Gut Microbiota, Bacterial Translocation, and Stroke: Current Knowledge and Future Directions
<p>Schematic representation of the MGBA under two distinct conditions. Left: The primary pathways involved in the MGBA in a healthy state, illustrating the connections between the brain and gut through neuroendocrine pathways (ANS and ENS, including the vagus nerve, and the HPA axis), as well as the immune system. Right: Alterations in MGBA pathways following stroke. The increase in catecholamines and cortisol induces systemic immunosuppression. Stroke-induced overactivation of the HPA axis and the ANS/ENS systems leads to increased gastrointestinal permeability, dysbiosis, inflammation, and alterations in intestinal motility. Together, these factors contribute to the exacerbation of both peripheral and brain inflammatory processes, as well as an increased susceptibility to SAIs by promoting BT from the gut to sterile organs, thereby raising the risk of secondary infections.</p> "> Figure 2
<p>Potential therapeutic strategies to reduce GI dysbiosis, leaky gut, and BT after stroke.</p> ">
Abstract
:1. Introduction
2. Microbiota–Gut–Brain Axis, Intestinal Dysbiosis, and Gut Barrier Damage After IS
2.1. Impaired Neurotransmission Inside the ANS
2.2. Dysregulation of the HPA Axis
2.3. Failures in the Immune System
2.4. Clinical Evidence of Post-Stroke GI Dysbiosis and Leaky Gut
3. Bacterial Translocation After IS and Its Contribution to the Development of SAIs
4. Intestinal Dysbiosis, Gut Barrier Damage, and Bacterial Translocation After HS
5. Therapeutic Strategies That Could Help on Reducing Dysbiosis/BT and May Improve Stroke Outcomes
5.1. Antibiotics
5.2. Dietary Interventions
5.3. Fecal Microbiota Transplantation
5.4. Probiotic and Prebiotic Agents
5.5. ANS Modulators: β-Adrenergic Blockers and Cholinergic Agonists
5.6. Stem Cell Transplantation
5.7. Anti-Inflammatory and Immunomodulatory Strategies
6. Summary and Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Wafa, H.A.; Wolfe, C.D.A.; Emmett, E.; Roth, G.A.; Johnson, C.O.; Wang, Y. Burden of Stroke in Europe: Thirty-Year Projections of Incidence, Prevalence, Deaths, and Disability-Adjusted Life Years. Stroke 2020, 51, 2418–2427. [Google Scholar] [CrossRef] [PubMed]
- Abdu, H.; Tadese, F.; Seyoum, G. Comparison of Ischemic and Hemorrhagic Stroke in the Medical Ward of Dessie Referral Hospital, Northeast Ethiopia: A Retrospective Study. Neurol. Res. Int. 2021, 2021, 9996958. [Google Scholar] [CrossRef] [PubMed]
- Kakkar, P.; Kakkar, T.; Patankar, T.; Saha, S. Current approaches and advances in the imaging of stroke. Dis. Model. Mech. 2021, 14, dmm048785. [Google Scholar] [CrossRef] [PubMed]
- Nogueira, R.G.; Jadhav, A.P.; Haussen, D.C.; Bonafe, A.; Budzik, R.F.; Bhuva, P.; Yavagal, D.R.; Ribo, M.; Cognard, C.; Hanel, R.A.; et al. Thrombectomy 6 to 24 Hours after Stroke with a Mismatch between Deficit and Infarct. N. Engl. J. Med. 2018, 378, 11–21. [Google Scholar] [CrossRef]
