Anti-Proliferative Activity of Ethylenediurea Derivatives with Alkyl and Oxygen-Containing Groups as Substituents
<p>The structures of ortho-tropolin riboside (<b>A</b>), forchlorfenuron (<b>B</b>), and ethylenediurea-based aryl carbamate variant (<b>C</b>).</p> "> Figure 2
<p>The anti-proliferative effect of the most active compounds, <b>6</b> (<b>A</b>) and <b>8</b> (<b>B</b>), on the MDA-MB-231, U-87MG, A-375, and SH-SY5Y cells during short-term incubation (24 h). Negative control cells (100% viability) were treated with 0.5% DMSO. Positive control cells (0% cell proliferation) were incubated in the cell culture medium without serum. Resazurin test data, amalgamated data of N = 3 experiments, mean ± standard error. *, a statistically significant difference from the control without the substance, <span class="html-italic">p</span> < 0.05 in ANOVA with the Tukey post-test.</p> "> Figure 3
<p>The anti-proliferative effect of the most active compound, <b>6</b>, on the MDA-MB-231 (<b>A</b>), A-375 (<b>B</b>), and U-87 MG (<b>C</b>) cells during long-term incubation (72 h). Negative control cells (100% viability) were treated with 0.5% DMSO. Positive control cells (0% cell proliferation) were incubated in the cell culture medium without serum. Resazurin test data, amalgamated data of N = 3 experiments, mean ± standard error. *, a statistically significant difference from the control without the substance, <span class="html-italic">p</span> < 0.05 in ANOVA with the Tukey post-test.</p> "> Figure 4
<p>Cell death induction by compound <b>6</b> for the MDA-MB-231 (<b>A</b>), A-375 (<b>B</b>), and U-87 MG (<b>C</b>) cell line. Negative control cells (100% viability) were treated with 0.5% DMSO. Positive control cells (100% cell death) were treated with 3.6 μL of 50% Triton X-100 in ethanol per 200 μL of the cell culture medium. LDH test data, 72 h incubation time. Amalgamated data of <span class="html-italic">N</span> = 3 experiments.</p> "> Figure 5
<p>The effect of compound <b>6</b> on the viability of the human immortalized fibroblast Bj-5ta cell line (<b>A</b>) and HEK 293 cell line (<b>B</b>). Negative control cells (100% viability) were treated with 0.5% DMSO. Positive control cells (100% cell death) were treated with 3.6 μL of 50% Triton X-100 in ethanol per 200 μL of the cell culture medium, 24 and 72 h incubation time. Resazurin test data. Mean ± standard error (<span class="html-italic">N</span> = 3 experiments).</p> "> Figure 6
<p>Molecular docking results for adenosine (green) and compound <b>6</b> (cyan) in the active site of the activated A2AR receptor. Red, oxygen; white, hydrogen; blue, nitrogen. AutoDock Vina data; hydrogen bonds are shown in yellow.</p> "> Figure 7
<p>The effect of compound <b>6</b> on doxorubicin activity for the MDA-MB-231 (<b>A</b>,<b>B</b>) and U-87 MG (<b>C</b>,<b>D</b>) cell lines. Negative control cells (100% viability) were treated with 0.5% DMSO. Positive control cells (100% cell death) were treated with 3.6 μL of 50% Triton X-100 in ethanol per 200 μL of the cell culture medium. Note: 72 h incubation time, resazurin (<b>A</b>,<b>C</b>) and LDH (<b>B</b>,<b>D</b>) test data, mean ± standard error (N = 3 amalgamated experiments), <span class="html-italic">p</span> ≤ 0.05.</p> "> Figure 8
<p>The effect of compound <b>6</b> on temozolomide activity for the U-87 MG cell line. Negative control cells (100% viability) were treated with 0.5% DMSO. Positive control cells (100% cell death) were treated with 3.6 μL of 50% Triton X-100 in ethanol per 200 μL of the cell culture medium. Note: 72 h incubation time, resazurin test data, mean ± standard error (N = 3 amalgamated experiments) * Statistically significant difference from the control without the substance in the ANOVA with the Dunnett’s post-test, <span class="html-italic">p</span> ≤ 0.05.</p> "> Scheme 1
<p>Chemical synthesis of EDU derivatives (<b>1</b>–<b>10</b>).</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Chemical Synthesis
2.3. Synthesized Compounds’ Characterization
2.4. Cell Culture
2.5. Cytotoxicity and Proliferation Stimulation
2.6. Cell Viability Assay
2.7. Cell Death Assay
2.8. Molecular Docking
2.9. Statistics
3. Results
3.1. Compound Synthesis
3.2. Influence on Cell Proliferation
3.3. Selectivity of Active Compound 6
3.4. Molecular Docking
3.5. Combined Activity with Doxorubicin
4. Discussion
- Larger substituents (e.g., C2H5) and O linkers tended to result in lower viability (higher potency), particularly in breast cancer and melanoma.
