Recent Trends in the Application of Photocatalytic Membranes in Removal of Emerging Organic Contaminants in Wastewater
"> Figure 1
<p>Schematic representation of titania stocky junction during UV light excitation and generation of radicals.</p> "> Figure 2
<p>Schematic representation of titania surface plasmon resonance during visible light excitation and generation of radicals.</p> "> Figure 3
<p>Schematic of dye sensitization mechanism resulting in generation of radicals.</p> "> Figure 4
<p>Schematic structure of type I heterojunction showing charge separation and generation of radicals.</p> "> Figure 5
<p>Structure of type II heterojunction showing charge separation and generation of radicals.</p> "> Figure 6
<p>Structure of type III heterojunction showing requirement of large driving force to cause charge separation.</p> "> Figure 7
<p>Schematic representation of surface-immobilized photocatalytic membrane showing modified TiO<sub>2</sub> fixed on the membrane surface.</p> "> Figure 8
<p>Schematic representation of internally immobilized membrane showing modified TiO<sub>2</sub> fixed within membrane matrix.</p> ">
Abstract
:1. Introduction
2. Modification of Photocatalysts
2.1. Doping
2.1.1. Noble Metal Doping
2.1.2. Cation Doping
2.1.3. Anion Doping
2.2. Dye Sensitization
2.3. Construction of Heterojunctions
2.3.1. Type I Heterojunction
2.3.2. Type II Heterojunction
2.3.3. Type III Heterojunction
2.3.4. Z Scheme Heterojunction
3. Synthesis and Fabrication of Immobilized Photocatalytic Membrane
3.1. Phase Inversion
3.2. Dip Coating
3.3. Electrocoating and Electrospraying
3.4. Spin Coating
3.5. Chemical Vapor Deposition
3.6. Vacuum Filtration
3.7. Electrochemical Anodization
4. Types of Immobilized Photocatalytic Membranes
4.1. Surface Immobilized Photocatalytic Membranes
4.2. Internally Immobilized Photocatalytic Membranes
4.3. Self-Photocatalytic Membranes
5. Application of Immobilized Photocatalytic Membranes
6. Factors Determining Performance of Photocatalytic Membranes
6.1. Nature and Quantity of Visible Light-Driven TiO2 Based Photocatalysts
6.2. Concentration and Characteristics of Pollutants
6.3. The Light Source and Its Intensity
6.4. Effects of Solution pH
6.5. Inorganic Ions
6.6. Aeration
7. Challenges and Prospects
- (i)
- Membrane fouling is still a matter of concern. Pollutants accumulate on the membrane surface, reducing its efficiency and requiring frequent cleaning. However, the presence of photocatalytic nanoparticles makes the membranes reactive and reduces the fouling propensity. Studies should focus on tailoring photocatalytic membranes to specific pollutants or groups of pollutants to eliminate fouling and minimize cleaning or replacement. To enhance membrane cleaning and reduce membrane deterioration, there is a need to develop cleaning agents that are effective against foulants but less harmful to the photocatalytic membrane structures.
- (ii)
- Low light utilization in systems using immobilized photocatalytic membranes is a major challenge. Therefore, ensuring uniform light distribution across the membrane surface needs to be addressed to improve overall efficiency. Access to more light enhances the number of generated radicals, which are crucial in the degradation of organic contaminants. To address this, modification of photocatalysis is necessary, for instance, to reduce the bandgap and increase the absorption and utilization of visible light. Additionally, the design of the photocatalytic membrane cells needs to be improved to increase the amount of light reaching the surface of the photocatalytic membrane to irradiate the immobilized photocatalysts and generate degradation radicals.
- (iii)
- Deterioration of the photocatalytic membrane over time or under prolonged exposure to light can diminish its effectiveness. This can also be caused by immobilized titania leaching, radical degradation of the membrane polymeric chains, and photodegradation of the membrane polymeric chains by UV light. This weakens the polymeric membrane mechanically, dramatically reducing its lifespan and reusability. During turbulent operation, titania-based nanoparticles detach, resulting in a lower number of nanoparticles that carry out degradation and reducing the ability to degrade organic contaminants. Radicals are highly reactive and indiscriminate and will, therefore, attack the polymeric chains of the base membrane. This lowers the mechanical strength of the membrane in prolonged use. Additionally, irradiation of the membrane surface has a negative effect, with UV rays photodegrading the membrane and weakening it further. More studies are required to develop new membrane materials that promote firmer immobilization of visible light-driven titania and resist membrane radical degradation and UV light photodegradation. This will prolong the lifespan of the membranes and enhance their reusability.
- (iv)
- Scalability of operation is another issue. Most studies reviewed have been performed at the laboratory scale, and very few at the pilot scale. There is a need to fast-track scale-up studies to develop large-scale applications at industrial scale and serve large territories. This can be attained though modeling and simulation to predict the economic cost and residence time for degrading different pollutants.
- (v)
- The cost-effectiveness of photocatalytic membrane processes is another pertinent aspect. For instance, high production costs for advanced materials and fabrication techniques can limit the economic viability of photocatalytic membranes. However, with recent advances, the costs of commercial membranes have significantly decreased. Furthermore, the use of visible light-driven photocatalysts has enabled the use of natural sunlight, which is abundant especially in the tropics, thereby reducing reliance on UV lamps that require electricity.
8. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nelson, K.; Mecha, A.C.; Kumar, A. Fouling reduction and flux enhancement of visible light driven nitrogen doped titanium dioxide-polyvinyl difluoride photocatalytic membrane: Modelling and optimization of multiple variables. React. Kinet. Mech. Catal. 2024, 2024, 1–16. [Google Scholar] [CrossRef]
- Musie, W.; Gonfa, G. Fresh water resource, scarcity, water salinity challenges and possible remedies: A review. Heliyon 2023, 9, e18685. [Google Scholar] [CrossRef]
- Mishra, S.; Kumar, R.; Kumar, M. Use of treated sewage or wastewater as an irrigation water for agricultural purposes- Environmental, health, and economic impacts. Total Environ. Res. Themes 2023, 6, 100051. [Google Scholar] [CrossRef]
