Extracellular Cold-Inducible RNA-Binding Protein and Hemorrhagic Shock: Mechanisms and Therapeutics
<p>Mechanisms of action of eCIRP in hemorrhagic shock. Damaged vessels are unable to deliver blood to tissue due to hemorrhage. The loss of perfusion and resultant hypoxemia result in ischemic damage to cells. Due to hypoxemia, cellular metabolism shifts to anaerobic metabolism via glycolysis which leads to increasing lactate production. The accumulation of lactate creates an acidotic environment, causing further cell damage. The accumulation of these factors results in cell death by varying mechanisms including apoptosis, necrosis, and necroptosis. As a result of cell death, the cell membrane is disrupted, and intracellular CIRP is released into the extracellular space, becoming eCIRP, as shown in the top right. During the shock state, blood flow is shunted towards vital organs. eCIRP, now in systemic circulation, will also be shunted towards these organs, causing increased inflammation. eCIRP will bind to TLR4 and triggering receptor expressed on myeloid cells (TREM1) receptors on both tissue and circulating macrophages, demonstrated in the bottom left. As a result of this binding, the macrophage will release pro-inflammatory cytokines into circulation, worsening inflammation in the already ischemic tissues. A detailed image shown in the bottom right illustrates eCIRP acting on TLR4/MyD88 and inducing damage to the mitochondria, causing an increase in cytosolic DNA. This cytosolic DNA via the cGAS pathway activates stimulator of interferon genes (STING) on the endoplasmic reticulum membrane. This results in an increase in pIRF, a transcription factor responsible for increasing expression of type I <span class="html-italic">IFNs</span>. The activation of this pathway increases the release of type I IFNs into the circulation. These pathways collectively lead to inflammation and injury in hemorrhagic shock.</p> "> Figure 2
<p>eCIRP as a therapeutic target in hemorrhagic shock. Both C23 and M3 are small peptides derived from the human sequence of CIRP. C23 has high affinity to the TLR4/MD2 complex, and M3 has specific binding for the TREM1 receptor. Thus, both peptides block the binding of eCIRP to their respective receptors. In contrast, A12 is a synthetic oligonucleotide consisting of a poly(A) tail mimic that binds to eCIRP, blocking its binding site to the TLR4/MD2 complex. PS-OME miR 130 is a microRNA with stabilizing adjustments, including 3 phosphorothioate (PS) bonds at the 5′ and 3′ ends and 2′Omethyl (2′Ome) bases. It has a strong binding affinity to eCIRP, thereby preventing eCIRP from signaling via the TLR4/MD2 signaling pathway. As a result, these small molecule peptides and oligonucleotides prevent the interaction between endogenous eCIRP and its target receptors on macrophages. As a result, the inflammatory cascade is inhibited, and the hyperinflammatory response at the initial insult from hemorrhagic shock is prevented.</p> ">
Abstract
:1. Introduction
2. Cold-Inducible RNA-Binding Protein
3. eCIRP and Sterile Inflammation
3.1. eCIRP and Hemorrhagic Shock
3.2. eCIRP and Hepatic Ischemia/Reperfusion (I/R)
3.3. eCIRP and Renal I/R
3.4. eCIRP and Other Human Pathologies
4. eCIRP’s Mechanisms of Action
4.1. TLR4 as an eCIRP Receptor
4.2. TREM-1 as Another eCIRP Receptor
4.3. eCIRP and STING
5. eCIRP as a Therapeutic Target for Hemorrhagic Shock
5.1. C23
5.2. M3
5.3. A12
5.4. PS-OME miR130