- Smaller substituents (e.g., CH3) and NH linkers generally resulted in higher viability (lower potency).
- Electron-withdrawing groups (e.g., OCH3) may enhance activity compared to electron-donating groups (e.g., CH3).
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Manning, W.J.; Paoletti, E.; Sandermann, H., Jr.; Ernst, D. Ethylenediurea (EDU): A Research Tool for Assessment and Verification of the Effects of Ground Level Ozone on Plants under Natural Conditions. Environ. Pollut. 2011, 159, 3283–3293. [Google Scholar] [CrossRef] [PubMed]
- Feng, Z.; Wang, S.; Szantoi, Z.; Chen, S.; Wang, X. Protection of Plants from Ambient Ozone by Applications of Ethylenediurea (EDU): A Meta-Analytic Review. Environ. Pollut. 2010, 158, 3236–3242. [Google Scholar] [CrossRef] [PubMed]
- Oshchepkov, M.S.; Kalistratova, A.V.; Savelieva, E.M.; Romanov, G.A.; Bystrova, N.A.; Kochetkov, K.A. Natural and Synthetic Cytokinins and Their Applications in Biotechnology, Agrochemistry and Medicine. Russ. Chem. Rev. 2020, 89, 787–810. [Google Scholar] [CrossRef]
- Atallah-Yunes, S.A.; Robertson, M.J. Cytokine Based Immunotherapy for Cancer and Lymphoma: Biology, Challenges and Future Perspectives. Front. Immunol. 2022, 13, 872010. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez, G.; Grúz, J.; D’Acunto, C.W.; Kaňovský, P.; Strnad, M. Cytokinin Plant Hormones Have Neuroprotective Activity in in Vitro Models of Parkinson’s Disease. Molecules 2021, 26, 361. [Google Scholar] [CrossRef] [PubMed]
- Oshchepkov, M.; Kovalenko, L.; Kalistratova, A.; Ivanova, M.; Sherstyanykh, G.; Dudina, P.; Antonov, A.; Cherkasova, A.; Akimov, M. Anti-Proliferative and Cytoprotective Activity of Aryl Carbamate and Aryl Urea Derivatives with Alkyl Groups and Chlorine as Substituents. Molecules 2022, 27, 3616. [Google Scholar] [CrossRef]
- Berraondo, P.; Sanmamed, M.F.; Ochoa, M.C.; Etxeberria, I.; Aznar, M.A.; Pérez-Gracia, J.L.; Rodríguez-Ruiz, M.E.; Ponz-Sarvise, M.; Castañón, E.; Melero, I. Cytokines in Clinical Cancer Immunotherapy. Br. J. Cancer 2019, 120, 6–15. [Google Scholar] [CrossRef] [PubMed]
- Castiglioni, S.; Casati, S.; Ottria, R.; Ciuffreda, P.; Maier, J.A.M. N6-Isopentenyladenosine and Its Analogue N6-Benzyladenosine Induce Cell Cycle Arrest and Apoptosis in Bladder Carcinoma T24 Cells. Anticancer Agents Med. Chem. 2013, 13, 672–678. [Google Scholar] [CrossRef] [PubMed]
- Voller, J.; Zatloukal, M.; Lenobel, R.; Dolezal, K.; Béres, T.; Krystof, V.; Spíchal, L.; Niemann, P.; Dzubák, P.; Hajdúch, M.; et al. Anticancer Activity of Natural Cytokinins: A Structure-Activity Relationship Study. Phytochemistry 2010, 71, 1350–1359. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Yu, D.L.; Zhang, H.W.; He, L.Y.; Wu, L. Ortho-Topolin Riboside Induces Apoptosis in Acute Myeloid Leukemia HL-60 Cells. Mol. Cell. Toxicol. 2016, 12, 159–166. [Google Scholar] [CrossRef]
