Microbially Induced Calcite Precipitation (MICP) Improved Drilling Fluid Optimization for Gravel Stratum
<p>Sample preparation.</p> "> Figure 2
<p>Correlation analysis between various factors and responses. scatter plots: (<b>a</b>) the interactions between B and PV; (<b>b</b>) the interactions between B and D; (<b>c</b>) the interactions between B and YP. (A: Bentonite; B: biological solution; C: barite; PV: plastic viscosity; D: density; YP: yield point. The symbol ‘-’ indicates a negative correlation between variables; “Run” refers to the number of experiments conducted).</p> "> Figure 3
<p>Three-dimensional response surface plots for various factors: (<b>a</b>) A and B, (<b>b</b>) A and C, (<b>c</b>) B and C; (<b>d</b>) diagnostic chart of predicted and actual values of plastic viscosity; (<b>e</b>) the normal graph of residuals; (<b>f</b>) residual and running chart.</p> "> Figure 4
<p>Three-dimensional response surface plots of various factors: (<b>a</b>) A and B, (<b>b</b>) A and C, (<b>c</b>) B and C; (<b>d</b>) diagnostic chart of predicted and actual densities; (<b>e</b>) the normal graph of residuals; (<b>f</b>) residual and running chart.</p> "> Figure 5
<p>Three-dimensional response surface plots of various factors: (<b>a</b>) A and B, (<b>b</b>) A and C, (<b>c</b>) B and C; (<b>d</b>) diagnosis chart of predicted and actual values of yield point; (<b>e</b>) the normal graph of residuals; (<b>f</b>) residual and running chart.</p> "> Figure 6
<p>EDS spectrum of biological mud (<b>a</b>–<b>d</b>).</p> "> Figure 7
<p>Microscopic morphology diagram of biological mud: (<b>a</b>) Calcium carbonate distribution; (<b>b</b>) ribbon-like connection; (<b>c</b>) calcium carbonate distribution on the fibrous connector.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Test Materials
2.2. Preparation of Biological Solution
2.3. Response Surface Experimental Design
2.4. Density and Rheological Parameter Determination
3. Results and Discussion
3.1. Response Surface Test Results
3.2. Statistical Analysis
3.2.1. Plastic Viscosity Analysis
3.2.2. Density Analysis
0.0018BC + 0.0004A2 − 0.0001B2 + 0.0015C2
3.2.3. The Yield Point Analysis
0.4196BC − 0.5138A2 − 12.1055B2 − 0.0110C2
3.3. Analysis of Optimization Results
3.3.1. Model Validation
3.3.2. Characterization of Biological Mud
3.3.3. Biodegradability and Heavy Metal Detection Results
3.3.4. Analysis of Cost Advantages
4. Discussion
- The analyses of the rheological and density test results of drilling fluids containing different amounts of biological solution indicated that the PV of biological drilling fluids increased with the addition of biological solutions, exhibiting a growth rate that initially increased and then decreased. The density increased monotonically with the addition of barite, while the increased rate of YP exhibited a trend of first increasing and then decreasing as the biological solution content increased. Interactions among various factors were evident, and the effect of biological solutions on density was manifested as an increase in response to low content and a decrease in response to high content, which was significantly influenced by the interaction. The influence of bentonite and barite on YP exhibited a trend of first increasing and then decreasing; as such, they could generally offset each other. However, as amount of biological solution increased, the influence of bentonite on the YP gradually became significant.
- Based on the response surface optimization results, the formulation containing bentonite, biological solution, and barite in quantities of 50 g, 200 mL, and 120 g, respectively, was optimal, and the rheological parameters of drilling fluid under this formulation were obtained through experimental measurements. The plastic viscosity, density, and yield point were 40.174 mPa·s, 1.223 g/cm3, and 46.584 Pa, respectively, all of which met the regulatory requirements and expected standards.