- Tsivgoulis, G.; Katsanos, A.H.; Sandset, E.C.; Turc, G.; Nguyen, T.N.; Bivard, A.; Fischer, U.; Khatri, P. Thrombolysis for acute ischaemic stroke: Current status and future perspectives. Lancet Neurol. 2023, 22, 418–429. [Google Scholar] [CrossRef]
- Magid-Bernstein, J.; Girard, R.; Polster, S.; Srinath, A.; Romanos, S.; Awad, I.A.; Sansing, L.H. Cerebral Hemorrhage: Pathophysiology, Treatment, and Future Directions. Circ. Res. 2022, 130, 1204–1229. [Google Scholar] [CrossRef]
- Endres, M.; Moro, M.A.; Nolte, C.H.; Dames, C.; Buckwalter, M.S.; Meisel, A. Immune Pathways in Etiology, Acute Phase, and Chronic Sequelae of Ischemic Stroke. Circ. Res. 2022, 130, 1167–1186. [Google Scholar] [CrossRef]
- Ohashi, S.N.; DeLong, J.H.; Kozberg, M.G.; Mazur-Hart, D.J.; van Veluw, S.J.; Alkayed, N.J.; Sansing, L.H. Role of Inflammatory Processes in Hemorrhagic Stroke. Stroke 2023, 54, 605–619. [Google Scholar] [CrossRef]
- Westendorp, W.F.; Dames, C.; Nederkoorn, P.J.; Meisel, A. Immunodepression, Infections, and Functional Outcome in Ischemic Stroke. Stroke 2022, 53, 1438–1448. [Google Scholar] [CrossRef]
- Hug, A.; Dalpke, A.; Wieczorek, N.; Giese, T.; Lorenz, A.; Auffarth, G.; Liesz, A.; Veltkamp, R. Infarct volume is a major determiner of post-stroke immune cell function and susceptibility to infection. Stroke 2009, 40, 3226–3232. [Google Scholar] [CrossRef]
- Shim, R.; Wen, S.W.; Wanrooy, B.J.; Rank, M.; Thirugnanachandran, T.; Ho, L.; Sepehrizadeh, T.; de Veer, M.; Srikanth, V.K.; Ma, H.; et al. Stroke Severity, and Not Cerebral Infarct Location, Increases the Risk of Infection. Transl. Stroke Res. 2020, 11, 387–401. [Google Scholar] [CrossRef] [PubMed]
- Wei, Y.H.; Bi, R.T.; Qiu, Y.M.; Zhang, C.L.; Li, J.Z.; Li, Y.N.; Hu, B. The gastrointestinal-brain-microbiota axis: A promising therapeutic target for ischemic stroke. Front. Immunol. 2023, 14, 1141387. [Google Scholar] [CrossRef] [PubMed]
- Lozupone, C.A.; Stombaugh, J.I.; Gordon, J.I.; Jansson, J.K.; Knight, R. Diversity, stability and resilience of the human gut microbiota. Nature 2012, 489, 220–230. [Google Scholar] [CrossRef] [PubMed]
- Backhed, F.; Ley, R.E.; Sonnenburg, J.L.; Peterson, D.A.; Gordon, J.I. Host-bacterial mutualism in the human intestine. Science 2005, 307, 1915–1920. [Google Scholar] [CrossRef] [PubMed]
- Durgan, D.J.; Lee, J.; McCullough, L.D.; Bryan, R.M., Jr. Examining the Role of the Microbiota-Gut-Brain Axis in Stroke. Stroke 2019, 50, 2270–2277. [Google Scholar] [CrossRef]
- Loh, J.S.; Mak, W.Q.; Tan, L.K.S.; Ng, C.X.; Chan, H.H.; Yeow, S.H.; Foo, J.B.; Ong, Y.S.; How, C.W.; Khaw, K.Y. Microbiota-gut-brain axis and its therapeutic applications in neurodegenerative diseases. Signal Transduct. Target. Ther. 2024, 9, 37. [Google Scholar] [CrossRef]
- Honarpisheh, P.; Bryan, R.M.; McCullough, L.D. Aging Microbiota-Gut-Brain Axis in Stroke Risk and Outcome. Circ. Res. 2022, 130, 1112–1144. [Google Scholar] [CrossRef]
- Aburto, M.R.; Cryan, J.F. Gastrointestinal and brain barriers: Unlocking gates of communication across the microbiota-gut-brain axis. Nat. Rev. Gastroenterol. Hepatol. 2024, 21, 222–247. [Google Scholar] [CrossRef]