- Samal, K.; Mahapatra, S.; Hibzur Ali, M. Pharmaceutical wastewater as Emerging Contaminants (EC): Treatment technologies, impact on environment and human health. Energy Nexus 2022, 6, 100076. [Google Scholar] [CrossRef]
- Singh, J.; Gupta, P.; Das, A. Dyes from Textile Industry Wastewater as Emerging Contaminants in Agricultural Fields BT—Sustainable Agriculture Reviews 50: Emerging Contaminants in Agriculture; Kumar Singh, V., Singh, R., Lichtfouse, E., Eds.; Springer International Publishing: Cham, Switzerland, 2021; pp. 109–129. ISBN 978-3-030-63249-6. [Google Scholar]
- Rajput, P.; Thakur, A.; Devi, P. Chapter 5—Emerging agrochemicals contaminants: Current status, challenges, and technological solutions. In Agrochemicals Detection, Treatment and Remediation; Butterworth-Heinemann: Oxford, UK, 2020; pp. 117–142. ISBN 978-0-08-103017-2. [Google Scholar]
- Unnikrishan, A.; Khalid, N.K.; Rayaroth, M.P.; Thomas, S.; Nazim, A.; Aravindakumar, C.T.; Aravind, U.K. Occurrence and distribution of steroid hormones (estrogen) and other contaminants of emerging concern in a south indian water body. Chemosphere 2024, 351, 141124. [Google Scholar] [CrossRef] [PubMed]
- Kusumlata; Ambade, B.; Kumar, A.; Gautam, S. Sustainable Solutions: Reviewing the Future of Textile Dye Contaminant Removal with Emerging Biological Treatments. Limnol. Rev. 2024, 24, 126–149. [Google Scholar] [CrossRef]
- Osuoha, J.O.; Anyanwu, B.O.; Ejileugha, C. Pharmaceuticals and personal care products as emerging contaminants: Need for combined treatment strategy. J. Hazard. Mater. Adv. 2023, 9, 100206. [Google Scholar] [CrossRef]
- Martín de Vidales, M.J.; Prieto, R.; Galán-Lucarelli, G.; Atanes-Sánchez, E.; Fernández-Martínez, F. Removal of contaminants of emerging concern by photocatalysis with a highly ordered TiO2 nanotubular array catalyst. Catal. Today 2023, 413–415, 113995. [Google Scholar] [CrossRef]
- Wang, F.; Xiang, L.; Sze-Yin Leung, K.; Elsner, M.; Zhang, Y.; Guo, Y.; Pan, B.; Sun, H.; An, T.; Ying, G.; et al. Emerging contaminants: A One Health perspective. Innovation 2024, 5, 100612. [Google Scholar] [CrossRef] [PubMed]
- Sairam, M.; Maitra, S.; Praharaj, S.; Nath, S.; Shankar, T.; Sahoo, U.; Santosh, D.T.; Sagar, L.; Panda, M.; Shanthi Priya, G.; et al. An Insight into the Consequences of Emerging Contaminants in Soil and Water and Plant Responses BT—Emerging Contaminants and Plants: Interactions, Adaptations and Remediation Technologies; Aftab, T., Ed.; Springer International Publishing: Cham, Switzerland, 2023; pp. 1–27. ISBN 978-3-031-22269-6. [Google Scholar]
- Abuwatfa, W.H.; AlSawaftah, N.; Darwish, N.; Pitt, W.G.; Husseini, G.A. A Review on Membrane Fouling Prediction Using Artificial Neural Networks (ANNs). Membranes 2023, 13, 685. [Google Scholar] [CrossRef]
- Cifuentes-Cabezas, M.; Bohórquez-Zurita, J.L.; Gil-Herrero, S.; Vincent-Vela, M.C.; Mendoza-Roca, J.A.; Álvarez-Blanco, S. Deep Study on Fouling Modelling of Ultrafiltration Membranes Used for OMW Treatment: Comparison Between Semi-empirical Models, Response Surface, and Artificial Neural Networks. Food Bioprocess Technol. 2023, 16, 2126–2146. [Google Scholar] [CrossRef]
- Gahrouei, A.E.; Vakili, S.; Zandifar, A.; Pourebrahimi, S. From wastewater to clean water: Recent advances on the removal of metronidazole, ciprofloxacin, and sulfamethoxazole antibiotics from water through adsorption and advanced oxidation processes (AOPs). Environ. Res. 2024, 252, 119029. [Google Scholar] [CrossRef] [PubMed]
- Pandis, P.K.; Kalogirou, C.; Kanellou, E.; Vaitsis, C.; Savvidou, M.G.; Sourkouni, G.; Zorpas, A.A.; Argirusis, C. Key Points of Advanced Oxidation Processes (AOPs) for Wastewater, Organic Pollutants and Pharmaceutical Waste Treatment: A Mini Review. ChemEngineering 2022, 6, 8. [Google Scholar] [CrossRef]
- Hao, S.; Zhao, X.; Cheng, Q.; Xing, Y.; Ma, W.; Wang, X.; Zhao, G.; Xu, X. A Mini Review of the Preparation and Photocatalytic Properties of Two-Dimensional Materials. Front. Chem. 2020, 8, 582146. [Google Scholar] [CrossRef] [PubMed]
- Kumari, H.; Sonia; Suman, S.; Ranga, R.; Chahal, S.; Devi, S.; Sharma, S.; Kumar, S.; Kumar, P.; Kumar, S.; et al. A Review on Photocatalysis Used For Wastewater Treatment: Dye Degradation. Water Air Soil Pollut. 2023, 234, 349. [Google Scholar] [CrossRef] [PubMed]
- Xue, Y.; Kamali, M.; Zhang, X.; Askari, N.; De Preter, C.; Appels, L.; Dewil, R. Immobilization of photocatalytic materials for (waste)water treatment using 3D printing technology—Advances and challenges. Environ. Pollut. 2023, 316, 120549. [Google Scholar] [CrossRef] [PubMed]
- Dharma, H.N.C.; Jaafar, J.; Widiastuti, N.; Matsuyama, H.; Rajabsadeh, S.; Othman, M.H.D.; Rahman, M.A.; Jafri, N.N.M.; Suhaimin, N.S.; Nasir, A.M.; et al. A Review of Titanium Dioxide (TiO2)-Based Photocatalyst for Oilfield-Produced Water Treatment. Membranes 2022, 12, 345. [Google Scholar] [CrossRef] [PubMed]
- Anucha, C.B.; Altin, I.; Bacaksiz, E.; Stathopoulos, V.N. Titanium dioxide (TiO2)-based photocatalyst materials activity enhancement for contaminants of emerging concern (CECs) degradation: In the light of modification strategies. Chem. Eng. J. Adv. 2022, 10, 100262. [Google Scholar] [CrossRef]
- Wang, C.; Ni, H.; Dai, J.; Liu, T.; Wu, Z.; Chen, X.; Dong, Z.; Qian, J.; Wu, Z. Comparison of highly active Type-I and Type-II heterojunction photocatalytic composites synthesized by electrospinning for humic acid degradation. Chem. Phys. Lett. 2022, 803, 139815. [Google Scholar] [CrossRef]
- Argurio, P.; Fontananova, E.; Molinari, R.; Drioli, E. Photocatalytic Membranes in Photocatalytic Membrane Reactors. Processes 2018, 6, 162. [Google Scholar] [CrossRef]
- Aoudjit, L.; Salazar, H.; Zioui, D.; Sebti, A.; Martins, P.M.; Lanceros-Mendez, S. Reusable Ag@TiO2-Based Photocatalytic Nanocomposite Membranes for Solar Degradation of Contaminants of Emerging Concern. Polymers 2021, 13, 3718. [Google Scholar] [CrossRef] [PubMed]
- Bhattacharyya, S.; Algieri, C.; Davoli, M.; Calabrò, V.; Chakraborty, S. Polymer-based TiO2 membranes: An efficient route for recalcitrant dye degradation. Chem. Eng. Res. Des. 2023, 193, 641–648. [Google Scholar] [CrossRef]
- Molinari, R.; Severino, A.; Lavorato, C.; Argurio, P. Which Configuration of Photocatalytic Membrane Reactors Has a Major Potential to Be Used at an Industrial Level in Tertiary Sewage Wastewater Treatment? Catalysts 2023, 13, 1204. [Google Scholar] [CrossRef]
- Afkari, M.; Masoudpanah, S.M.; Hasheminiasari, M.; Alamolhoda, S. Effects of iron oxide contents on photocatalytic performance of nanocomposites based on g-C3N4. Sci. Rep. 2023, 13, 6203. [Google Scholar] [CrossRef] [PubMed]