- The experimental results indicate that the addition of colloidal substances does not affect the growth activity of Bacillus subtilis. The microstructure of the mud cake samples obtained from the experiment was analyzed using SEM. The SEM and EDS analyses demonstrated that the addition of colloidal substances does not hinder the formation of solid calcium carbonate precipitates and facilitates the formation of fibrous and ribbon connections within the mud, improving the plastic viscosity of the mud. The generated small calcium carbonate solids contributed to the increased yield stress of the drilling fluid. After inspection, the mud was found to comply with national environmental protection requirements, and its heavy metal content and biodegradability met the standard requirements. The unit cost of the mud was deemed to be lower, indicating its cost advantage in terms of pricing.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
ANOVA | Analysis of variance. |
API | American Petroleum Institute. |
CCD | Central Composite Design. |
CGMCC | China General Microbiological Culture Collection Center. |
CMC | Carboxymethyl cellulose sodium. |
EDS | Energy-dispersive spectroscopy. |
MICP | Microbially induced calcite carbonate precipitation. |
OD600 | The absorbance value of the bacterial solution at 600 nm. |
PV | Plastic viscosity. |
P-value | Probability value. |
R2 | Coefficient of determination. |
RSM | Response surface methodology. |
SEM | Scanning electron microscopy. |
XG | Xanthan gum. |
YP | Yield point. |
References
- Yu, L.; Han, Z.; He, J.; Wang, W. Experimental Study on Sand Control Gravel Particle Gradation Optimization in Mud Hydrate Reservoir. Energy Rep. 2022, 8, 9201–9210. [Google Scholar] [CrossRef]
- Sehly, K.; Chiew, H.-L.; Li, H.; Song, A.; Leong, Y.-K.; Huang, W. Stability and Ageing Behaviour and the Formulation of Potassium-Based Drilling Muds. Appl. Clay Sci. 2015, 104, 309–317. [Google Scholar] [CrossRef]
- Yeu, W.J.; Katende, A.; Sagala, F.; Ismail, I. Improving Hole Cleaning Using Low Density Polyethylene Beads at Different Mud Circulation Rates in Different Hole Angles. J. Nat. Gas Sci. Eng. 2019, 61, 333–343. [Google Scholar] [CrossRef]
- Au, P.-I.; Leong, Y.-K. Rheological and Zeta Potential Behaviour of Kaolin and Bentonite Composite Slurries. Colloids Surf. Physicochem. Eng. Asp. 2013, 436, 530–541. [Google Scholar] [CrossRef]
- Lee, C.E.; Chandra, S.; Leong, Y.-K. Structural Recovery Behaviour of Kaolin, Bentonite and K-Montmorillonite Slurries. Powder Technol. 2012, 223, 105–109. [Google Scholar] [CrossRef]
- Stilwell, W.B. Drilling Practices and Equipment in Use at Wairakei. Geothermics 1970, 2, 714–724. [Google Scholar] [CrossRef]
- Kim, D.W.; Lee, Y.S.; Park, M.S.; Chu, C.N. Tool Life Improvement by Peck Drilling and Thrust Force Monitoring during Deep-Micro-Hole Drilling of Steel. Int. J. Mach. Tools Manuf. 2009, 49, 246–255. [Google Scholar] [CrossRef]