- Kim, K.K.; Singh, R.K.; Khazan, N.; Kodza, A.; Singh, N.A.; Jones, A.; Sivagnanalingam, U.; Towner, M.; Itamochi, H.; Turner, R.; et al. Development of Potent Forchlorfenuron Analogs and Their Cytotoxic Effect in Cancer Cell Lines. Sci. Rep. 2020, 10, 3241. [Google Scholar] [CrossRef] [PubMed]
- Weidner, C.; Rousseau, M.; Micikas, R.J.; Fischer, C.; Plauth, A.; Wowro, S.J.; Siems, K.; Hetterling, G.; Kliem, M.; Schroeder, F.C.; et al. Amorfrutin C Induces Apoptosis and Inhibits Proliferation in Colon Cancer Cells through Targeting Mitochondria. J. Nat. Prod. 2016, 79, 2–12. [Google Scholar] [CrossRef] [PubMed]
- Kalistratova, A.V.; Kovalenko, L.V.; Oshchepkov, M.S.; Gamisoniya, A.M.; Gerasimova, T.S.; Demidov, Y.A.; Akimov, M.G. Synthesis of New Compounds in the Series of Aryl-Substituted Ureas with Cytotoxic and Antioxidant Activity. Mendeleev Commun. 2020, 30, 153–155. [Google Scholar] [CrossRef]
- Yonova, P. ChemInform Abstract: Design, Synthesis and Properties of Synthetic Cytokinins. Recent Advances on Their Application. ChemInform 2012, 43, 6. [Google Scholar] [CrossRef]
- Blum, W.; Henzi, T.; Pecze, L.; Diep, K.-L.; Bochet, C.G.; Schwaller, B. The Phytohormone Forchlorfenuron Decreases Viability and Proliferation of Malignant Mesothelioma Cells in Vitro and in Vivo. Oncotarget 2019, 10, 6944–6956. [Google Scholar] [CrossRef] [PubMed]
- Sun, C.; Wang, B.; Hao, S. Adenosine-A2A Receptor Pathway in Cancer Immunotherapy. Front. Immunol. 2022, 13, 837230. [Google Scholar] [CrossRef]
- Myojin, Y.; McCallen, J.D.; Ma, C.; Bauer, K.C.; Ruf, B.; Benmebarek, M.-R.; Green, B.L.; Wabitsch, S.; McVey, J.C.; Fu, C.; et al. Adenosine A2a Receptor Inhibition Increases the Anti-Tumor Efficacy of Anti-PD1 Treatment in Murine Hepatobiliary Cancers. JHEP Rep. 2024, 6, 100959. [Google Scholar] [CrossRef]
- Jacobson, K.A.; Gao, Z.-G.; Matricon, P.; Eddy, M.T.; Carlsson, J. Adenosine A2A Receptor Antagonists: From Caffeine to Selective Non-Xanthines. Br. J. Pharmacol. 2022, 179, 3496–3511. [Google Scholar] [CrossRef]
- Zhang, J.; Gan, Y.; Li, H.; Yin, J.; He, X.; Lin, L.; Xu, S.; Fang, Z.; Kim, B.-W.; Gao, L.; et al. Inhibition of the CDK2 and Cyclin A Complex Leads to Autophagic Degradation of CDK2 in Cancer Cells. Nat. Commun. 2022, 13, 2835. [Google Scholar] [CrossRef]
- Oshchepkov, M.S.; Kovalenko, L.V.; Kalistratova, A.V.; Tkachenko, S.V.; Gorunova, O.N.; Bystrova, N.A.; Kochetkov, K.A. New Hybrid Ethylenediurea (EDU) Derivatives and Their Phytoactivity. Int. J. Mol. Sci. 2024, 25, 3335. [Google Scholar] [CrossRef] [PubMed]