- Kumar, N.; Yadav, S.; Mittal, A.; Kumari, K. 15—Photocatalysis by zinc oxide-based nanomaterials. In Nanostructured Zinc Oxide; Awasthi, K., Ed.; Elsevier: Amsterdam, The Netherlands, 2021; pp. 393–457. ISBN 978-0-12-818900-9. [Google Scholar]
- Lange, T.; Reichenberger, S.; Ristig, S.; Rohe, M.; Strunk, J.; Barcikowski, S.; Schlögl, R. Zinc sulfide for photocatalysis: White angel or black sheep? Prog. Mater. Sci. 2022, 124, 100865. [Google Scholar] [CrossRef]
- Prakalathan, D.; Kavitha, G.; Dinesh Kumar, G. Development of copper oxide-based photocatalysts from copper waste for visible light-driven Congo red degradation. J. Mater. Sci. Mater. Electron. 2024, 35, 1561. [Google Scholar] [CrossRef]
- Zheng, X.; Liu, Y.; Yang, Y.; Song, Y.; Deng, P.; Li, J.; Liu, W.; Shen, Y.; Tian, X. Recent Advances in Cadmium Sulfide-Based Photocatalysts for Photocatalytic Hydrogen Evolution. Renewables 2023, 1, 39–56. [Google Scholar] [CrossRef]
- Gu, X.; Lin, S.; Qi, K.; Yan, Y.; Li, R.; Popkov, V.; Almjasheva, O. Application of tungsten oxide and its composites in photocatalysis. Sep. Purif. Technol. 2024, 345, 127299. [Google Scholar] [CrossRef]
- Akbari, A.; Sabouri, Z.; Hosseini, H.A.; Hashemzadeh, A.; Khatami, M.; Darroudi, M. Effect of nickel oxide nanoparticles as a photocatalyst in dyes degradation and evaluation of effective parameters in their removal from aqueous environments. Inorg. Chem. Commun. 2020, 115, 107867. [Google Scholar] [CrossRef]
- Krakowiak, R.; Musial, J.; Bakun, P.; Spychała, M.; Czarczynska-Goslinska, B.; Mlynarczyk, D.T.; Koczorowski, T.; Sobotta, L.; Stanisz, B.; Goslinski, T. Titanium Dioxide-Based Photocatalysts for Degradation of Emerging Contaminants including Pharmaceutical Pollutants. Appl. Sci. 2021, 11, 8674. [Google Scholar] [CrossRef]
- Sapkal, R.T.; Shinde, S.S.; Waghmode, T.R.; Govindwar, S.P.; Rajpure, K.Y.; Bhosale, C.H. Photo-corrosion inhibition and photoactivity enhancement with tailored zinc oxide thin films. J. Photochem. Photobiol. B Biol. 2012, 110, 15–21. [Google Scholar] [CrossRef] [PubMed]
- Hasija, V.; Raizada, P.; Thakur, V.K.; Parwaz Khan, A.A.; Asiri, A.M.; Singh, P. An overview of strategies for enhancement in photocatalytic oxidative ability of MoS2 for water purification. J. Environ. Chem. Eng. 2020, 8, 104307. [Google Scholar] [CrossRef]
- Kumar, S.G.; Kavitha, R.; Nithya, P.M. Tailoring the CdS surface structure for photocatalytic applications. J. Environ. Chem. Eng. 2020, 8, 104313. [Google Scholar] [CrossRef]
- Das, S.; Chowdhury, A. Recent advancements of g-C3N4-based magnetic photocatalysts towards the degradation of organic pollutants: A review. Nanotechnology 2022, 33, 72004. [Google Scholar] [CrossRef]
- Mishra, S.; Sundaram, B. Efficacy and challenges of carbon nanotube in wastewater and water treatment. Environ. Nanotechnol. Monit. Manag. 2023, 19, 100764. [Google Scholar] [CrossRef]
- Sharon, M.; Modi, F.; Sharon, M. Titania based nanocomposites as a photocatalyst: A review. AIMS Mater. Sci. 2016, 3, 1236–1254. [Google Scholar] [CrossRef]
- Meda, U.S.; Vora, K.; Athreya, Y.; Mandi, U.A. Titanium dioxide based heterogeneous and heterojunction photocatalysts for pollution control applications in the construction industry. Process Saf. Environ. Prot. 2022, 161, 771–787. [Google Scholar] [CrossRef]
- Goulart, S.; Jaramillo Nieves, L.J.; Dal Bó, A.G.; Bernardin, A.M. Sensitization of TiO2 nanoparticles with natural dyes extracts for photocatalytic activity under visible light. Dye. Pigment. 2020, 182, 108654. [Google Scholar] [CrossRef]
- Kang, X.; Liu, S.; Dai, Z.; He, Y.; Song, X.; Tan, Z. Titanium Dioxide: From Engineering to Applications. Catalysts 2019, 9, 191. [Google Scholar] [CrossRef]
- Sadia, M.; Naz, R.; Khan, J.; Zahoor, M.; Ullah, R.; Khan, R.; Naz, S.; Almoallim, H.S.; Alharbi, S.A. Metal doped titania nanoparticles as efficient photocatalyst for dyes degradation. J. King Saud Univ. Sci. 2021, 33, 101312. [Google Scholar] [CrossRef]
- Wang, Y.-Y.; Chen, Y.-X.; Barakat, T.; Zeng, Y.-J.; Liu, J.; Siffert, S.; Su, B.-L. Recent advances in non-metal doped titania for solar-driven photocatalytic/photoelectrochemical water-splitting. J. Energy Chem. 2022, 66, 529–559. [Google Scholar] [CrossRef]
- Akhter, P.; Arshad, A.; Saleem, A.; Hussain, M. Recent Development in Non-Metal-Doped Titanium Dioxide Photocatalysts for Different Dyes Degradation and the Study of Their Strategic Factors: A Review. Catalysts 2022, 12, 1331. [Google Scholar] [CrossRef]
- Sescu, A.M.; Favier, L.; Lutic, D.; Soto-Donoso, N.; Ciobanu, G.; Harja, M. TiO2 Doped with Noble Metals as an Efficient Solution for the Photodegradation of Hazardous Organic Water Pollutants at Ambient Conditions. Water 2021, 13, 19. [Google Scholar] [CrossRef]
- Moradi, A.; Kazemeini, M.; Hosseinpour, V.; Pourebrahimi, S. Efficient degradation of naproxen in wastewater using Ag-deposited ZnO nanoparticles anchored on a house-of-cards-like MFI-type zeolite: Preparation and physicochemical evaluations of the photocatalyst. J. Water Process Eng. 2024, 60, 105155. [Google Scholar] [CrossRef]
- Vanlalhmingmawia, C.; Lee, S.M.; Tiwari, D. Plasmonic noble metal doped titanium dioxide nanocomposites: Newer and exciting materials in the remediation of water contaminated with micropollutants. J. Water Process Eng. 2023, 51, 103360. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, Y.; Li, W.; Yang, Q.; Hou, Q.; Wei, L.; Liu, L.; Huang, F.; Ju, M. Enhancement of photocatalytic performance with the use of noble-metal-decorated TiO2 nanocrystals as highly active catalysts for aerobic oxidation under visible-light irradiation. Appl. Catal. B Environ. 2017, 210, 352–367. [Google Scholar] [CrossRef]
- Rodríguez-Álvarez, A.; Frausto-Reyes, C.; Sandoval-González, A.; Pérez-Herrera, G.A.; Silva-Martínez, S.; Pineda-Arellano, C.A. Enhancement of titanium dioxide microspheres doped with transition metals: Characterization and photocatalytic evaluation. MRS Adv. 2022, 7, 1155–1160. [Google Scholar] [CrossRef]
- Ahmad, A.A.; Alakhras, L.A.; Al-Bataineh, Q.M.; Telfah, A. Impact of metal doping on the physical characteristics of anatase titanium dioxide (TiO2) films. J. Mater. Sci. Mater. Electron. 2023, 34, 1552. [Google Scholar] [CrossRef]
- Amorós-Pérez, A.; Cano-Casanova, L.; Castillo-Deltell, A.; Lillo-Ródenas, M.Á.; Román-Martínez, M.D.C. TiO2 Modification with Transition Metallic Species (Cr, Co, Ni, and Cu) for Photocatalytic Abatement of Acetic Acid in Liquid Phase and Propene in Gas Phase. Materials 2018, 12, 40. [Google Scholar] [CrossRef]
- Samsudin, E.M.; Abd Hamid, S.B. Effect of band gap engineering in anionic-doped TiO2 photocatalyst. Appl. Surf. Sci. 2017, 391, 326–336. [Google Scholar] [CrossRef]