- Kong, L.; Cao, S.; Chin, J.-H.; Si, Y.; Miao, F.; Li, Y. Vibration Suppression of Drilling Tool System during Deep-Hole Drilling Process Using Independence Mode Space Control. Int. J. Mach. Tools Manuf. 2020, 151, 103525. [Google Scholar] [CrossRef]
- Keren, R. Rheology of Mixed Kaolinite-Montmorillonite Suspensions. Soil Sci. Soc. Am. J. 1989, 53, 725–730. [Google Scholar] [CrossRef]
- Sun, Y.; Zhao, D. Research and Experimental Application of New Slurry Proportioning for Slag Improvement of EPB Shield Crossing Sand and Gravel Layer. Coatings 2022, 12, 1961. [Google Scholar] [CrossRef]
- Lagaly, G. Principles of Flow of Kaolin and Bentonite Dispersions. Appl. Clay Sci. 1989, 4, 105–123. [Google Scholar] [CrossRef]
- Budach, C.; Thewes, M. Application Ranges of EPB Shields in Coarse Ground Based on Laboratory Research. Tunn. Undergr. Space Technol. 2015, 50, 296–304. [Google Scholar] [CrossRef]
- Akpan, E.U.; Enyi, G.C.; Nasr, G.G. Enhancing the Performance of Xanthan Gum in Water-Based Mud Systems Using an Environmentally Friendly Biopolymer. J. Pet. Explor. Prod. Technol. 2020, 10, 1933–1948. [Google Scholar] [CrossRef]
- Khan, R.; Kuru, E.; Trembla, B.; Saasen, A. An Investigation of Formation Damage Characteristics of Xanthan Gum Solutions Used for Drilling, Drill-in, Spacer Fluids, and Coiled Tubing Applications; OnePetro: Richardson, TX, USA, 2003. [Google Scholar]
- Baba Hamed, S.; Belhadri, M. Rheological Properties of Biopolymers Drilling Fluids. J. Pet. Sci. Eng. 2009, 67, 84–90. [Google Scholar] [CrossRef]
- Yao, L.; Anne Naeth, M.; Jobson, A. Soil Microbial Response to Waste Potassium Silicate Drilling Fluid. J. Environ. Sci. 2015, 29, 189–198. [Google Scholar] [CrossRef] [PubMed]
- Agwu, O.E.; Akpabio, J.U.; Ekpenyong, M.E.; Inyang, U.G.; Asuquo, D.E.; Eyoh, I.J.; Adeoye, O.S. A Critical Review of Drilling Mud Rheological Models. J. Pet. Sci. Eng. 2021, 203, 108659. [Google Scholar] [CrossRef]
- Crow, W.; Carey, J.W.; Gasda, S.; Brian Williams, D.; Celia, M. Wellbore Integrity Analysis of a Natural CO2 Producer. Int. J. Greenh. Gas Control 2010, 4, 186–197. [Google Scholar] [CrossRef]
- Liu, N.; Zhang, D.; Gao, H.; Hu, Y.; Duan, L. Real-Time Measurement of Drilling Fluid Rheological Properties: A Review. Sensors 2021, 21, 3592. [Google Scholar] [CrossRef] [PubMed]
- Yu, T.; Souli, H.; Pechaud, Y.; Fleureau, J.-M. Review on Engineering Properties of MICP-Treated Soils. Geomech. Eng. 2021, 27, 13–30. [Google Scholar] [CrossRef]
- Liu, H.; Xiao, P.; Xiao, Y.; Wang, J.; Chen, Y.; Chu, J. Dynamic behaviors of MICP-treated calcareous sand in cyclic tests. Chin. J. Geotech. Eng. 2018, 40, 38–45. [Google Scholar] [CrossRef]
- Liu, B.; Zhu, C.; Tang, C.-S.; Xie, Y.-H.; Yin, L.-Y.; Cheng, Q.; Shi, B. Bio-Remediation of Desiccation Cracking in Clayey Soils through Microbially Induced Calcite precipitatMicrobially Induced Carbonate Precipitation (MICP) for Soil Strengtheniion (MICP). Eng. Geol. 2020, 264, 105389. [Google Scholar] [CrossRef]