- Carloni, S.; Rescigno, M. The gut-brain vascular axis in neuroinflammation. Semin. Immunol. 2023, 69, 101802. [Google Scholar] [CrossRef]
- Delgado Jimenez, R.; Benakis, C. The Gut Ecosystem: A Critical Player in Stroke. Neuromolecular Med. 2021, 23, 236–241. [Google Scholar] [CrossRef]
- Lee, Y.T.; Mohd Ismail, N.I.; Wei, L.K. Microbiome and ischemic stroke: A systematic review. PLoS ONE 2021, 16, e0245038. [Google Scholar] [CrossRef] [PubMed]
- Carabotti, M.; Scirocco, A.; Maselli, M.A.; Severi, C. The gut-brain axis: Interactions between enteric microbiota, central and enteric nervous systems. Ann. Gastroenterol. 2015, 28, 203–209. [Google Scholar] [PubMed]
- Wen, S.W.; Wong, C.H.Y. An unexplored brain-gut microbiota axis in stroke. Gut Microbes 2017, 8, 601–606. [Google Scholar] [CrossRef] [PubMed]
- Stanley, D.; Mason, L.J.; Mackin, K.E.; Srikhanta, Y.N.; Lyras, D.; Prakash, M.D.; Nurgali, K.; Venegas, A.; Hill, M.D.; Moore, R.J.; et al. Translocation and dissemination of commensal bacteria in post-stroke infection. Nat. Med. 2016, 22, 1277–1284. [Google Scholar] [CrossRef] [PubMed]
- Houlden, A.; Goldrick, M.; Brough, D.; Vizi, E.S.; Lenart, N.; Martinecz, B.; Roberts, I.S.; Denes, A. Brain injury induces specific changes in the caecal microbiota of mice via altered autonomic activity and mucoprotein production. Brain Behav. Immun. 2016, 57, 10–20. [Google Scholar] [CrossRef]
- Crapser, J.; Ritzel, R.; Verma, R.; Venna, V.R.; Liu, F.; Chauhan, A.; Koellhoffer, E.; Patel, A.; Ricker, A.; Maas, K.; et al. Ischemic stroke induces gut permeability and enhances bacterial translocation leading to sepsis in aged mice. Aging 2016, 8, 1049–1063. [Google Scholar] [CrossRef]
- Winek, K.; Engel, O.; Koduah, P.; Heimesaat, M.M.; Fischer, A.; Bereswill, S.; Dames, C.; Kershaw, O.; Gruber, A.D.; Curato, C.; et al. Depletion of Cultivatable Gut Microbiota by Broad-Spectrum Antibiotic Pretreatment Worsens Outcome After Murine Stroke. Stroke 2016, 47, 1354–1363. [Google Scholar] [CrossRef]
- Singh, V.; Roth, S.; Llovera, G.; Sadler, R.; Garzetti, D.; Stecher, B.; Dichgans, M.; Liesz, A. Microbiota Dysbiosis Controls the Neuroinflammatory Response after Stroke. J. Neurosci. 2016, 36, 7428–7440. [Google Scholar] [CrossRef]
- Schroeder, B.O.; Backhed, F. Signals from the gut microbiota to distant organs in physiology and disease. Nat. Med. 2016, 22, 1079–1089. [Google Scholar] [CrossRef]
- Mo, J.; Huang, L.; Peng, J.; Ocak, U.; Zhang, J.; Zhang, J.H. Autonomic Disturbances in Acute Cerebrovascular Disease. Neurosci. Bull. 2019, 35, 133–144. [Google Scholar] [CrossRef]
- Cha, K.H.; Kang, N.Y.; Huh, S.; Ko, S.H.; Shin, Y.I.; Min, J.H. The Effects of Autonomic Dysfunction on Functional Outcomes in Patients with Acute Stroke. Brain Sci. 2023, 13, 1694. [Google Scholar] [CrossRef] [PubMed]
- Bonaz, B.; Sinniger, V.; Pellissier, S. Anti-inflammatory properties of the vagus nerve: Potential therapeutic implications of vagus nerve stimulation. J. Physiol. 2016, 594, 5781–5790. [Google Scholar] [CrossRef] [PubMed]