5.5. Considerations for eCIRP as a Therapeutic Target in Hemorrhagic Shock
6. Future Studies and Perspectives
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Cannon, J.W. Hemorrhagic Shock. N. Engl. J. Med. 2018, 378, 370–379. [Google Scholar] [CrossRef]
- Kauvar, D.S.; Wade, C.E. The epidemiology and modern management of traumatic hemorrhage: US and international perspectives. Crit. Care 2005, 9 (Suppl. S5), S1–S9. [Google Scholar] [CrossRef] [PubMed]
- Vishwanathan, K.; Chhajwani, S.; Gupta, A.; Vaishya, R. Evaluation and management of haemorrhagic shock in polytrauma: Clinical practice guidelines. J. Clin. Orthop. Trauma 2021, 13, 106–115. [Google Scholar] [CrossRef]
- Goutnik, M.; Nguyen, A.; Fleeting, C.; Patel, A.; Lucke-Wold, B.; Laurent, D.; Wahbeh, T.; Amini, S.; Al Saiegh, F.; Koch, M.; et al. Assessment of blood loss during neuroendovascular procedures. J. Clin. Med. 2024, 13, 677. [Google Scholar] [CrossRef] [PubMed]
- Kalogeris, T.; Baines, C.P.; Krenz, M.; Korthuis, R.J. Cell biology of ischemia/reperfusion injury. Int. Rev. Cell Mol. Biol. 2012, 298, 229–317. [Google Scholar] [CrossRef] [PubMed]
- Dufour-Gaume, F.; Frescaline, N.; Cardona, V.; Prat, N.J. Danger signals in traumatic hemorrhagic shock and new lines for clinical applications. Front. Physiol. 2022, 13, 999011. [Google Scholar] [CrossRef] [PubMed]
- Huber-Lang, M.; Gebhard, F.; Schmidt, C.Q.; Palmer, A.; Denk, S.; Wiegner, R. Complement therapeutic strategies in trauma, hemorrhagic shock and systemic inflammation—Closing Pandora’s box? Semin. Immunol. 2016, 28, 278–284. [Google Scholar] [CrossRef]
- Eastridge, B.J.; Holcomb, J.B.; Shackelford, S. Outcomes of traumatic hemorrhagic shock and the epidemiology of preventable death from injury. Transfusion 2019, 59, 1423–1428. [Google Scholar] [CrossRef]
- van Breugel, J.M.M.; Niemeyer, M.J.S.; Houwert, R.M.; Groenwold, R.H.H.; Leenen, L.P.H.; van Wessem, K.J.P. Global changes in mortality rates in polytrauma patients admitted to the ICU-a systematic review. World J. Emerg. Surg. 2020, 15, 55. [Google Scholar] [CrossRef] [PubMed]
- Iyengar, K.P.; Venkatesan, A.S.; Jain, V.K.; Shashidhara, M.K.; Elbana, H.; Botchu, R. Risks in the management of polytrauma patients: Clinical Insights. Orthop. Res. Rev. 2023, 15, 27–38. [Google Scholar] [CrossRef]
- Sperry, J.L.; Guyette, F.X.; Brown, J.B.; Yazer, M.H.; Triulzi, D.J.; Early-Young, B.J.; Adams, P.W.; Daley, B.J.; Miller, R.S.; Harbrecht, B.G.; et al. Prehospital plasma during air medical transport in trauma patients at risk for hemorrhagic shock. N. Engl. J. Med. 2018, 379, 315–326. [Google Scholar] [CrossRef]
- The PATCH-Trauma Investigators and the ANZICS Clinical Trials Group; Gruen, R.L.; Mitra, B.; Bernard, S.A.; McArthur, C.J.; Burns, B.; Gantner, D.C.; Maegele, M.; Cameron, P.A.; Dicker, B.; et al. Prehospital Tranexamic Acid for severe trauma. N. Engl. J. Med. 2023, 389, 127–136. [Google Scholar] [CrossRef]
- Davenport, R.; Curry, N.; Fox, E.E.; Thomas, H.; Lucas, J.; Evans, A.; Shanmugaranjan, S.; Sharma, R.; Deary, A.; Edwards, A.; et al. Early and empirical high-dose cryoprecipitate for hemorrhage after traumatic injury: The CRYOSTAT-2 Randomized Clinical Trial. JAMA 2023, 330, 1882–1891. [Google Scholar] [CrossRef]
- Relja, B.; Land, W.G. Damage-associated molecular patterns in trauma. Eur. J. Trauma Emerg. Surg. 2020, 46, 751–775. [Google Scholar] [CrossRef]