- Chen, L.; Song, Y.; Fang, H.; Feng, Q.; Lai, C.; Song, X. Systematic Optimization of a Novel, Cost-Effective Fermentation Medium of Sporosarcina pasteurii for Microbially Induced Calcite Precipitation (MICP). Constr. Build. Mater. 2022, 348, 128632. [Google Scholar] [CrossRef]
- Comadran-Casas, C.; Brüggemann, N.; Jorat, M.E. Greenhouse Gas Fluxes of Microbial-Induced Calcite Precipitation at Varying Urea-to-Calcium Concentrations. Eur. J. Soil Sci. 2024, 75, e13516. [Google Scholar] [CrossRef]
- Fouladi, A.S.; Arulrajah, A.; Chu, J.; Horpibulsuk, S. Application of Microbially Induced Calcite Precipitation (MICP) Technology in Construction Materials: A Comprehensive Review of Waste Stream Contributions. Constr. Build. Mater. 2023, 388, 131546. [Google Scholar] [CrossRef]
- Deng, X.; Li, Y.; Liu, H.; Zhao, Y.; Yang, Y.; Xu, X.; Cheng, X.; Wit, B. de Examining Energy Consumption and Carbon Emissions of Microbial Induced Carbonate Precipitation Using the Life Cycle Assessment Method. Sustainability 2021, 13, 4856. [Google Scholar] [CrossRef]
- Chen, L.; Song, Y.; Huang, J.; Lai, C.; Jiao, H.; Fang, H.; Zhu, J.; Song, X. Critical Review of Solidification of Sandy Soil by Microbially Induced Carbonate Precipitation (MICP). Crystals 2021, 11, 1439. [Google Scholar] [CrossRef]
- Fu, T.; Saracho, A.C.; Haigh, S.K. Microbially Induced Carbonate Precipitation (MICP) for Soil Strengthening: A Comprehensive Review. Biogeotechnics 2023, 1, 100002. [Google Scholar] [CrossRef]
- Chu, J.; Ivanov, V.; Naeimi, M.; Stabnikov, V.; Liu, H.-L. Optimization of Calcium-Based Bioclogging and Biocementation of Sand. Acta Geotech. 2014, 9, 277–285. [Google Scholar] [CrossRef]
- Li, F.; Li, X.; Ye, L.; Liu, X.; Zhu, J.; Yang, S.; Yan, Y.; Xu, L.; Yan, J. A Genetically Engineered Composite Biofilm for Microbial Induced Calcium Carbonate Precipitation by Synergic Effect of Urease, Protein Adhesive and Xanthan Gum. J. Environ. Chem. Eng. 2022, 10, 108431. [Google Scholar] [CrossRef]
- Shi, J.; Xiao, Y.; Fu, G.; Feng, C.; Hu, J.; Haegeman, W.; Liu, H. Calcareous Silt Earthen Construction Using Biopolymer Reinforcement. J. Build. Eng. 2023, 72, 106571. [Google Scholar] [CrossRef]
- Saracho, A.C.; Lucherini, L.; Hirsch, M.; Peter, H.M.; Terzis, D.; Amstad, E.; Laloui, L. Controlling the Calcium Carbonate Microstructure of Engineered Living Building Materials. J. Mater. Chem. A 2021, 9, 24438–24451. [Google Scholar] [CrossRef] [PubMed]
- Han, Z.; Cheng, X.; Ma, Q. An Experimental Study on Dynamic Response for MICP Strengthening Liquefiable Sands. Earthq. Eng. Eng. Vib. 2016, 15, 673–679. [Google Scholar] [CrossRef]
- Tang, G.; Jia, C.; Wang, G.; Yu, P.; Zhang, H. Role of Na-Montmorillonite on Microbially Induced Calcium Carbonate Precipitation. Molecules 2021, 26, 6211. [Google Scholar] [CrossRef] [PubMed]
- Duan, Y.; Niu, L.; Li, B.; He, Y.; Xu, X.; Yu, C.; Wang, Z.; Xiao, C.; Zheng, C. Montmorillonite-Coupled Microbially Induced Carbonate Precipitation (MICP) Enhanced Contaminant Removal and Carbon Capture in Cyanide Tailings. J. Environ. Chem. Eng. 2024, 12, 113498. [Google Scholar] [CrossRef]