- Vanuytsel, T.; van Wanrooy, S.; Vanheel, H.; Vanormelingen, C.; Verschueren, S.; Houben, E.; Salim Rasoel, S.; Tomicronth, J.; Holvoet, L.; Farre, R.; et al. Psychological stress and corticotropin-releasing hormone increase intestinal permeability in humans by a mast cell-dependent mechanism. Gut 2014, 63, 1293–1299. [Google Scholar] [CrossRef] [PubMed]
- de Punder, K.; Pruimboom, L. Stress induces endotoxemia and low-grade inflammation by increasing barrier permeability. Front. Immunol. 2015, 6, 223. [Google Scholar] [CrossRef]
- Kelly, J.R.; Kennedy, P.J.; Cryan, J.F.; Dinan, T.G.; Clarke, G.; Hyland, N.P. Breaking down the barriers: The gut microbiome, intestinal permeability and stress-related psychiatric disorders. Front. Cell Neurosci. 2015, 9, 392. [Google Scholar] [CrossRef]
- Misiak, B.; Loniewski, I.; Marlicz, W.; Frydecka, D.; Szulc, A.; Rudzki, L.; Samochowiec, J. The HPA axis dysregulation in severe mental illness: Can we shift the blame to gut microbiota? Prog. Neuropsychopharmacol. Biol. Psychiatry 2020, 102, 109951. [Google Scholar] [CrossRef]
- Iadecola, C.; Anrather, J. The immunology of stroke: From mechanisms to translation. Nat. Med. 2011, 17, 796–808. [Google Scholar] [CrossRef]
- McCulloch, L.; Smith, C.J.; McColl, B.W. Adrenergic-mediated loss of splenic marginal zone B cells contributes to infection susceptibility after stroke. Nat. Commun. 2017, 8, 15051. [Google Scholar] [CrossRef]
- Shim, R.; Wilson, J.L.; Phillips, S.E.; Lambert, G.W.; Wen, S.W.; Wong, C.H.Y. The role of β2 adrenergic receptor on infection development after ischaemic stroke. Brain Behav. Immun. Health 2021, 18, 100393. [Google Scholar] [CrossRef]
- Diaz-Marugan, L.; Gallizioli, M.; Marquez-Kisinousky, L.; Arboleya, S.; Mastrangelo, A.; Ruiz-Jaen, F.; Pedragosa, J.; Casals, C.; Morales, F.J.; Ramos-Romero, S.; et al. Poststroke Lung Infection by Opportunistic Commensal Bacteria Is Not Mediated by Their Expansion in the Gut Microbiota. Stroke 2023, 54, 1875–1887. [Google Scholar] [CrossRef]
- Sluis, W.M.; de Jonge, J.C.; Reinink, H.; Woodhouse, L.J.; Westendorp, W.F.; Bath, P.M.; van de Beek, D.; van der Worp, H.B.; Investigators, P. Metoclopramide to Prevent Pneumonia in Patients With Stroke and a Nasogastric Tube: Data From the PRECIOUS Trial. Stroke 2024, 55, 2402–2408. [Google Scholar] [CrossRef] [PubMed]
- Zierath, D.; Tanzi, P.; Shibata, D.; Becker, K.J. Cortisol is More Important than Metanephrines in Driving Changes in Leukocyte Counts after Stroke. J. Stroke Cerebrovasc. Dis. 2018, 27, 555–562. [Google Scholar] [CrossRef] [PubMed]
- Kumar, D.; Rasool, R.; Masoodi, K.Z.; Bhat, I.A.; Verma, S.; Saleem, S. Stroke-induced immune depression-a randomized case control study in Kashmiri population of North India. J. Stroke Cerebrovasc. Dis. 2014, 23, 2041–2046. [Google Scholar] [CrossRef]
- Duan, H.; Geng, X.; Ding, Y. Hepatic responses following acute ischemic stroke: A clinical research update. Brain Circ. 2023, 9, 57–60. [Google Scholar] [CrossRef] [PubMed]