- Pelaez, M.; Nolan, N.T.; Pillai, S.C.; Seery, M.K.; Falaras, P.; Kontos, A.G.; Dunlop, P.S.M.; Hamilton, J.W.J.; Byrne, J.A.; O’Shea, K.; et al. A review on the visible light active titanium dioxide photocatalysts for environmental applications. Appl. Catal. B Environ. 2012, 125, 331–349. [Google Scholar] [CrossRef]
- Blanco-Galvez, J.; Fernández-Ibáñez, P.; Malato-Rodríguez, S. Solar Photocatalytic Detoxification and Disinfection of Water: Recent Overview. J. Sol. Energy Eng. 2006, 129, 4–15. [Google Scholar] [CrossRef]
- Czoska, A.M.; Livraghi, S.; Chiesa, M.; Giamello, E.; Agnoli, S.; Granozzi, G.; Finazzi, E.; Valentin, C.D.; Pacchioni, G. The Nature of Defects in Fluorine-Doped TiO2. J. Phys. Chem. C 2008, 112, 8951–8956. [Google Scholar] [CrossRef]
- Al-Mamun, M.R.; Kader, S.; Islam, M.S.; Khan, M.Z.H. Photocatalytic activity improvement and application of UV-TiO2 photocatalysis in textile wastewater treatment: A review. J. Environ. Chem. Eng. 2019, 7, 103248. [Google Scholar] [CrossRef]
- Humayun, M.; Raziq, F.; Khan, A.; Luo, W. Modification strategies of TiO2 for potential applications in photocatalysis: A critical review. Green Chem. Lett. Rev. 2018, 11, 86–102. [Google Scholar] [CrossRef]
- Gonuguntla, S.; Kamesh, R.; Pal, U.; Chatterjee, D. Dye sensitization of TiO2 relevant to photocatalytic hydrogen generation: Current research trends and prospects. J. Photochem. Photobiol. C Photochem. Rev. 2023, 57, 100621. [Google Scholar] [CrossRef]
- Nishikiori, H.; Kageshima, Y.; Sakurahara, M.; Noguchi, S.; Teshima, K. Photocatalytic degradation of organic dyes using titania modified with adsorbent nanolayers. Res. Chem. Intermed. 2024, 50, 6001–6015. [Google Scholar] [CrossRef]
- Qiao, S.; Di, M.; Jiang, J.-X.; Han, B.-H. Conjugated porous polymers for photocatalysis: The road from catalytic mechanism, molecular structure to advanced applications. EnergyChem 2022, 4, 100094. [Google Scholar] [CrossRef]
- Alam, N.; Rehman, F.; Sohail, M.; Mumtaz, A. Efficient charge separation and transportation using 1D iron-sulfide@titania heterojunctions as photoanodes for improved interface stability and photoelectrochemical activity to produce hydrogen. New J. Chem. 2024, 48, 3998–4008. [Google Scholar] [CrossRef]
- Arotiba, O.A.; Orimolade, B.O.; Koiki, B.A. Visible light–driven photoelectrocatalytic semiconductor heterojunction anodes for water treatment applications. Curr. Opin. Electrochem. 2020, 22, 25–34. [Google Scholar] [CrossRef]
- Spilarewicz, K.; Urbanek, K.; Jakimińska, A.; Macyk, W. ZnFe2O4/TiO2 composites with type-I heterojunction for photocatalytic reduction of CO2. J. CO2 Util. 2023, 75, 102574. [Google Scholar] [CrossRef]
- Challagulla, S.; Nagarjuna, R.; Ganesan, R.; Roy, S. Acrylate-based Polymerizable Sol–Gel Synthesis of Magnetically Recoverable TiO2 Supported Fe3O4 for Cr(VI) Photoreduction in Aerobic Atmosphere. ACS Sustain. Chem. Eng. 2016, 4, 974–982. [Google Scholar] [CrossRef]
- Cao, J.; Zhang, J.; Guo, W.; Chen, H.; Li, J.; Jing, D.; Luo, B.; Ma, L. A Type-I Heterojunction by Anchoring Ultrafine Cu2O on Defective TiO2 Framework for Efficient Photocatalytic H2 Production. Ind. Eng. Chem. Res. 2023, 62, 1310–1321. [Google Scholar] [CrossRef]
- Li, C.; Sun, H.; Jin, H.; Li, W.; Liu, J.L.; Bashir, S. Performance of ferroelectric visible light type II Ag10Si4O13/TiO2 heterojunction photocatalyst. Catal. Today 2022, 400–401, 146–158. [Google Scholar] [CrossRef]
- Luo, X.; Ke, Y.; Yu, L.; Wang, Y.; Homewood, K.P.; Chen, X.; Gao, Y. Tandem CdS/TiO2(B) nanosheet photocatalysts for enhanced H2 evolution. Appl. Surf. Sci. 2020, 515, 145970. [Google Scholar] [CrossRef]
- Kshirsagar, A.S.; Khanna, P.K. CuSbSe2/TiO2: Novel type-II heterojunction nano-photocatalyst. Mater. Chem. Front. 2019, 3, 437–449. [Google Scholar] [CrossRef]
- Wang, Y.; Fiaz, M.; Kim, J.; Carl, N.; Kim, Y.K. Kinetic Evidence for Type-II Heterojunction and Z-Scheme Interactions in g-C3N4/TiO2 Nanotube-Based Photocatalysts in Photocatalytic Hydrogen Evolution. ACS Appl. Energy Mater. 2023, 6, 5197–5206. [Google Scholar] [CrossRef]
- Yang, N.; He, T.; Chen, X.; He, Y.; Zhou, T.; Zhang, G.; Liu, Q. TiO2-based heterojunctions for photocatalytic hydrogen evolution reaction. Microstructures 2024, 4, 2024042. [Google Scholar] [CrossRef]
- Oad, N.; Chandra, P.; Mohammad, A.; Tripathi, B.; Yoon, T. MoS2-based hetero-nanostructures for photocatalytic, photoelectrocatalytic and piezocatalytic remediation of hazardous pharmaceuticals. J. Environ. Chem. Eng. 2023, 11, 109604. [Google Scholar] [CrossRef]
- Dai, Y.; Yuan, H.; Li, J.; Su, Q.; Yi, Q.; Zhang, Y. Direct Z-scheme P-TiO2/g-C3N4 heterojunction for the photocatalytic degradation of sulfa antibiotics. RSC Adv. 2023, 13, 5957–5969. [Google Scholar] [CrossRef]
- Abdel-Azim, S.M.; El-Desouki, D.S.; Mady, A.H.; Aman, D. Construction of Novel Z-scheme Heterojunction in ZnFe2O4/P25 @ MOF-5 Nanocomposite from Plastic Waste for Efficient Photodegradation of Aqueous BTX Under Visible Light. J. Inorg. Organomet. Polym. Mater. 2024, 34, 1776–1791. [Google Scholar] [CrossRef]
- Sewnet, A.; Abebe, M.; Asaithambi, P.; Alemayehu, E. Visible-Light-Driven g-C3N4/TiO2 Based Heterojunction Nanocomposites for Photocatalytic Degradation of Organic Dyes in Wastewater: A Review. Air Soil Water Res. 2022, 15, 1–23. [Google Scholar] [CrossRef]
- Hołda, A.K.; Vankelecom, I.F.J. Understanding and guiding the phase inversion process for synthesis of solvent resistant nanofiltration membranes. J. Appl. Polym. Sci. 2015, 132, 1–17. [Google Scholar] [CrossRef]
- Basko, A.; Lebedeva, T.; Yurov, M.; Ilyasova, A.; Elyashevich, G.; Lavrentyev, V.; Kalmykov, D.; Volkov, A.; Pochivalov, K. Mechanism of PVDF Membrane Formation by NIPS Revisited: Effect of Precipitation Bath Nature and Polymer–Solvent Affinity. Polymers 2023, 15, 4307. [Google Scholar] [CrossRef] [PubMed]
- Kahrs, C.; Schwellenbach, J. Membrane formation via non-solvent induced phase separation using sustainable solvents: A comparative study. Polymer 2020, 186, 122071. [Google Scholar] [CrossRef]
- Figoli, A. Thermally Induced Phase Separation (TIPS) for Membrane Preparation BT—Encyclopedia of Membranes; Drioli, E., Giorno, L., Eds.; Springer Berlin Heidelberg: Berlin/Heidelberg, Germany, 2016; pp. 1–2. ISBN 978-3-642-40872-4. [Google Scholar]
- Sun, Z.; Yang, Z.; Wang, Z.; Li, C. The role of pre-evaporation in the preparation process of EVOH ultrafiltration membranes via TIPS. J. Memb. Sci. 2018, 563, 238–246. [Google Scholar] [CrossRef]