- Lim, S.N.; Khalil, M.; Jan, B.M.; Ali, B.S. Lightweight Biopolymer Drilling Fluid for Underbalanced Drilling: An Optimization Study. J. Pet. Sci. Eng. 2015, 129, 178–188. [Google Scholar] [CrossRef]
- Phillips, A.J.; Troyer, E.; Hiebert, R.; Kirkland, C.; Gerlach, R.; Cunningham, A.B.; Spangler, L.; Kirksey, J.; Rowe, W.; Esposito, R. Enhancing Wellbore Cement Integrity with Microbially Induced Calcite Precipitation (MICP): A Field Scale Demonstration. J. Pet. Sci. Eng. 2018, 171, 1141–1148. [Google Scholar] [CrossRef]
- Saikia, T.; Mahto, V. Experimental Investigations and Optimizations of Rheological Behavior of Drilling Fluids Using RSM and CCD for Gas Hydrate-Bearing Formation. Arab. J. Sci. Eng. 2018, 43, 6541–6554. [Google Scholar] [CrossRef]
- Wang, K.; Wu, S.; Chu, J. Mitigation of Soil Liquefaction Using Microbial Technology: An Overview. Biogeotechnics 2023, 1, 100005. [Google Scholar] [CrossRef]
- Onal Okyay, T.; Frigi Rodrigues, D. Optimized Carbonate Micro-Particle Production by Sporosarcina pasteurii Using Response Surface Methodology. Ecol. Eng. 2014, 62, 168–174. [Google Scholar] [CrossRef]
- Salehnezhad, L.; Heydari, A.; Fattahi, M. Experimental Investigation and Rheological Behaviors of Water-Based Drilling Mud Contained Starch-ZnO Nanofluids through Response Surface Methodology. J. Mol. Liq. 2019, 276, 417–430. [Google Scholar] [CrossRef]
- Tartibu, L.K.; Sun, B.; Kaunda, M.A.E. Multi-Objective Optimization of the Stack of a Thermoacoustic Engine Using GAMS. Appl. Soft Comput. 2015, 28, 30–43. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, Y.; Zhao, W.; Wang, Z.; Wang, Z.; Wang, Y. Research on Optimizing Performance of New Slurries for EPBS Soil Conditioning Based on Response Surface Method. Constr. Build. Mater. 2023, 375, 130818. [Google Scholar] [CrossRef]
- Pan, Z.; Cao, S. Optimization of Culture Medium to Improve Bio-Cementation Effect Based on Response Surface Method. Sci. Rep. 2024, 14, 8752. [Google Scholar] [CrossRef]
- Xie, B.; Ting, L.; Zhang, Y.; Liu, C. Rheological Properties of Bentonite-Free Water-Based Drilling Fluids with Novel Polymer Viscosifier. J. Pet. Sci. Eng. 2018, 164, 302–310. [Google Scholar] [CrossRef]
- Chu, Q.; Lin, L. Synthesis and Properties of an Improved Agent with Restricted Viscosity and Shearing Strength in Water-Based Drilling Fluid. J. Pet. Sci. Eng. 2019, 173, 1254–1263. [Google Scholar] [CrossRef]
- Yap, J.; Leong, Y.-K.; Liu, J. Structural Recovery Behavior of Barite-Loaded Bentonite Drilling Muds. J. Pet. Sci. Eng. 2011, 78, 552–558. [Google Scholar] [CrossRef]
- Yao, D.; Wu, J.; Wang, G.; Wang, P.; Zheng, J.-J.; Yan, J.; Xu, L.; Yan, Y. Effect of Wool Fiber Addition on the Reinforcement of Loose Sands by Microbially Induced Carbonate Precipitation (MICP): Mechanical Property and Underlying Mechanism. Acta Geotech. 2021, 16, 1401–1416. [Google Scholar] [CrossRef]