- Muscari, A.; Collini, A.; Fabbri, E.; Giovagnoli, M.; Napoli, C.; Rossi, V.; Vizioli, L.; Bonfiglioli, A.; Magalotti, D.; Puddu, G.M.; et al. Changes of liver enzymes and bilirubin during ischemic stroke: Mechanisms and possible significance. BMC Neurol. 2014, 14, 122. [Google Scholar] [CrossRef]
- Haley, M.J.; White, C.S.; Roberts, D.; O’Toole, K.; Cunningham, C.J.; Rivers-Auty, J.; O’Boyle, C.; Lane, C.; Heaney, O.; Allan, S.M.; et al. Stroke Induces Prolonged Changes in Lipid Metabolism, the Liver and Body Composition in Mice. Transl. Stroke Res. 2020, 11, 837–850. [Google Scholar] [CrossRef]
- Tilg, H.; Adolph, T.E.; Trauner, M. Gut-liver axis: Pathophysiological concepts and clinical implications. Cell Metab. 2022, 34, 1700–1718. [Google Scholar] [CrossRef]
- Benakis, C.; Brea, D.; Caballero, S.; Faraco, G.; Moore, J.; Murphy, M.; Sita, G.; Racchumi, G.; Ling, L.; Pamer, E.G.; et al. Commensal microbiota affects ischemic stroke outcome by regulating intestinal gammadelta T cells. Nat. Med. 2016, 22, 516–523. [Google Scholar] [CrossRef]
- Brea, D.; Poon, C.; Benakis, C.; Lubitz, G.; Murphy, M.; Iadecola, C.; Anrather, J. Stroke affects intestinal immune cell trafficking to the central nervous system. Brain Behav. Immun. 2021, 96, 295–302. [Google Scholar] [CrossRef]
- Spychala, M.S.; Venna, V.R.; Jandzinski, M.; Doran, S.J.; Durgan, D.J.; Ganesh, B.P.; Ajami, N.J.; Putluri, N.; Graf, J.; Bryan, R.M.; et al. Age-related changes in the gut microbiota influence systemic inflammation and stroke outcome. Ann. Neurol. 2018, 84, 23–36. [Google Scholar] [CrossRef]
- Yamashiro, K.; Tanaka, R.; Urabe, T.; Ueno, Y.; Yamashiro, Y.; Nomoto, K.; Takahashi, T.; Tsuji, H.; Asahara, T.; Hattori, N. Gut dysbiosis is associated with metabolism and systemic inflammation in patients with ischemic stroke. PLoS ONE 2017, 12, e0171521. [Google Scholar] [CrossRef]
- Haak, B.W.; Westendorp, W.F.; van Engelen, T.S.R.; Brands, X.; Brouwer, M.C.; Vermeij, J.D.; Hugenholtz, F.; Verhoeven, A.; Derks, R.J.; Giera, M.; et al. Disruptions of Anaerobic Gut Bacteria Are Associated with Stroke and Post-stroke Infection: A Prospective Case-Control Study. Transl. Stroke Res. 2021, 12, 581–592. [Google Scholar] [CrossRef] [PubMed]
- Yin, J.; Liao, S.X.; He, Y.; Wang, S.; Xia, G.H.; Liu, F.T.; Zhu, J.J.; You, C.; Chen, Q.; Zhou, L.; et al. Dysbiosis of Gut Microbiota With Reduced Trimethylamine-N-Oxide Level in Patients With Large-Artery Atherosclerotic Stroke or Transient Ischemic Attack. J. Am. Heart Assoc. 2015, 4, e002699. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Zhang, X.; Pan, D.; Liu, Y.; Yan, X.; Tang, Y.; Tao, M.; Gong, L.; Zhang, T.; Woods, C.R.; et al. Dysbiosis characteristics of gut microbiota in cerebral infarction patients. Transl. Neurosci. 2020, 11, 124–133. [Google Scholar] [CrossRef] [PubMed]
- Li, N.; Wang, X.; Sun, C.; Wu, X.; Lu, M.; Si, Y.; Ye, X.; Wang, T.; Yu, X.; Zhao, X.; et al. Change of intestinal microbiota in cerebral ischemic stroke patients. BMC Microbiol. 2019, 19, 191. [Google Scholar] [CrossRef]