- Hudaib, B.; Al-Qodah, Z.; Abu-Zurayk, R.; Waleed, H.; Omar, W. Fabrication of blended cellulose acetate/poly-pyrrole ultrafiltration membranes for crude oil wastewater separation. Case Stud. Chem. Environ. Eng. 2024, 9, 100692. [Google Scholar] [CrossRef]
- Purkait, M.K.; Sinha, M.K.; Mondal, P.; Singh, R. Chapter 1—Introduction to Membranes. In Stimuli Responsive Polymeric Membranes; Purkait, M.K., Sinha, M.K., Mondal, P., Singh, R., Eds.; Interface Science and Technology; Elsevier: Amsterdam, The Netherlands, 2018; Volume 25, pp. 1–37. [Google Scholar]
- Khurram, R.; Javed, A.; Ke, R.; Lena, C.; Wang, Z. Visible Light-Driven GO/2-CA Nano-Photocatalytic Membranes: Assessment of Photocatalytic Response, Antifouling Character and Self-Cleaning Ability. Nanomaterials 2021, 11, 2021. [Google Scholar] [CrossRef]
- Mousa, S.A.; Abdallah, H.; Khairy, S.A. Low-cost photocatalytic membrane modified with green heterojunction TiO2/ZnO nanoparticles prepared from waste. Sci. Rep. 2023, 13, 22150. [Google Scholar] [CrossRef] [PubMed]
- Guastaferro, M.; Vaiano, V.; Baldino, L.; Cardea, S.; Reverchon, E. Production of Photocatalytic Membranes by Supercritical Phase Inversion for the Removal of Antibiotics from Waste-Water. Chem. Eng. Trans. 2024, 110, 7–12. [Google Scholar] [CrossRef]
- Bortot Coelho, F.E.; Deemter, D.; Candelario, V.M.; Boffa, V.; Malato, S.; Magnacca, G. Development of a photocatalytic zirconia-titania ultrafiltration membrane with anti-fouling and self-cleaning properties. J. Environ. Chem. Eng. 2021, 9, 106671. [Google Scholar] [CrossRef]
- Jafri, N.N.M.; Jaafar, J. 5—Dip coating technique. In Elsevier Series on Advanced Ceramic Materials; Othman, M.H.D., Rahman, M.A., Matsuura, T., Adam, M.R., Makhtar, S.N.N.M., Eds.; Elsevier: Amsterdam, The Netherlands, 2024; pp. 101–127. ISBN 978-0-323-95418-1. [Google Scholar]
- Shareef, U.; Othman, M.H.D.; Ismail, A.F.; Jilani, A. Facile removal of bisphenol A from water through novel Ag-doped TiO2 photocatalytic hollow fiber ceramic membrane. J. Aust. Ceram. Soc. 2020, 56, 29–39. [Google Scholar] [CrossRef]
- Tang, X.; Yan, X. Dip-coating for fibrous materials: Mechanism, methods and applications. J. Sol-Gel Sci. Technol. 2017, 81, 378–404. [Google Scholar] [CrossRef]
- Esfahani, M.R.; Aktij, S.A.; Dabaghian, Z.; Firouzjaei, M.D.; Rahimpour, A.; Eke, J.; Escobar, I.C.; Abolhassani, M.; Greenlee, L.F.; Esfahani, A.R.; et al. Nanocomposite membranes for water separation and purification: Fabrication, modification, and applications. Sep. Purif. Technol. 2019, 213, 465–499. [Google Scholar] [CrossRef]
- Nelson, K.; Mecha, A.C.; Kumar, A. Characterization of novel solar based nitrogen doped titanium dioxide photcatalytic membrane for wastewater treatment. Heliyon 2024, 10, e29806. [Google Scholar] [CrossRef] [PubMed]
- Yuan, B.; An, Q.; Xiao, Z.; Hao, J.; Zhu, K.; Zhai, S.; Ha, C.-S. Polyethyleneimine-integrated composite sorbents for emerging pollutants remediation in water: Cross-linking strategy and tailored affinity. Resour. Chem. Mater. 2023, 2, 231–244. [Google Scholar] [CrossRef]
- Mohamad Esham, M.I.; Ahmad, A.L.; Othman, M.H.D. Fabrication, Optimization, and Performance of a TiO2 Coated Bentonite Membrane for Produced Water Treatment: Effect of Grafting Time. Membranes 2021, 11, 739. [Google Scholar] [CrossRef] [PubMed]
- Kusworo, T.D.; Aryanti, N.; Inamullah, A.M.A.; Astuti, D.A.P.; Utomo, D.P. Advanced photocatalytic membrane GO-NiFe@SiO2/PVDF for efficient decontamination of synthetic dyes in batik wastewater with superior antifouling features. J. Water Process Eng. 2024, 66, 105953. [Google Scholar] [CrossRef]
- Covaliu-Mierlă, C.I.; Matei, E.; Stoian, O.; Covaliu, L.; Constandache, A.-C.; Iovu, H.; Paraschiv, G. TiO2-Based Nanofibrous Membranes for Environmental Protection. Membranes 2022, 12, 236. [Google Scholar] [CrossRef]
- Yar, A.; Haspulat, B.; Üstün, T.; Eskizeybek, V.; Avcı, A.; Kamış, H.; Achour, S. Electrospun TiO2/ZnO/PAN hybrid nanofiber membranes with efficient photocatalytic activity. RSC Adv. 2017, 7, 29806–29814. [Google Scholar] [CrossRef]
- Ramasundaram, S.; Son, A.; Seid, M.G.; Shim, S.; Lee, S.H.; Chung, Y.C.; Lee, C.; Lee, J.; Hong, S.W. Photocatalytic applications of paper-like poly(vinylidene fluoride)–titanium dioxide hybrids fabricated using a combination of electrospinning and electrospraying. J. Hazard. Mater. 2015, 285, 267–276. [Google Scholar] [CrossRef] [PubMed]
- Xie, R.; Zhang, L.; Liu, H.; Xu, H.; Zhong, Y.; Sui, X.; Mao, Z. Construction of CQDs-Bi20TiO32/PAN electrospun fiber membranes and their photocatalytic activity for isoproturon degradation under visible light. Mater. Res. Bull. 2017, 94, 7–14. [Google Scholar] [CrossRef]
- Wan, P.; Zhang, Z.; Deng, B. Photocatalytic Polysulfone Hollow Fiber Membrane with Self-Cleaning and Antifouling Property for Water Treatment. Ind. Eng. Chem. Res. 2019, 58, 3339–3348. [Google Scholar] [CrossRef]
- Makhlouf, A.S.H. 1—Current and advanced coating technologies for industrial applications. In Nanocoatings and Ultra-Thin Films; Makhlouf, A.S.H., Tiginyanu, I., Eds.; Woodhead Publishing Series in Metals and Surface Engineering; Woodhead Publishing: Sawston, UK, 2011; pp. 3–23. ISBN 978-1-84569-812-6. [Google Scholar]
- Zakria, H.S.; Othman, M.H.D.; Kamaludin, R.; Sheikh Abdul Kadir, S.H.; Kurniawan, T.A.; Jilani, A. Immobilization techniques of a photocatalyst into and onto a polymer membrane for photocatalytic activity. RSC Adv. 2021, 11, 6985–7014. [Google Scholar] [CrossRef] [PubMed]
- Yan, Y.; Li, J.; Liu, Q.; Zhou, P. Evaporation Effect on Thickness Distribution for Spin-Coated Films on Rectangular and Circular Substrates. Coatings 2021, 11, 1322. [Google Scholar] [CrossRef]
- De Filpo, G.; Pantuso, E.; Armentano, K.; Formoso, P.; Di Profio, G.; Poerio, T.; Fontananova, E.; Meringolo, C.; Mashin, A.I.; Nicoletta, F.P. Chemical Vapor Deposition of Photocatalyst Nanoparticles on PVDF Membranes for Advanced Oxidation Processes. Membranes 2018, 8, 35. [Google Scholar] [CrossRef]
- Oyama, S.T.; Aono, H.; Takagaki, A.; Sugawara, T.; Kikuchi, R. Synthesis of Silica Membranes by Chemical Vapor Deposition Using a Dimethyldimethoxysilane Precursor. Membranes 2020, 10, 50. [Google Scholar] [CrossRef] [PubMed]
- Riaz, S.; Park, S.-J. An overview of TiO2-based photocatalytic membrane reactors for water and wastewater treatments. J. Ind. Eng. Chem. 2020, 84, 23–41. [Google Scholar] [CrossRef]
- Ali, I.; Kim, S.-R.; Park, K.; Kim, J.-O. One-step electrochemical synthesis of graphene oxide-TiO2 nanotubes for improved visible light activity. Opt. Mater. Express 2017, 7, 1535–1546. [Google Scholar] [CrossRef]