- Ali, I.; Ahmad, M.; Ridha, S.; Iferobia, C.C.; Lashari, N. Enhancing Drilling Mud Performance through CMITS-Modified Formulations: Rheological Insights and Performance Optimization. RSC Adv. 2023, 13, 32904–32917. [Google Scholar] [CrossRef]
- George, A.; Sanjay, M.R.; Srisuk, R.; Parameswaranpillai, J.; Siengchin, S. A Comprehensive Review on Chemical Properties and Applications of Biopolymers and Their Composites. Int. J. Biol. Macromol. 2020, 154, 329–338. [Google Scholar] [CrossRef]
- Benzerara, M.; Guihéneuf, S.; Belouettar, R.; Perrot, A. Combined and synergic effect of algerian natural fibres and biopolymers on the reinforcement of extruded raw earth. Constr. Build. Mater. 2021, 289. [Google Scholar] [CrossRef]
Raw Materials | Contents | |
---|---|---|
Composition of culture medium (100 mL) | Deionized water | 93 mL |
0.5 g/L MnSO4·H2O solution | 2 mL | |
Yeast extract | 2 g | |
NH4Cl | 1 g | |
1.2 g/L NiCl2·6H2O solution | 2 mL | |
1 M/L NaOH solution | 3 mL | |
Other experimental reagents | Bentonite | - |
Barite | - | |
Carboxymethylcellulose Sodium (CMC) | - | |
Xanthan gum (XG) | - | |
Polydimethylsiloxane lotion | - |
Variables | Factor Level | |||||
---|---|---|---|---|---|---|
Number | Name | Minimum | Coded Low | Mean | Coded High | Maximum |
A | Bentonite | 16.36 | 30.00 | 47.30 | 70.00 | 83.64 |
B | Biological solution | 0.00 | 0.00 | 238.07 | 500.00 | 670.45 |
C | Barite powder | 0.00 | 75 | 91.72 | 125.00 | 142.05 |
Group Number | Influencing Factors | Response Index | ||||
---|---|---|---|---|---|---|
A | B | C | PV | Density | YP | |
1 | 30.00 | 5.50 | 4.00 | 52.00 | 1.19 | 68.406 |
2 | 90.00 | 8.00 | 6.00 | 5.00 | 1.28 | 0.175 |
3 | 70.00 | 5.50 | 8.00 | 64.00 | 1.19 | 72.349 |
4 | 10.00 | 8.00 | 6.00 | 46.00 | 1.01 | 61.905 |
5 | 50.00 | 8.00 | 6.00 | 47.00 | 1.03 | 65.115 |
6 | 50.00 | 8.00 | 6.00 | 68.00 | 1.21 | 85.638 |
7 | 30.00 | 10.50 | 4.00 | 48.00 | 1.09 | 62.905 |
8 | 50.00 | 3.00 | 6.00 | 4.00 | 1.19 | 2.425 |
9 | 30.00 | 5.50 | 8.00 | 63.00 | 1.11 | 74.888 |
10 | 50.00 | 8.00 | 2.00 | 4.00 | 1.20 | 2.864 |
11 | 50.00 | 8.00 | 6.00 | 49.00 | 1.17 | 57.655 |
12 | 70.00 | 10.50 | 8.00 | 49.00 | 1.17 | 57.427 |
13 | 50.00 | 8.00 | 6.00 | 50.00 | 1.18 | 57.497 |
14 | 50.00 | 13.00 | 6.00 | 25.00 | 1.21 | 23.915 |
15 | 50.00 | 8.00 | 6.00 | 48.00 | 1.17 | 60.934 |
16 | 30.00 | 5.50 | 4.00 | 24.00 | 1.13 | 28.436 |
17 | 50.00 | 8.00 | 6.00 | 67.00 | 1.12 | 88.137 |
18 | 30.00 | 10.50 | 4.00 | 50.00 | 1.17 | 60.457 |
19 | 30.00 | 10.50 | 8.00 | 49.00 | 1.16 | 60.822 |
20 | 50.00 | 8.00 | 6.00 | 48.00 | 1.18 | 60.583 |
21 | 30.00 | 10.50 | 8.00 | 47.00 | 1.17 | 60.395 |
22 | 70.00 | 10.50 | 8.00 | 1.00 | 1.18 | 0.176 |
23 | 50.00 | 8.00 | 6.00 | 49.00 | 1.17 | 60.891 |
24 | 70.00 | 5.50 | 4.00 | 51.00 | 1.18 | 60.328 |
25 | 50.00 | 8.00 | 6.00 | 84.00 | 1.13 | 101.412 |
26 | 50.00 | 8.00 | 6.00 | 45.00 | 1.01 | 58.665 |
27 | 30.00 | 5.50 | 8.00 | 58.00 | 1.17 | 72.301 |
28 | 50.00 | 8.00 | 6.00 | 81.00 | 1.15 | 88.478 |
29 | 50.00 | 8.00 | 6.00 | 28.00 | 1.15 | 39.165 |