- Qiang, X.; Yang, W.L.; Wu, R.; Zhou, M.; Jacob, A.; Dong, W.; Kuncewitch, M.; Ji, Y.; Yang, H.; Wang, H.; et al. Cold-inducible RNA-binding protein (CIRP) triggers inflammatory responses in hemorrhagic shock and sepsis. Nat. Med. 2013, 19, 1489–1495. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Bloom, O.; Zhang, M.; Vishnubhakat, J.M.; Ombrellino, M.; Che, J.; Frazier, A.; Yang, H.; Ivanova, S.; Borovikova, L.; et al. HMG-1 as a late mediator of endotoxin lethality in mice. Science 1999, 285, 248–251. [Google Scholar] [CrossRef] [PubMed]
- Scaffidi, P.; Misteli, T.; Bianchi, M.E. Release of chromatin protein HMGB1 by necrotic cells triggers inflammation. Nature 2002, 418, 191–195. [Google Scholar] [CrossRef]
- Tsung, A.; Sahai, R.; Tanaka, H.; Nakao, A.; Fink, M.P.; Lotze, M.T.; Yang, H.; Li, J.; Tracey, K.J.; Geller, D.A.; et al. The nuclear factor HMGB1 mediates hepatic injury after murine liver ischemia-reperfusion. J. Exp. Med. 2005, 201, 1135–1143. [Google Scholar] [CrossRef]
- Tang, D.; Kang, R.; Coyne, C.B.; Zeh, H.J.; Lotze, M.T. PAMPs and DAMPs: Signal 0s that spur autophagy and immunity. Immunol. Rev. 2012, 249, 158–175. [Google Scholar] [CrossRef]
- Biswas, D.; Qureshi, O.S.; Lee, W.Y.; Croudace, J.E.; Mura, M.; Lammas, D.A. ATP-induced autophagy is associated with rapid killing of intracellular mycobacteria within human monocytes/macrophages. BMC Immunol. 2008, 9, 35. [Google Scholar] [CrossRef] [PubMed]
- Ghavami, S.; Eshragi, M.; Ande, S.R.; Chazin, W.J.; Klonisch, T.; Halayko, A.J.; McNeill, K.D.; Hashemi, M.; Kerkhoff, C.; Los, M. S100A8/A9 induces autophagy and apoptosis via ROS-mediated cross-talk between mitochondria and lysosomes that involves BNIP3. Cell Res. 2010, 20, 314–331. [Google Scholar] [CrossRef] [PubMed]
- Takenouchi, T.; Nakai, M.; Iwamaru, Y.; Sugama, S.; Tsukimoto, M.; Fujita, M.; Wei, J.; Sekigawa, A.; Sato, M.; Kojima, S.; et al. The activation of P2X7 receptor impairs lysosomal functions and stimulates the release of autophagolysosomes in microglial cells. J. Immunol. 2009, 182, 2051–2062. [Google Scholar] [CrossRef]
- Guisasola, M.C.; Ortiz, A.; Chana, F.; Alonso, B.; Vaquero, J. Early inflammatory response in polytraumatized patients: Cytokines and heat shock proteins. A pilot study. Orthop. Traumatol. Surg. Res. 2015, 101, 607–611. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Li, Y.; Mu, T. HMGB1 neutralizing antibody attenuates cardiac injury and apoptosis induced by hemorrhagic ahock/resuscitation in rats. Biol. Pharm. Bull. 2015, 38, 1150–1160. [Google Scholar] [CrossRef] [PubMed]
- Shimono, K.; Ito, T.; Kamikokuryo, C.; Niiyama, S.; Yamada, S.; Onishi, H.; Yoshihara, H.; Maruyama, I.; Kakihana, Y. Damage-associated molecular patterns and fibrinolysis perturbation are associated with lethal outcomes in traumatic injury. Thromb. J. 2023, 21, 91. [Google Scholar] [CrossRef] [PubMed]
- Aswani, A.; Manson, J.; Itagaki, K.; Chiazza, F.; Collino, M.; Wupeng, W.L.; Chan, T.K.; Wong, W.S.F.; Hauser, C.J.; Thiemermann, C.; et al. Scavenging circulating mitochondrial DNA as a potential therapeutic option for multiple organ dysfunction in trauma hemorrhage. Front. Immunol. 2018, 9, 891. [Google Scholar] [CrossRef] [PubMed]
- Gogenur, M.; Burcharth, J.; Gogenur, I. The role of total cell-free DNA in predicting outcomes among trauma patients in the intensive care unit: A systematic review. Crit. Care 2017, 21, 14. [Google Scholar] [CrossRef] [PubMed]