- Jarosz, M.; Pawlik, A.; Kapusta-Kołodziej, J.; Jaskuła, M.; Sulka, G.D. Effect of the previous usage of electrolyte on growth of anodic titanium dioxide (ATO) in a glycerol-based electrolyte. Electrochim. Acta 2014, 136, 412–421. [Google Scholar] [CrossRef]
- Chernozem, R.V.; Surmeneva, M.A.; Surmenev, R.A. Influence of Anodization Time and Voltage on the Parameters of TiO2 Nanotubes. IOP Conf. Ser. Mater. Sci. Eng. 2016, 116, 12025. [Google Scholar] [CrossRef]
- Muzakir, M.M.; Zainal, Z.; Lim, H.N.; Abdullah, A.H.; Bahrudin, N.N.; Ali, M.S. Electrochemically Reduced Titania Nanotube Synthesized from Glycerol-Based Electrolyte as Supercapacitor Electrode. Energies 2020, 13, 2767. [Google Scholar] [CrossRef]
- Li, Y.; Ma, Q.; Han, J.; Ji, L.; Wang, J.; Chen, J.; Wang, Y. Controllable preparation, growth mechanism and the properties research of TiO2 nanotube arrays. Appl. Surf. Sci. 2014, 297, 103–108. [Google Scholar] [CrossRef]
- Heng, Z.W.; Chong, W.C.; Pang, Y.L.; Sim, L.C.; Koo, C.H. Novel visible-light responsive NCQDs-TiO2/PAA/PES photocatalytic membrane with enhanced antifouling properties and self-cleaning performance. J. Environ. Chem. Eng. 2021, 9, 105388. [Google Scholar] [CrossRef]
- Romay, M.; Diban, N.; Rivero, M.J.; Urtiaga, A.; Ortiz, I. Critical Issues and Guidelines to Improve the Performance of Photocatalytic Polymeric Membranes. Catalysts 2020, 10, 570. [Google Scholar] [CrossRef]
- Zhang, J.; Miao, Y.; Huo, Y.; Li, H. Development of photocatalysis-membrane separation reactor systems for aqueous pollutant removal. PhotoMat 2023. [Google Scholar] [CrossRef]
- Zhang, J.; Wu, H.; Shi, L.; Wu, Z.; Zhang, S.; Wang, S.; Sun, H. Photocatalysis coupling with membrane technology for sustainable and continuous purification of wastewater. Sep. Purif. Technol. 2024, 329, 125225. [Google Scholar] [CrossRef]
- Do, H.T.; Phan Thi, L.A.; Nguyen, T.L.; Dang, T.H.L. 14—Photodegradation performance of photocatalytic membrane. In Elsevier Series on Advanced Ceramic Materials; Othman, M.H.D., Rahman, M.A., Matsuura, T., Adam, M.R., Makhtar, S.N.N.M., Eds.; Elsevier: Amsterdam, The Netherlands, 2024; pp. 355–385. ISBN 978-0-323-95418-1. [Google Scholar]
- Wang, C.; Ren, G.; Wei, K.; Liu, D.; Wu, T.; Jiang, J.; Qian, J.; Pan, Y. Improved dispersion performance and interfacial compatibility of covalent-grafted MOFs in mixed-matrix membranes for gas separation. Green Chem. Eng. 2021, 2, 86–95. [Google Scholar] [CrossRef]
- Zhang, Q.; Chen, X.; Wang, H.; Bai, X.; Deng, X.; Yao, Q.; Wang, J.; Tang, B.; Lin, W.; Li, S. Controllable synthesis of peapod-like TiO2@GO@C electrospun nanofiber membranes with enhanced mechanical properties and photocatalytic degradation abilities towards methylene blue. New J. Chem. 2020, 44, 3755–3763. [Google Scholar] [CrossRef]
- Huh, J.Y.; Lee, J.; Bukhari, S.Z.A.; Ha, J.-H.; Song, I.-H. Development of TiO2-coated YSZ/silica nanofiber membranes with excellent photocatalytic degradation ability for water purification. Sci. Rep. 2020, 10, 17811. [Google Scholar] [CrossRef]
- Yan, M.; Wu, Y.; Liu, X. Photocatalytic nanocomposite membranes for high-efficiency degradation of tetracycline under visible light: An imitated core-shell Au-TiO2-based design. J. Alloys Compd. 2021, 855, 157548. [Google Scholar] [CrossRef]
- Pascariu, P.; Cojocaru, C.; Homocianu, M.; Samoila, P.; Dascalu, A.; Suchea, M. New La3+ doped TiO2 nanofibers for photocatalytic degradation of organic pollutants: Effects of thermal treatment and doping loadings. Ceram. Int. 2022, 48, 4953–4964. [Google Scholar] [CrossRef]
- Yu, Y.; Zhu, X.; Wang, L.; Wu, F.; Liu, S.; Chang, C.; Luo, X. A simple strategy to design 3-layered Au-TiO2 dual nanoparticles immobilized cellulose membranes with enhanced photocatalytic activity. Carbohydr. Polym. 2020, 231, 115694. [Google Scholar] [CrossRef]
- Zangeneh, H.; Zinatizadeh, A.A.; Zinadini, S.; Feyzi, M.; Bahnemann, D.W. Preparation and characterization of a novel photocatalytic self-cleaning PES nanofiltration membrane by embedding a visible-driven photocatalyst boron doped-TiO2SiO2/CoFe2O4 nanoparticles. Sep. Purif. Technol. 2019, 209, 764–775. [Google Scholar] [CrossRef]
- Ahmad, R.; Lee, C.S.; Kim, J.H.; Kim, J. Partially coated TiO2 on Al2O3 membrane for high water flux and photodegradation by novel filtration strategy in photocatalytic membrane reactors. Chem. Eng. Res. Des. 2020, 163, 138–148. [Google Scholar] [CrossRef]
- Liu, Y.; Su, Y.; Guan, J.; Cao, J.; Zhang, R.; He, M.; Gao, K.; Zhou, L.; Jiang, Z. 2D Heterostructure Membranes with Sunlight-Driven Self-Cleaning Ability for Highly Efficient Oil–Water Separation. Adv. Funct. Mater. 2018, 28, 1706545. [Google Scholar] [CrossRef]
- Nelson, K.; Mecha, A.C.; Kumar, A. Statistical modelling and optimization of photodegradation of sulphamethoxazole using nitrogen—Doped titanium dioxide—Polyvinyl deflouride photocatalytic membrane. Discov. Chem. Eng. 2024, 4, 34. [Google Scholar] [CrossRef]
- Liao, X.; Li, T.-T.; Ren, H.-T.; Zhang, X.; Shen, B.; Lin, J.-H.; Lou, C.-W. Construction of BiOI/TiO2 flexible and hierarchical S-scheme heterojunction nanofibers membranes for visible-light-driven photocatalytic pollutants degradation. Sci. Total Environ. 2022, 806, 150698. [Google Scholar] [CrossRef] [PubMed]
- Sharma, M.; Mandal, M.K.; Pandey, S.; Kumar, R.; Dubey, K.K. Visible-Light-Driven Photocatalytic Degradation of Tetracycline Using Heterostructured Cu2O–TiO2 Nanotubes, Kinetics, and Toxicity Evaluation of Degraded Products on Cell Lines. ACS Omega 2022, 7, 33572–33586. [Google Scholar] [CrossRef] [PubMed]
- Kudo, A.; Jung, S.M.; Strano, M.S.; Kong, J.; Wardle, B.L. Catalytic synthesis of few-layer graphene on titania nanowires. Nanoscale 2018, 10, 1015–1022. [Google Scholar] [CrossRef]
- Zhang, H.; Liu, B. Preparation, Characterization, and Photocatalytic Properties of Self-Standing Pure and Cu-Doped TiO2 Nanobelt Membranes. ACS Omega 2021, 6, 4534–4541. [Google Scholar] [CrossRef]
- Bhattacharya, A.; Ambika, S. Progression and Application of Photocatalytic Membrane Reactor for Dye Removal: An Overview. In Membrane Based Methods for Dye Containing Wastewater: Recent Advances; Muthu, S.S., Khadir, A., Eds.; Springer: Singapore, 2022; pp. 49–77. ISBN 978-981-16-4823-6. [Google Scholar]
- Zhang, Q.; Quan, X.; Wang, H.; Chen, S.; Su, Y.; Li, Z. Constructing a visible-light-driven photocatalytic membrane by g-C3N4 quantum dots and TiO2 nanotube array for enhanced water treatment. Sci. Rep. 2017, 7, 3128. [Google Scholar] [CrossRef] [PubMed]
- Kong, X.; Li, J.; Yang, C.; Tang, Q.; Wang, D. Fabrication of Fe2O3/g-C3N4@N-TiO2 photocatalyst nanotube arrays that promote bisphenol A photodegradation under simulated sunlight irradiation. Sep. Purif. Technol. 2020, 248, 116924. [Google Scholar] [CrossRef]