- Decker, T.; Lohmann-Matthes, M.L. A Quick and Simple Method for the Quantitation of Lactate Dehydrogenase Release in Measurements of Cellular Cytotoxicity and Tumor Necrosis Factor (TNF) Activity. J. Immunol. Methods 1988, 115, 61–69. [Google Scholar] [CrossRef] [PubMed]
- Gong, X.; Liang, Z.; Yang, Y.; Liu, H.; Ji, J.; Fan, Y. A Resazurin-Based, Nondestructive Assay for Monitoring Cell Proliferation during a Scaffold-Based 3D Culture Process. Regen. Biomater. 2020, 7, 271–281. [Google Scholar] [CrossRef] [PubMed]
- Linders, A.N.; Dias, I.B.; López Fernández, T.; Tocchetti, C.G.; Bomer, N.; Van der Meer, P. A Review of the Pathophysiological Mechanisms of Doxorubicin-Induced Cardiotoxicity and Aging. npj Aging 2024, 10, 9. [Google Scholar] [CrossRef] [PubMed]
- Al Hmada, Y.; Brodell, R.T.; Kharouf, N.; Flanagan, T.W.; Alamodi, A.A.; Hassan, S.-Y.; Shalaby, H.; Hassan, S.-L.; Haikel, Y.; Megahed, M.; et al. Mechanisms of Melanoma Progression and Treatment Resistance: Role of Cancer Stem-like Cells. Cancers 2024, 16, 470. [Google Scholar] [CrossRef] [PubMed]
- Cheng, R.K.Y.; Segala, E.; Robertson, N.; Deflorian, F.; Doré, A.S.; Errey, J.C.; Fiez-Vandal, C.; Marshall, F.H.; Cooke, R.M. Structures of Human A 1 and A 2A Adenosine Receptors with Xanthines Reveal Determinants of Selectivity. Structure 2017, 25, 1275–1285.e4. [Google Scholar] [CrossRef]
- Lebon, G.; Warne, T.; Edwards, P.C.; Bennett, K.; Langmead, C.J.; Leslie, A.G.W.; Tate, C.G. Agonist-Bound Adenosine A2A Receptor Structures Reveal Common Features of GPCR Activation. Nature 2011, 474, 521–525. [Google Scholar] [CrossRef] [PubMed]
- Castañeda, A.M.; Meléndez, C.M.; Uribe, D.; Pedroza-Díaz, J. Synergistic Effects of Natural Compounds and Conventional Chemotherapeutic Agents: Recent Insights for the Development of Cancer Treatment Strategies. Heliyon 2022, 8, e09519. [Google Scholar] [CrossRef] [PubMed]
- Naseem, M.; Othman, E.M.; Fathy, M.; Iqbal, J.; Howari, F.M.; AlRemeithi, F.A.; Kodandaraman, G.; Stopper, H.; Bencurova, E.; Vlachakis, D.; et al. Integrated Structural and Functional Analysis of the Protective Effects of Kinetin against Oxidative Stress in Mammalian Cellular Systems. Sci. Rep. 2020, 10, 13330. [Google Scholar] [CrossRef]
- Spíchal, L.; Kryŝtof, V.; Paprskářová, M.; Lenobel, R.; Stýskala, J.; Binarová, P.; Cenklová, V.; De Veylder, L.; Inzé, D.; Kontopidis, G.; et al. Classical Anticytokinins Do Not Interact with Cytokinin Receptors but Inhibit Cyclin-Dependent Kinases. J. Biol. Chem. 2007, 282, 14356–14363. [Google Scholar] [CrossRef] [PubMed]
