth | ++ ≤ ~0.9 m - - > ~0.9 m | ++ ≤ ~0.9 m - - > ~0.9 m | +/- | ++ ≤ ~0.9 m - - > ~0.9 m | - | 9 | |
Hydroperiod | +/- | +/- | +/- | +/- | No data | 4 | |
Isolation | - | +/- | - | - | No data | 7 | |
Distance from source | - - | - - | - - | - - | No data | 3 | |
Size of water body | + | + + | + + | + + | - | 11 | |
Surrounding land use | Arable | + + | 0 | + | No data | No data | 4 |
Urban | +/- | 0 | + | No data | No data | 2 | |
Woodland | - | - | - | - | No data | 3 | |
Water chemistry | Conductivity | +/- | +/- | +/- | +/- | No data | 10 |
SRP | No data | + | No data | No data | No data | 2 | |
TP | - - | - - | - - | - - | No data | 3 | |
Nitrogen | + + | + | + + | + + | - | 4 | |
pH | - - | - - | - - | - - | No data | 7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Navarro Law, I.; Durance, I.; Benstead, R.; Fryer, M.E.; Brown, C.D. The Influence of Abiotic Factors on the Distribution of Macrophytes in Small Water Bodies in Temperate Ecosystems. Limnol. Rev. 2024, 24, 616-636. https://doi.org/10.3390/limnolrev24040036
Navarro Law I, Durance I, Benstead R, Fryer ME, Brown CD. The Influence of Abiotic Factors on the Distribution of Macrophytes in Small Water Bodies in Temperate Ecosystems. Limnological Review. 2024; 24(4):616-636. https://doi.org/10.3390/limnolrev24040036
Chicago/Turabian StyleNavarro Law, Isabel, Isabelle Durance, Rachel Benstead, Michael E. Fryer, and Colin D. Brown. 2024. "The Influence of Abiotic Factors on the Distribution of Macrophytes in Small Water Bodies in Temperate Ecosystems" Limnological Review 24, no. 4: 616-636. https://doi.org/10.3390/limnolrev24040036
APA StyleNavarro Law, I., Durance, I., Benstead, R., Fryer, M. E., & Brown, C. D. (2024). The Influence of Abiotic Factors on the Distribution of Macrophytes in Small Water Bodies in Temperate Ecosystems. Limnological Review, 24(4), 616-636. https://doi.org/10.3390/limnolrev24040036