- Özcan, L.; Mutlu, T.; Yurdakal, S. Photoelectrocatalytic Degradation of Paraquat by Pt Loaded TiO2 Nanotubes on Ti Anodes. Materials 2018, 11, 1715. [Google Scholar] [CrossRef] [PubMed]
- Mazierski, P.; Wilczewska, P.; Lisowski, W.; Klimczuk, T.; Białk-Bielińska, A.; Zaleska-Medynska, A.; Siedlecka, E.M.; Pieczyńska, A. Ti/TiO2 nanotubes sensitized PbS quantum dots as photoelectrodes applied for decomposition of anticancer drugs under simulated solar energy. J. Hazard. Mater. 2022, 421, 126751. [Google Scholar] [CrossRef] [PubMed]
- Bloh, J.Z. A Holistic Approach to Model the Kinetics of Photocatalytic Reactions. Front. Chem. 2019, 7, 128. [Google Scholar] [CrossRef] [PubMed]
- Bodzek, M.; Rajca, M. Photocatalysis in the treatment and disinfection of water. Part I. Theoretical backgrounds/Fotokataliza w oczyszczaniu i dezynfekcji wody część i. podstawy teoretyczne. Ecol. Chem. Eng. S 2012, 19, 489–512. [Google Scholar] [CrossRef]
- Benhabiles, O.; Galiano, F.; Marino, T.; Mahmoudi, H.; Lounici, H.; Figoli, A. Preparation and Characterization of TiO2-PVDF/PMMA Blend Membranes Using an Alternative Non-Toxic Solvent for UF/MF and Photocatalytic Application. Molecules 2019, 24, 724. [Google Scholar] [CrossRef] [PubMed]
- Gomes, J.; Roccamante, M.; Contreras, S.; Medina, F.; Oller, I.; Martins, R.C. Scale-up impact over solar photocatalytic ozonation with benchmark-P25 and N-TiO2 for insecticides abatement in water. J. Environ. Chem. Eng. 2021, 9, 104915. [Google Scholar] [CrossRef]
- Wang, D.; Mueses, M.A.; Márquez, J.A.C.; Machuca-Martínez, F.; Grčić, I.; Peralta Muniz Moreira, R.; Li Puma, G. Engineering and modeling perspectives on photocatalytic reactors for water treatment. Water Res. 2021, 202, 117421. [Google Scholar] [CrossRef] [PubMed]
- Castilla-Caballero, D.; Machuca-Martínez, F.; Bustillo-Lecompte, C.; Colina-Márquez, J. Photocatalytic Degradation of Commercial Acetaminophen: Evaluation, Modeling, and Scaling-Up of Photoreactors. Catalysts 2018, 8, 179. [Google Scholar] [CrossRef]
- Samuel, O.; Othman, M.H.D.; Kamaludin, R.; Kurniawan, T.A.; Li, T.; Dzinun, H.; Imtiaz, A. Treatment of oily wastewater using photocatalytic membrane reactors: A critical review. J. Environ. Chem. Eng. 2022, 10, 108539. [Google Scholar] [CrossRef]
- Constantin, M.A.; Constantin, L.A.; Ionescu, I.A.; Nicolescu, C.M.; Bumbac, M.; Tiron, O. Performance of a Solar-Driven Photocatalytic Membrane Reactor for Municipal Wastewater Treatment. Processes 2024, 12, 617. [Google Scholar] [CrossRef]
- Theodorakopoulos, G.V.; Arfanis, M.K.; Sánchez Pérez, J.A.; Agüera, A.; Cadena Aponte, F.X.; Markellou, E.; Romanos, G.E.; Falaras, P. Novel Pilot-Scale Photocatalytic Nanofiltration Reactor for Agricultural Wastewater Treatment. Membranes 2023, 13, 202. [Google Scholar] [CrossRef] [PubMed]
- Korkut, S.; Ormanci-Acar, T.; Keskin, B.; Ağtaş, M.; Karahan, Ö.; Demir, T.U.; Unal, S.; Menceloglu, Y.Z.; Koyuncu, I. Effect of Photocatalytic Pretreatment on the Membrane Performance in Nanofiltration of Textile Wastewater. Water Air Soil Pollut. 2024, 235, 266. [Google Scholar] [CrossRef]
- Plakas, K.V.; Sarasidis, V.C.; Patsios, S.I.; Lambropoulou, D.A.; Karabelas, A.J. Novel pilot scale continuous photocatalytic membrane reactor for removal of organic micropollutants from water. Chem. Eng. J. 2016, 304, 335–343. [Google Scholar] [CrossRef]
- Benotti, M.J.; Stanford, B.D.; Wert, E.C.; Snyder, S.A. Evaluation of a photocatalytic reactor membrane pilot system for the removal of pharmaceuticals and endocrine disrupting compounds from water. Water Res. 2009, 43, 1513–1522. [Google Scholar] [CrossRef] [PubMed]
- Lu, C.-M.; Sharma, R.K.; Lin, P.-Y.; Huang, Y.-H.; Chen, J.-S.; Lee, W.-C.; Chen, C.-Y. Characteristics of Doped TiO2 Nanoparticle Photocatalysts Prepared by the Rotten Egg White. Materials 2022, 15, 4231. [Google Scholar] [CrossRef]
- Na-Phattalung, S.; Harding, D.J.; Pattanasattayavong, P.; Kim, H.; Lee, J.; Hwang, D.-W.; Chung, T.D.; Yu, J. Band gap narrowing of TiO2 nanoparticles: A passivated Co-doping approach for enhanced photocatalytic activity. J. Phys. Chem. Solids 2022, 162, 110503. [Google Scholar] [CrossRef]
- Armaković, S.J.; Savanović, M.M.; Armaković, S. Titanium Dioxide as the Most Used Photocatalyst for Water Purification: An Overview. Catalysts 2023, 13, 26. [Google Scholar] [CrossRef]
- El-Kholy, R.A.; Isawi, H.; Zaghlool, E.; Soliman, E.A.; Khalil, M.M.H.; Said, M.M.; El-Aassar, A.-E.M. Preparation and characterization of rare earth element nanoparticles for enhanced photocatalytic degradation. Environ. Sci. Pollut. Res. Int. 2023, 30, 69514–69532. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Khalek, A.A.; Mahmoud, S.A.; Zaki, A.H. Visible light assisted photocatalytic degradation of crystal violet, bromophenol blue and eosin Y dyes using AgBr-ZnO nanocomposite. Environ. Nanotechnol. Monit. Manag. 2018, 9, 164–173. [Google Scholar] [CrossRef]
- Saravanan, R.; Gracia, F.; Stephen, A. Basic Principles, Mechanism, and Challenges of Photocatalysis. In Nanocomposites for Visible Light-induced Photocatalysis; Khan, M.M., Pradhan, D., Sohn, Y., Eds.; Springer International Publishing: Cham, Switzerland, 2017; pp. 19–40. ISBN 978-3-319-62446-4. [Google Scholar]
- Zhang, W.; Ding, L.; Luo, J.; Jaffrin, M.Y.; Tang, B. Membrane fouling in photocatalytic membrane reactors (PMRs) for water and wastewater treatment: A critical review. Chem. Eng. J. 2016, 302, 446–458. [Google Scholar] [CrossRef]
- Ghime, D.; Ghosh, P. Heterogeneous Fenton degradation of oxalic acid by using silica supported iron catalysts prepared from raw rice husk. J. Water Process Eng. 2017, 19, 156–163. [Google Scholar] [CrossRef]
- Zacharia, J.T. Degradation Pathways of Persistent Organic Pollutants (POPs) in the Environment. In Persistent Organic Pollutants; Donyinah, S.K., Ed.; IntechOpen: Rijeka, Croatia, 2019. [Google Scholar]
- Ghosh, S.; Mondal, S.; Pal, S.; Basak, D. High performance broad-band ultraviolet-B to visible photodetection based on planar Al-Zn2SnO4-Al structure. Sens. Actuators A Phys. 2022, 347, 113898. [Google Scholar] [CrossRef]
- Liao, C.; Li, Y.; Tjong, S.C. Visible-Light Active Titanium Dioxide Nanomaterials with Bactericidal Properties. Nanomaterials 2020, 10, 124. [Google Scholar] [CrossRef] [PubMed]
- Malato, S.; Fernández-Ibáñez, P.; Maldonado, M.I.; Blanco, J.; Gernjak, W. Decontamination and disinfection of water by solar photocatalysis: Recent overview and trends. Catal. Today 2009, 147, 1–59. [Google Scholar] [CrossRef]
- Kumar, A. A Review on the Factors Affecting the Photocatalytic Degradation of Hazardous Materials. Mater. Sci. Eng. Int. J. 2017, 1, 106–114. [Google Scholar] [CrossRef]