- Nishiyama, H.; Itoh, K.; Kaneko, Y.; Kishishita, M.; Yoshida, O.; Fujita, J. A glycine-rich RNA-binding protein mediating cold-inducible suppression of mammalian cell growth. J. Cell Biol. 1997, 137, 899–908. [Google Scholar] [CrossRef]
- Nishiyama, H.; Higashitsuji, H.; Yokoi, H.; Itoh, K.; Danno, S.; Matsuda, T.; Fujita, J. Cloning and characterization of human CIRP (cold-inducible RNA-binding protein) cDNA and chromosomal assignment of the gene. Gene 1997, 204, 115–120. [Google Scholar] [CrossRef]
- Wu, L.; Sun, H.L.; Gao, Y.; Hui, K.L.; Xu, M.M.; Zhong, H.; Duan, M.L. Therapeutic hypothermia enhances cold-inducible RNA-binding protein expression and inhibits mitochondrial apoptosis in a rat model of cardiac arrest. Mol. Neurobiol. 2017, 54, 2697–2705. [Google Scholar] [CrossRef]
- Lv, S.; Zhou, Y.; Chen, J.; Yuan, H.; Zhang, Z.N.; Luan, B. Hepatic ER stress suppresses adipose browning through ATF4-CIRP-ANGPTL3 cascade. Cell Rep. 2022, 40, 111422. [Google Scholar] [CrossRef] [PubMed]
- Pan, F.; Zarate, J.; Choudhury, A.; Rupprecht, R.; Bradley, T.M. Osmotic stress of salmon stimulates upregulation of a cold inducible RNA binding protein (CIRP) similar to that of mammals and amphibians. Biochimie 2004, 86, 451–461. [Google Scholar] [CrossRef] [PubMed]
- Sheikh, M.S.; Carrier, F.; Papathanasiou, M.A.; Hollander, M.C.; Zhan, Q.; Yu, K.; Fornace, A.J., Jr. Identification of several human homologs of hamster DNA damage-inducible transcripts. Cloning and characterization of a novel UV-inducible cDNA that codes for a putative RNA-binding protein. J. Biol. Chem. 1997, 272, 26720–26726. [Google Scholar] [CrossRef]
- Rana, S.; Jogi, M.K.; Choudhary, S.; Thakur, R.; Sahoo, G.C.; Joshi, V. Unraveling the intricacies of cold-inducible RNA-binding protein: A comprehensive review. Cell Stress Chaperones 2024, 29, 615–625. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.K.; Lin, W.L.; Chen, Z.; Liu, H.W. PARP-1-dependent recruitment of cold-inducible RNA-binding protein promotes double-strand break repair and genome stability. Proc. Natl. Acad. Sci. USA 2018, 115, E1759–E1768. [Google Scholar] [CrossRef]
- Fujita, Y.; Yago, T.; Matsumoto, H.; Asano, T.; Matsuoka, N.; Temmoku, J.; Sato, S.; Yashiro-Furuya, M.; Suzuki, E.; Watanabe, H.; et al. Cold-inducible RNA-binding protein (CIRP) potentiates uric acid-induced IL-1beta production. Arthritis Res. Ther. 2021, 23, 128. [Google Scholar] [CrossRef]
- Li, Y.; Wu, X.; Miao, S.; Cao, Q. MiR-383-5p promotes apoptosis of ovarian granulosa cells by targeting CIRP through the PI3K/AKT signaling pathway. Arch. Gynecol. Obstet. 2022, 306, 501–512. [Google Scholar] [CrossRef] [PubMed]
- Liao, Y.; Feng, J.; Sun, W.; Wu, C.; Li, J.; Jing, T.; Liang, Y.; Qian, Y.; Liu, W.; Wang, H. CIRP promotes the progression of non-small cell lung cancer through activation of Wnt/beta-catenin signaling via CTNNB1. J. Exp. Clin. Cancer Res. 2021, 40, 275. [Google Scholar] [CrossRef] [PubMed]
- Zhong, P.; Peng, J.; Bian, Z.; Huang, H. The role of cold inducible RNA-binding protein in cardiac physiology and diseases. Front. Pharmacol. 2021, 12, 610792. [Google Scholar] [CrossRef] [PubMed]
- Fujita, Y.; Yago, T.; Asano, T.; Matsumoto, H.; Matsuoka, N.; Temmoku, J.; Sato, S.; Yashiro-Furuya, M.; Suzuki, E.; Watanabe, H.; et al. Clinical relevance for circulating cold-inducible RNA-binding protein (CIRP) in patients with adult-onset Still’s disease. PLoS ONE 2021, 16, e0255493. [Google Scholar] [CrossRef]