- Gessi, S.; Bencivenni, S.; Battistello, E.; Vincenzi, F.; Colotta, V.; Catarzi, D.; Varano, F.; Merighi, S.; Borea, P.A.; Varani, K. Inhibition of A2A Adenosine Receptor Signaling in Cancer Cells Proliferation by the Novel Antagonist TP455. Front. Pharmacol. 2017, 8, 888. [Google Scholar] [CrossRef] [PubMed]
- Merighi, S.; Mirandola, P.; Milani, D.; Varani, K.; Gessi, S.; Klotz, K.-N.; Leung, E.; Baraldi, P.G.; Borea, P.A. Adenosine Receptors as Mediators of Both Cell Proliferation and Cell Death of Cultured Human Melanoma Cells. J. Investig. Dermatol. 2002, 119, 923–933. [Google Scholar] [CrossRef] [PubMed]
- Murphy, C.S.; Langan-Fahey, S.M.; McCague, R.; Jordan, V.C. Structure-Function Relationships of Hydroxylated Metabolites of Tamoxifen That Control the Proliferation of Estrogen-Responsive T47D Breast Cancer Cells in Vitro. Mol. Pharmacol. 1990, 38, 737–743. [Google Scholar] [PubMed]
- Appeldoorn, T.Y.J.; Munnink, T.H.O.; Morsink, L.M.; Hooge, M.N.L.; Touw, D.J. Pharmacokinetics and Pharmacodynamics of Ruxolitinib: A Review. Clin. Pharmacokinet. 2023, 62, 559–571. [Google Scholar] [CrossRef] [PubMed]
- Fasching, P.A.; Delea, T.E.; Lu, Y.-S.; De Boer, R.; Hurvitz, S.A.; Moynahan, A.; Chandiwana, D.; Lanoue, B.; Hu, H.; Thuerigen, A.; et al. Matching-Adjusted Indirect Comparison of Ribociclib plus Fulvestrant versus Palbociclib plus Letrozole as First-Line Treatment of HR+/HER2- Advanced Breast Cancer. Cancer Manag. Res. 2021, 13, 8179–8189. [Google Scholar] [CrossRef] [PubMed]
- Tsafa, E.; Dimitriadis, K.; Kalampoki, L.; Papapetrou, P.; Georgalis, P.A.; Bozios, G.; Sioka, C.; Tsekeris, P.; Kyritsis, A.P.; Alexiou, G.A.; et al. Synergistic Anti-Cancer Effects of Isocnicin and Radiotherapy in Glioblastoma: A Natural Compound’s Potential. Biomedicines 2024, 12, 2793. [Google Scholar] [CrossRef]
- Giannakopoulou, M.; Dimitriadis, K.; Koromili, M.; Zoi, V.; Vartholomatos, E.; Galani, V.; Kyritsis, A.P.; Alexiou, G.A.; Lazari, D. Siderol Inhibits Proliferation of Glioblastoma Cells and Acts Synergistically with Temozolomide. Biomedicines 2022, 10, 3216. [Google Scholar] [CrossRef] [PubMed]
- Wesolowski, J.R.; Rajdev, P.; Mukherji, S.K. Temozolomide (Temodar). AJNR Am. J. Neuroradiol. 2010, 31, 1383–1384. [Google Scholar] [CrossRef] [PubMed]
- Thorn, C.F.; Oshiro, C.; Marsh, S.; Hernandez-Boussard, T.; McLeod, H.; Klein, T.E.; Altman, R.B. Doxorubicin Pathways. Pharmacogenet. Genom. 2011, 21, 440–446. [Google Scholar] [CrossRef] [PubMed]
Protein Variant | Center | Size | ||||
---|---|---|---|---|---|---|
X | y | z | X | y | z | |
5mzj | −20.1525 | 7.2827 | 18.3689 | 9.86947 | 11.555 | 10.1538 |
2ydo | −30.0788 | 6.16796 | −22.041 | 12.1031 | 18.9539 | 10.608 |
5mzp | −20.9002 | 8.17906 | 17.4545 | 11.2522 | 14.6355 | 11.9605 |
Compound | R1 | R2 | R3 | X | Yield, % |
---|---|---|---|---|---|