- Ibrahim, F.A.; Al-Ghobashy, M.A.; Abo-Elmagd, I.F. Energy-efficient carbon-doped titanium dioxide nanoparticles: Synthesis, characterization, and catalytic properties under visible LED irradiation for degradation of gemifloxacin. SN Appl. Sci. 2019, 1, 631. [Google Scholar] [CrossRef]
- Ghibaudo, N.; Ferretti, M.; Al-Hetlani, E.; Madkour, M.; Amin, M.O.; Alberti, S. Synthesis and characterization of TiO2-based supported materials for industrial application and recovery in a pilot photocatalytic plant using chemometric approach. Environ. Sci. Pollut. Res. 2024, 31, 20556–20567. [Google Scholar] [CrossRef] [PubMed]
- Nakabayashi, Y.; Nosaka, Y. The pH dependence of OH radical formation in photo-electrochemical water oxidation with rutile TiO2 single crystals. Phys. Chem. Chem. Phys. 2015, 17, 30570–30576. [Google Scholar] [CrossRef] [PubMed]
- Rosa, D.; Manetta, G.; Di Palma, L. Experimental assessment of the pH effect and ions on the photocatalytic activity of iron-doped titanium dioxide supported on polystyrene pellets: Batch and continuous tests. Chem. Eng. Sci. 2024, 291, 119918. [Google Scholar] [CrossRef]
- Tavakoli Joorabi, F.; Kamali, M.; Sheibani, S. Effect of aqueous inorganic anions on the photocatalytic activity of CuO–Cu2O nanocomposite on MB and MO dyes degradation. Mater. Sci. Semicond. Process. 2022, 139, 106335. [Google Scholar] [CrossRef]
- Ahmad, S.; Almehmadi, M.; Janjuhah, H.T.; Kontakiotis, G.; Abdulaziz, O.; Saeed, K.; Ahmad, H.; Allahyani, M.; Aljuaid, A.; Alsaiari, A.A.; et al. The Effect of Mineral Ions Present in Tap Water on Photodegradation of Organic Pollutants: Future Perspectives. Water 2023, 15, 175. [Google Scholar] [CrossRef]
- Chong, M.N.; Jin, B.; Chow, C.W.K.; Saint, C. Recent developments in photocatalytic water treatment technology: A review. Water Res. 2010, 44, 2997–3027. [Google Scholar] [CrossRef]
- Du, S.; Zhao, P.; Wang, L.; He, G.; Jiang, X. Progresses of advanced anti-fouling membrane and membrane processes for high salinity wastewater treatment. Results Eng. 2023, 17, 100995. [Google Scholar] [CrossRef]
- Tung, T.V.; Ananpattarachai, J.; Kajitvichyanukul, P. Photocatalytic membrane reactors for water and wastewater treatment applications: Process factors and operating conditions review. Lowl. Technol. Int. 2018, 20, 413–424. [Google Scholar]
- Zhou, S.; Nazari, S.; Hassanzadeh, A.; Bu, X.; Ni, C.; Peng, Y.; Xie, G.; He, Y. The effect of preparation time and aeration rate on the properties of bulk micro-nanobubble water using hydrodynamic cavitation. Ultrason. Sonochem. 2022, 84, 105965. [Google Scholar] [CrossRef] [PubMed]
- Bie, C.; Wang, L.; Yu, J. Challenges for photocatalytic overall water splitting. Chem 2022, 8, 1567–1574. [Google Scholar] [CrossRef]
- Gupta, S.; Gomaa, H.; Ray, M.B. Fouling control in a submerged membrane reactor: Aeration vs membrane oscillations. Chem. Eng. J. 2022, 432, 134399. [Google Scholar] [CrossRef]
Photocatalyst | Type | Strengths | Weaknesses | Reference |
---|---|---|---|---|
TiO2 | Metal oxide |
|
| [34] |
ZnO | Metal oxide |
|
| [35] |
MoS | Metal sulfide |
|
| [36] |
CdS | Metal sulfide |
|
| [37] |
gC3N4 | Carbon based |
|
| [38] |
Carbon Nano tubes | Carbon based |
|
| [39] |
Type | Immobilization Technique | Pollutant | Power Source | Degradation/Mineralization/Flux | Ref. |
---|---|---|---|---|---|
TiO2/GO/C | Electrospinning | methylene blue | Visible light | 98.5% degradation | [118] |
TiO2-coated YSZ/silica | Dip coating | humic acid, methylene blue, tetracycline each 20 mg/L | Visible light | 88.2% humic acid degradation, 92.4% methyl blue degradation, and 99.5% tetracycline degradation | [119] |
Au-TiO2/PVDF | Phase inversion | Tetracycline 200 mL | Xenon lamp 300 W | 75% degradation | [120] |
PVP/La3+: TiO2 | Electrospinning | Ciprofloxacin 10 mg/L | Visible light | 99.5% degradation | [121] |
Au-TiO2-Cellulose | Vacuum filtration | rhodamine B (1–9 mol/L) | Sunlight | 95% degradation | [122] |
Boron doped-TiO2 SiO2/CoFe2O4/PES | Phase inversion | direct red 16, biologically treated palm oil mill effluent | Visible light | 98% removal | [123] |
TiO2/Al2O | Spin coating | AO dye | 300 W UVA lamp | 85% degradation | [124] |
GO/g-C3N4/TiO2 | Vacuum filtration | oil | Sunlight | 95% flux for 10 runs | [125] |
NTiO2-PVDF | Dip coating | Sulphamethoxazole and NaCl | Sunlight | 76.5% degradation and 9.8 mL/7 cmD/min flux | [126] |
Type | Technique | Pollutant | Power Source | Degradation, Mineralization | Ref. |
---|---|---|---|---|---|
g-C3N4/TNA/TiO2 | Electrical anodization | RhB (3 mg L−1) | 500 W xenon arc lamp | 60% removal | [132] |
Fe2O3/g-C3N4@N-TiO2 | Electrical anodization | Bisphenol A (4.5 mg/L) | Simulated sunlight lamp | 100% removal, 40 min | [133] |
TiO2/Pt | Electrical anodization | Paraquat (37.4 µg/L) | 6 UV fluorescent lamps (8 W) | 86% degradation | [134] |
PbS-Ti/TiO2 | Electrical anodization | Ifosfamide (20 mg L−1) | Simulated sunlight (550 W m−2) | 44% TOC removal | [135] |
Mode | Capacity | Pollutants | Catalyst | Performance | Power Source | Ref. |
---|---|---|---|---|---|---|
Continuous | 1.2 m3/day | Thiabendazole and acetamiprid | TiO2 | 41.5% thiabendazole and 25% acetamiprid removal in 3 h | lamp | [144] |
Continuous | 18.32–27.63 L/m2 h | Textile wastewater | TiO2/halloysite | >98% COD removal | lamp | [145] |
Continuous | 1.2 m3/day | diclofenac | TiO2 | 52% total organic carbon removal | lamp | [146] |
Continuous | 300 gallons | estrogens | TiO2 P-25 | >70% estrogenic removal | lamp | [147] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nelson, K.; Mecha, A.C.; Samuel, H.M.; Suliman, Z.A. Recent Trends in the Application of Photocatalytic Membranes in Removal of Emerging Organic Contaminants in Wastewater. Processes 2025, 13, 163. https://doi.org/10.3390/pr13010163
Nelson K, Mecha AC, Samuel HM, Suliman ZA. Recent Trends in the Application of Photocatalytic Membranes in Removal of Emerging Organic Contaminants in Wastewater. Processes. 2025; 13(1):163. https://doi.org/10.3390/pr13010163
Chicago/Turabian StyleNelson, Kipchumba, Achisa C. Mecha, Humphrey Mutuma Samuel, and Zeinab A. Suliman. 2025. "Recent Trends in the Application of Photocatalytic Membranes in Removal of Emerging Organic Contaminants in Wastewater" Processes 13, no. 1: 163. https://doi.org/10.3390/pr13010163
APA StyleNelson, K., Mecha, A. C., Samuel, H. M., & Suliman, Z. A. (2025). Recent Trends in the Application of Photocatalytic Membranes in Removal of Emerging Organic Contaminants in Wastewater. Processes, 13(1), 163. https://doi.org/10.3390/pr13010163