- Han, J.; Zhang, Y.; Ge, P.; Dakal, T.C.; Wen, H.; Tang, S.; Luo, Y.; Yang, Q.; Hua, B.; Zhang, G.; et al. Exosome-derived CIRP: An amplifier of inflammatory diseases. Front. Immunol. 2023, 14, 1066721. [Google Scholar] [CrossRef] [PubMed]
- Quintana, F.J.; Cohen, I.R. Heat shock proteins as endogenous adjuvants in sterile and septic inflammation. J. Immunol. 2005, 175, 2777–2782. [Google Scholar] [CrossRef]
- Li, Z.; Fan, E.K.; Liu, J.; Scott, M.J.; Li, Y.; Li, S.; Xie, W.; Billiar, T.R.; Wilson, M.A.; Jiang, Y.; et al. Cold-inducible RNA-binding protein through TLR4 signaling induces mitochondrial DNA fragmentation and regulates macrophage cell death after trauma. Cell Death Dis. 2017, 8, e2775. [Google Scholar] [CrossRef]
- Zhong, P.; Huang, H. Recent progress in the research of cold-inducible RNA-binding protein. Future Sci. OA 2017, 3, FSO246. [Google Scholar] [CrossRef] [PubMed]
- Zhong, P.; Zhou, M.; Zhang, J.; Peng, J.; Zeng, G.; Huang, H. The role of cold-inducible RNA-binding protein in respiratory diseases. J. Cell Mol. Med. 2022, 26, 957–965. [Google Scholar] [CrossRef] [PubMed]
- Dupas, T.; Aillerie, V.; Vergnaud, A.; Pele, T.; Persello, A.; Blangy-Letheule, A.; Erraud, A.; Erfanian, M.; Hivonnait, A.; Maillard, A.; et al. Developing a clinically relevant hemorrhagic shock model in rats. J. Vis. Exp. 2024, 22, e66523. [Google Scholar] [CrossRef]
- Godwin, A.; Yang, W.L.; Sharma, A.; Khader, A.; Wang, Z.; Zhang, F.; Nicastro, J.; Coppa, G.F.; Wang, P. Blocking cold-inducible RNA-binding protein protects liver from ischemia-reperfusion injury. Shock 2015, 43, 24–30. [Google Scholar] [CrossRef] [PubMed]
- Abe, Y.; Hines, I.N.; Zibari, G.; Pavlick, K.; Gray, L.; Kitagawa, Y.; Grisham, M.B. Mouse model of liver ischemia and reperfusion injury: Method for studying reactive oxygen and nitrogen metabolites in vivo. Free Radic. Biol. Med. 2009, 46, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Smith, T.; Zaidi, A.; Brown, C.V.M.; Pino-Chavez, G.; Bowen, T.; Meran, S.; Fraser, D.; Chavez, R.; Khalid, U. Robust rat and mouse models of bilateral renal ischemia reperfusion injury. In Vivo 2024, 38, 1049–1057. [Google Scholar] [CrossRef]
- Cen, C.; Yang, W.L.; Yen, H.T.; Nicastro, J.M.; Coppa, G.F.; Wang, P. Deficiency of cold-inducible ribonucleic acid-binding protein reduces renal injury after ischemia-reperfusion. Surgery 2016, 160, 473–483. [Google Scholar] [CrossRef] [PubMed]
- Risdon, R.A.; Sloper, J.C.; De Wardener, H.E. Relationship between renal function and histological changes found in renal-biopsy specimens from patients with persistent glomerular nephritis. Lancet 1968, 2, 363–366. [Google Scholar] [CrossRef] [PubMed]
- Feng, Z.; Cao, X.; Zhao, C.; Niu, J.; Yan, Y.; Shi, T.; Hao, J.; Zheng, X. Serum CIRP increases the risk of acute kidney injury after cardiac surgery. Front. Med. 2023, 10, 1258622. [Google Scholar] [CrossRef] [PubMed]
- Chen, K.; Wang, D.X.; He, Y.C.; Fang, M.H.; Hou, P.; Tan, Y.M.; Liu, Y.; Jin, Y.; Yu, L.M.; Zhang, Y. Potential role of extracellular CIRP in total aortic arch replacement under hypothermic circulatory arrest. J. Cardiac Surg. 2023, 2023, 6178343. [Google Scholar] [CrossRef]
- Wang, L.; Li, R.F.; Guan, X.L.; Liang, S.S.; Gong, P. The value of extracellular cold-inducible RNA-binding protein (eCIRP) in predicting the severity and prognosis of patients after cardiac arrest: A preliminary o0bservational study. Shock 2021, 56, 229–236. [Google Scholar] [CrossRef] [PubMed]
- Gay, N.J.; Keith, F.J. Drosophila Toll and IL-1 receptor. Nature 1991, 351, 355–356. [Google Scholar] [CrossRef]