1 | CH3 | - | CH3 | NH | 59 |
2 | CH3 | - | CH3 | O | 30 |
3 | - | CH3 | - | NH | 31 |
4 | - | CH3 | - | O | 36 |
5 | C2H5 | - | - | NH | 62 |
6 | C2H5 | - | - | O | 50 |
7 | CH3 | CH3 | - | NH | 58 |
8 | - | OCH3 | - | NH | 35 |
9 | - | OCH3 | - | O | 18 |
10 | - | COOCH3 | - | O | 30 |
Compound | MDA-MB-231 | A-375 | U-87 MG | SH-SY5Y |
---|---|---|---|---|
Proliferation After 24 h Incubation with 100 µM, % | ||||
No substance | 100 ± 6.6 | 100 ± 7.7 | 100 ± 3.2 | 100 ± 5.8 |
1 | 76 ± 9.3 * | 59.1 ± 6.6 * | 65.1 ± 4.5 * | 93.4 ± 6.9 |
2 | 84.9 ± 8.3 | 67.4 ± 6.7 * | 70 ± 1 * | 83.7 ± 4.3 * |
3 | 76.1 ± 9.7 * | 100 ± 6 | 85.9 ± 5.5 * | 85.4 ± 5.6 * |
4 | 61.9 ± 1.5 * | 60.1 ± 3.7 * | 55.4 ± 6.9 * | 100 ± 10.1 |
5 | 66.4 ± 2 * | 96.1 ± 5.9 | 100 ± 9.7 | 93 ± 6.7 |
6 | 26.9 ± 6.8 * | 0 ± 4.1 * | 44.2 ± 6.9 * | 89.4 ± 6.2 |
7 | 100 ± 4.7 | 77 ± 10.3 * | 62.7 ± 5.4 * | 70.9 ± 7.4 * |
8 | 37.9 ± 6.5 * | 78.9 ± 4.6 * | 77.1 ± 7.2 * | 75.9 ± 5.2 * |
9 | 65.7 ± 5.2 * | 79.1 ± 4 * | 60.1 ± 8.1 * | 67.5 ± 10 * |
10 | 73.9 ± 9.9 * | 67.5 ± 7.2 * | 54.1 ± 5.9 * | 71.4 ± 5.8 * |
A2AR Inhibited (Theophylline) | A2AR Activated (Adenosine) | A2AR Inhibited (Caffeine) | |
---|---|---|---|
Affinity Score | |||
Adenosine (activator) | −6.197 | −7.308 | −6.538 |
Caffeine (blocker) | −6.183 | −6.326 | −6.054 |
Compound 6 | −7.824 | −7.898 | −7.643 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oshchepkov, M.; Kovalenko, L.; Kalistratova, A.; Sherstyanykh, G.; Gorbacheva, E.; Antonov, A.; Khadour, N.; Akimov, M. Anti-Proliferative Activity of Ethylenediurea Derivatives with Alkyl and Oxygen-Containing Groups as Substituents. Biomedicines 2025, 13, 316. https://doi.org/10.3390/biomedicines13020316
Oshchepkov M, Kovalenko L, Kalistratova A, Sherstyanykh G, Gorbacheva E, Antonov A, Khadour N, Akimov M. Anti-Proliferative Activity of Ethylenediurea Derivatives with Alkyl and Oxygen-Containing Groups as Substituents. Biomedicines. 2025; 13(2):316. https://doi.org/10.3390/biomedicines13020316
Chicago/Turabian StyleOshchepkov, Maxim, Leonid Kovalenko, Antonida Kalistratova, Galina Sherstyanykh, Evgenia Gorbacheva, Alexey Antonov, Nisreen Khadour, and Mikhail Akimov. 2025. "Anti-Proliferative Activity of Ethylenediurea Derivatives with Alkyl and Oxygen-Containing Groups as Substituents" Biomedicines 13, no. 2: 316. https://doi.org/10.3390/biomedicines13020316
APA StyleOshchepkov, M., Kovalenko, L., Kalistratova, A., Sherstyanykh, G., Gorbacheva, E., Antonov, A., Khadour, N., & Akimov, M. (2025). Anti-Proliferative Activity of Ethylenediurea Derivatives with Alkyl and Oxygen-Containing Groups as Substituents. Biomedicines, 13(2), 316. https://doi.org/10.3390/biomedicines13020316