30 | 70.00 | 10.50 | 4.00 | 29.00 | 1.24 | 36.915 |
31 | 70.00 | 10.50 | 4.00 | 49.00 | 1.20 | 59.978 |
32 | 50.00 | 8.00 | 6.00 | 5.00 | 1.24 | 1.765 |
33 | 50.00 | 8.00 | 10.00 | 45.00 | 1.16 | 49.286 |
34 | 70.00 | 5.50 | 8.00 | 43.00 | 1.00 | 53.785 |
35 | 70.00 | 5.50 | 4.00 | 50.00 | 1.21 | 59.595 |
36 | 50.00 | 8.00 | 6.00 | 51.00 | 1.25 | 58.957 |
Response | F-Statistic | R2 | p | Adj.R2 | AP | SD | PRESS |
---|---|---|---|---|---|---|---|
PV (Y1) | 675.99 | 0.9957 | <0.0001 | 0.9943 | 103.7526 | 1.56 | 153.65 |
Response | F-Statistic | R2 | p | Adj.R2 | AP | SD | PRESS |
---|---|---|---|---|---|---|---|
Density (Y2) | 408.09 | 0.9930 | <0.0001 | 0.9905 | 81.7644 | 0.0064 | 0.0020 |
Response | F-Statistic | R2 | p | Adj.R2 | AP | SD | PRESS |
---|---|---|---|---|---|---|---|
YP (Y3) | 654.37 | 0.9956 | <0.0001 | 0.9941 | 97.6378 | 1.99 | 283.51 |
Factor | Y1 (mPa·s) | Y2 (g/cm3) | Y3 (Pa) |
---|---|---|---|
Estimate | 40.174 | 1.223 | 46.584 |
Experimental value 1 | 40 | 1.23 | 48.545 |
Experimental value 2 | 40 | 1.23 | 50.078 |
Experimental value 3 | 41 | 1.23 | 49.056 |
Parameters | Test Content (mg/L) | Biodegradable BOD5/COD | Standard |
---|---|---|---|
CODCR | 9758 | 0.426 | >5% |
BOD5 | 4156 | ||
Element Name | Test result (mg/kg) | Standard value (mg/kg) | |
Pb | 0.9500 | <1000 | |
Cr | 2.0600 | <1000 | |
AS | 1.9100 | <75 | |
Cd | 0.0151 | <20 | |
Hg | 0.0019 | <25 |
Raw Materials | Price | Cost per Kilogram (CNY) | |
---|---|---|---|
Bentonite | 0.5 CNY/kg | 1 × 10−3 | |
Biological solution | Composition of culture medium | 12 yuan/L | 2.4 |
Carboxymethylcellulose sodium (CMC) | 20 CNY/kg | 1.6 × 10−3 | |
Xanthan gum (XG) | 19 CNY/kg | 2.28 × 10−2 | |
Barite | 0.44 CNY/kg | 1.056 × 10−1 | |
Final cost | 2.531 CNY/kg |
Type | Price per Kilogram |
---|---|
Lianyungang Chemical Drilling Fluid A | 7.4 CNY/kg |
Shandong Compound Drilling Fluid B | 4.8 CNY/kg |
Shandong Chemical Fiber Drilling Mud C | 8.8 CNY/kg |
Xi’an Chemical Mud D | 3.92 CNY/kg |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pan, R.; Shu, Z.; Chen, Y.; Sha, X.; Zhang, X.; Han, Y. Microbially Induced Calcite Precipitation (MICP) Improved Drilling Fluid Optimization for Gravel Stratum. Processes 2025, 13, 162. https://doi.org/10.3390/pr13010162
Pan R, Shu Z, Chen Y, Sha X, Zhang X, Han Y. Microbially Induced Calcite Precipitation (MICP) Improved Drilling Fluid Optimization for Gravel Stratum. Processes. 2025; 13(1):162. https://doi.org/10.3390/pr13010162
Chicago/Turabian StylePan, Rui, Zhou Shu, Yumin Chen, Xiaobing Sha, Xinquan Zhang, and Yi Han. 2025. "Microbially Induced Calcite Precipitation (MICP) Improved Drilling Fluid Optimization for Gravel Stratum" Processes 13, no. 1: 162. https://doi.org/10.3390/pr13010162
APA StylePan, R., Shu, Z., Chen, Y., Sha, X., Zhang, X., & Han, Y. (2025). Microbially Induced Calcite Precipitation (MICP) Improved Drilling Fluid Optimization for Gravel Stratum. Processes, 13(1), 162. https://doi.org/10.3390/pr13010162