- Sims, J.E.; March, C.J.; Cosman, D.; Widmer, M.B.; MacDonald, H.R.; McMahan, C.J.; Grubin, C.E.; Wignall, J.M.; Jackson, J.L.; Call, S.M.; et al. cDNA expression cloning of the IL-1 receptor, a member of the immunoglobulin superfamily. Science 1988, 241, 585–589. [Google Scholar] [CrossRef] [PubMed]
- O’Neill, L. The Toll/interleukin-1 receptor domain: A molecular switch for inflammation and host defence. Biochem. Soc. Trans. 2000, 28, 557–563. [Google Scholar] [CrossRef] [PubMed]
- Fitzgerald, K.A.; O’Neill, L.A. The role of the interleukin-1/Toll-like receptor superfamily in inflammation and host defence. Microbes Infect. 2000, 2, 933–943. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Wu, M. Pattern recognition receptors in health and diseases. Signal Transduct. Target. Ther. 2021, 6, 291. [Google Scholar] [CrossRef] [PubMed]
- Zughaier, S.M.; Zimmer, S.M.; Datta, A.; Carlson, R.W.; Stephens, D.S. Differential induction of the toll-like receptor 4-MyD88-dependent and -independent signaling pathways by endotoxins. Infect. Immun. 2005, 73, 2940–2950. [Google Scholar] [CrossRef] [PubMed]
- Powers, K.A.; Szaszi, K.; Khadaroo, R.G.; Tawadros, P.S.; Marshall, J.C.; Kapus, A.; Rotstein, O.D. Oxidative stress generated by hemorrhagic shock recruits Toll-like receptor 4 to the plasma membrane in macrophages. J. Exp. Med. 2006, 203, 1951–1961. [Google Scholar] [CrossRef] [PubMed]
- Zettel, K.; Korff, S.; Zamora, R.; Morelli, A.E.; Darwiche, S.; Loughran, P.A.; Elson, G.; Shang, L.; Salgado-Pires, S.; Scott, M.J.; et al. Toll-like receptor 4 on both myeloid cells and dendritic cells is required for systemic inflammation and organ damage after hemorrhagic shock with tissue trauma in mice. Front. Immunol. 2017, 8, 1672. [Google Scholar] [CrossRef] [PubMed]
- Shimazu, R.; Akashi, S.; Ogata, H.; Nagai, Y.; Fukudome, K.; Miyake, K.; Kimoto, M. MD-2, a molecule that confers lipopolysaccharide responsiveness on Toll-like receptor 4. J. Exp. Med. 1999, 189, 1777–1782. [Google Scholar] [CrossRef] [PubMed]
- Bouchon, A.; Dietrich, J.; Colonna, M. Cutting edge: Inflammatory responses can be triggered by TREM-1, a novel receptor expressed on neutrophils and monocytes. J. Immunol. 2000, 164, 4991–4995. [Google Scholar] [CrossRef] [PubMed]
- Colonna, M. The biology of TREM receptors. Nat. Rev. Immunol. 2023, 23, 580–594. [Google Scholar] [CrossRef] [PubMed]
- Tessarz, A.S.; Cerwenka, A. The TREM-1/DAP12 pathway. Immunol. Lett. 2008, 116, 111–116. [Google Scholar] [CrossRef]
- Fortin, C.F.; Lesur, O.; Fulop, T., Jr. Effects of TREM-1 activation in human neutrophils: Activation of signaling pathways, recruitment into lipid rafts and association with TLR4. Int. Immunol. 2007, 19, 41–50. [Google Scholar] [CrossRef] [PubMed]
- Bleharski, J.R.; Kiessler, V.; Buonsanti, C.; Sieling, P.A.; Stenger, S.; Colonna, M.; Modlin, R.L. A role for triggering receptor expressed on myeloid cells-1 in host defense during the early-induced and adaptive phases of the immune response. J. Immunol. 2003, 170, 3812–3818. [Google Scholar] [CrossRef] [PubMed]
- Gibot, S.; Massin, F.; Alauzet, C.; Derive, M.; Montemont, C.; Collin, S.; Fremont, S.; Levy, B. Effects of the TREM 1 pathway modulation during hemorrhagic shock in rats. Shock 2009, 32, 633–637. [Google Scholar] [CrossRef] [PubMed]
- Harrois, A.; Soyer, B.; Gauss, T.; Hamada, S.; Raux, M.; Duranteau, J.; Traumabase, G. Prevalence and risk factors for acute kidney injury among trauma patients: A multicenter cohort study. Crit. Care 2018, 22, 344. [Google Scholar] [CrossRef]
- Siskind, S.; Zhang, F.; Brenner, M.; Wang, P. Extracellular CIRP induces acute kidney injury via endothelial TREM-1. Front. Physiol. 2022, 13, 954815. [Google Scholar] [CrossRef]
- Bradley, P.P.; Priebat, D.A.; Christensen, R.D.; Rothstein, G. Measurement of cutaneous inflammation: Estimation of neutrophil content with an enzyme marker. J. Investig. Dermatol. 1982, 78, 206–209. [Google Scholar] [CrossRef] [PubMed]
- Borjas, T.; Jacob, A.; Yen, H.; Patel, V.; Coppa, G.F.; Aziz, M.; Wang, P. Inhibition of the interaction of TREM-1 and eCIRP attenuates inflammation and improves survival in hepatic ischemia/reperfusion. Shock 2022, 57, 246–255. [Google Scholar] [CrossRef]
- Su, T.; Zhang, Y.; Valerie, K.; Wang, X.Y.; Lin, S.; Zhu, G. STING activation in cancer immunotherapy. Theranostics 2019, 9, 7759–7771. [Google Scholar] [CrossRef] [PubMed]
- Ishikawa, H.; Barber, G.N. STING is an endoplasmic reticulum adaptor that facilitates innate immune signalling. Nature 2008, 455, 674–678. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.; Wu, J.; Du, F.; Chen, X.; Chen, Z.J. Cyclic GMP-AMP synthase is a cytosolic DNA sensor that activates the type I interferon pathway. Science 2013, 339, 786–791. [Google Scholar] [CrossRef] [PubMed]
- Fitzgerald-Bocarsly, P.; Feng, D. The role of type I interferon production by dendritic cells in host defense. Biochimie 2007, 89, 843–855. [Google Scholar] [CrossRef]
- Chen, K.; Cagliani, J.; Aziz, M.; Tan, C.; Brenner, M.; Wang, P. Extracellular CIRP activates STING to exacerbate hemorrhagic shock. JCI Insight 2021, 6, e143715. [Google Scholar] [CrossRef]
- Hu, W.; Jain, A.; Gao, Y.; Dozmorov, I.M.; Mandraju, R.; Wakeland, E.K.; Pasare, C. Differential outcome of TRIF-mediated signaling in TLR4 and TLR3 induced DC maturation. Proc. Natl. Acad. Sci. USA 2015, 112, 13994–13999. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, M.; Yasuda, H.; Nakamura, S.; Shimazawa, M. H-151, a selective STING inhibitor, has potential as a treatment for neovascular age-related macular degeneration. Investig. Ophthalmol. Vis. Sci. 2024, 65, 16. [Google Scholar] [CrossRef] [PubMed]
- Hu, Z.; Zhang, F.; Brenner, M.; Jacob, A.; Wang, P. The protective effect of H151, a novel STING inhibitor, in renal ischemia-reperfusion-induced acute kidney injury. Am. J. Physiol. Renal Physiol. 2023, 324, F558–F567. [Google Scholar] [CrossRef] [PubMed]
- Simon, R.H.; DeHart, P.D.; Todd, R.F., 3rd. Neutrophil-induced injury of rat pulmonary alveolar epithelial cells. J. Clin. Investig. 1986, 78, 1375–1386. [Google Scholar] [CrossRef]
- McGinn, J.; Zhang, F.; Aziz, M.; Yang, W.L.; Nicastro, J.; Coppa, G.F.; Wang, P. The protective effect of a short peptide derived From cold-inducible RNA-Binding protein in renal ischemia-reperfusion injury. Shock 2018, 49, 269–276. [Google Scholar] [CrossRef]
- Xanthos, T.T.; Balkamou, X.A.; Stroumpoulis, K.I.; Pantazopoulos, I.N.; Rokas, G.I.; Agrogiannis, G.D.; Troupis, G.T.; Demestiha, T.D.; Skandalakis, P.N. A model of hemorrhagic shock and acute lung injury in Landrace-Large White Swine. Comp. Med. 2011, 61, 158–162. [Google Scholar] [PubMed]
- MacCallum, N.S.; Evans, T.W. Epidemiology of acute lung injury. Curr. Opin. Crit. Care 2005, 11, 43–49. [Google Scholar] [CrossRef]
- Zhang, F.; Yang, W.L.; Brenner, M.; Wang, P. Attenuation of hemorrhage-associated lung injury by adjuvant treatment with C23, an oligopeptide derived from cold-inducible RNA-binding protein. J. Trauma Acute Care Surg. 2017, 83, 690–697. [Google Scholar] [CrossRef] [PubMed]
- Denning, N.L.; Aziz, M.; Murao, A.; Gurien, S.D.; Ochani, M.; Prince, J.M.; Wang, P. Extracellular CIRP as an endogenous TREM-1 ligand to fuel inflammation in sepsis. JCI Insight 2020, 5, e134172. [Google Scholar] [CrossRef] [PubMed]
- Gurien, S.D.; Aziz, M.; Cagliani, J.; Denning, N.L.; Last, J.; Royster, W.; Coppa, G.F.; Wang, P. An extracellular cold-inducible RNA-binding protein-derived small peptide targeting triggering receptor expressed on myeloid cells-1 attenuates hemorrhagic shock. J. Trauma Acute Care Surg. 2020, 88, 809–815. [Google Scholar] [CrossRef] [PubMed]
- Siskind, S.; Royster, W.; Brenner, M.; Wang, P. A novel eCIRP/TREM-1 pathway inhibitor attenuates acute kidney injury. Surgery 2022, 172, 639–647. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Wang, N.; Zhang, W.; Cheng, X.; Yan, Z.; Shao, G.; Wang, X.; Wang, R.; Fu, C. Therapeutic peptides: Current applications and future directions. Signal Transduct. Target. Ther. 2022, 7, 48. [Google Scholar] [CrossRef]
- Murao, A.; Jha, A.; Ma, G.; Chaung, W.; Aziz, M.; Wang, P. A synthetic Poly(A) tail targeting extracellular CIRP inhibits sepsis. J. Immunol. 2023, 211, 1144–1153. [Google Scholar] [CrossRef] [PubMed]
- Hu, Z.; Li, J.; Zhang, F.; Jacob, A.; Wang, P. A novel oligonucleotide mRNA mimic attenuates hemorrhage-induced acute lung injury. Shock 2024, 61, 630–637. [Google Scholar] [CrossRef]
- Roberts, T.C.; Langer, R.; Wood, M.J.A. Advances in oligonucleotide drug delivery. Nat. Rev. Drug Discov. 2020, 19, 673–694. [Google Scholar] [CrossRef] [PubMed]
- Borjas, T.; Jacob, A.; Kobritz, M.; Patel, V.; Coppa, G.F.; Aziz, M.; Wang, P. A novel miRNA mimic attenuates organ injury after hepatic ischemia/reperfusion. J. Trauma Acute Care Surg. 2023, 94, 702–709. [Google Scholar] [CrossRef]
- Ho, P.T.B.; Clark, I.M.; Le, L.T.T. MicroRNA-based diagnosis and therapy. Int. J. Mol. Sci. 2022, 23, 7167. [Google Scholar] [CrossRef] [PubMed]
- Khvorova, A.; Watts, J.K. The chemical evolution of oligonucleotide therapies of clinical utility. Nat. Biotechnol. 2017, 35, 238–248. [Google Scholar] [CrossRef] [PubMed]
- Vazquez, G.; Sfakianos, M.; Coppa, G.; Jacob, A.; Wang, P. Novel Ps-Ome miRNA130b-3p reduces inflammation and injury and improves survival after renal ischemia-reperfusion injury. Shock 2023, 60, 613–620. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rashid, N.; Hu, Z.; Jacob, A.; Wang, P. Extracellular Cold-Inducible RNA-Binding Protein and Hemorrhagic Shock: Mechanisms and Therapeutics. Biomedicines 2025, 13, 12. https://doi.org/10.3390/biomedicines13010012
Rashid N, Hu Z, Jacob A, Wang P. Extracellular Cold-Inducible RNA-Binding Protein and Hemorrhagic Shock: Mechanisms and Therapeutics. Biomedicines. 2025; 13(1):12. https://doi.org/10.3390/biomedicines13010012
Chicago/Turabian StyleRashid, Naureen, Zhijian Hu, Asha Jacob, and Ping Wang. 2025. "Extracellular Cold-Inducible RNA-Binding Protein and Hemorrhagic Shock: Mechanisms and Therapeutics" Biomedicines 13, no. 1: 12. https://doi.org/10.3390/biomedicines13010012
APA StyleRashid, N., Hu, Z., Jacob, A., & Wang, P. (2025). Extracellular Cold-Inducible RNA-Binding Protein and Hemorrhagic Shock: Mechanisms and Therapeutics. Biomedicines, 13(1), 12. https://doi.org/10.3390/biomedicines13010012