- Huang, L.; Wang, T.; Wu, Q.; Dong, X.; Shen, F.; Liu, D.; Qin, X.; Yan, L.; Wan, Q. Analysis of microbiota in elderly patients with Acute Cerebral Infarction. PeerJ 2019, 7, e6928. [Google Scholar] [CrossRef]
- Cui, W.; Xu, L.; Huang, L.; Tian, Y.; Yang, Y.; Li, Y.; Yu, Q. Changes of gut microbiota in patients at different phases of stroke. CNS Neurosci. Ther. 2023, 29, 3416–3429. [Google Scholar] [CrossRef]
- Wang, W.; Li, X.; Yao, X.; Cheng, X.; Zhu, Y. The characteristics analysis of intestinal microecology on cerebral infarction patients and its correlation with apolipoprotein E. Medicine 2018, 97, e12805. [Google Scholar] [CrossRef]
- Gradek-Kwinta, E.; Czyzycki, M.; Lopatkiewicz, A.M.; Klimiec-Moskal, E.; Slowik, A.; Dziedzic, T. Lipopolysaccharide binding protein and sCD14 as risk markers of stroke-associated pneumonia. J. Neuroimmunol. 2021, 354, 577532. [Google Scholar] [CrossRef]
- Mengel, A.; Ulm, L.; Hotter, B.; Harms, H.; Piper, S.K.; Grittner, U.; Montaner, J.; Meisel, C.; Meisel, A.; Hoffmann, S. Biomarkers of immune capacity, infection and inflammation are associated with poor outcome and mortality after stroke—The PREDICT study. BMC Neurol. 2019, 19, 148. [Google Scholar] [CrossRef]
- Kiecolt-Glaser, J.K.; Wilson, S.J.; Bailey, M.L.; Andridge, R.; Peng, J.; Jaremka, L.M.; Fagundes, C.P.; Malarkey, W.B.; Laskowski, B.; Belury, M.A. Marital distress, depression, and a leaky gut: Translocation of bacterial endotoxin as a pathway to inflammation. Psychoneuroendocrinology 2018, 98, 52–60. [Google Scholar] [CrossRef] [PubMed]
- Al-Ayadhi, L.; Zayed, N.; Bhat, R.S.; Moubayed, N.M.S.; Al-Muammar, M.N.; El-Ansary, A. The use of biomarkers associated with leaky gut as a diagnostic tool for early intervention in autism spectrum disorder: A systematic review. Gut Pathog. 2021, 13, 54. [Google Scholar] [CrossRef] [PubMed]
- Hoshiko, H.; Feskens, E.J.M.; Oosterink, E.; Ariens, R.M.C.; Mes, J.J.; de Wit, N.J.W. Identification of leaky gut-related markers as indicators of metabolic health in Dutch adults: The Nutrition Questionnaires plus (NQplus) study. PLoS ONE 2021, 16, e0252936. [Google Scholar] [CrossRef] [PubMed]
- Oyama, N.; Winek, K.; Backer-Koduah, P.; Zhang, T.; Dames, C.; Werich, M.; Kershaw, O.; Meisel, C.; Meisel, A.; Dirnagl, U. Exploratory Investigation of Intestinal Function and Bacterial Translocation After Focal Cerebral Ischemia in the Mouse. Front. Neurol. 2018, 9, 937. [Google Scholar] [CrossRef]
- Wen, S.W.; Shim, R.; Ho, L.; Wanrooy, B.J.; Srikhanta, Y.N.; Prame Kumar, K.; Nicholls, A.J.; Shen, S.J.; Sepehrizadeh, T.; de Veer, M.; et al. Advanced age promotes colonic dysfunction and gut-derived lung infection after stroke. Aging Cell 2019, 18, e12980. [Google Scholar] [CrossRef]
- Cheng, Y.; Zan, J.; Song, Y.; Yang, G.; Shang, H.; Zhao, W. Evaluation of intestinal injury, inflammatory response and oxidative stress following intracerebral hemorrhage in mice. Int. J. Mol. Med. 2018, 42, 2120–2128. [Google Scholar] [CrossRef]
- Yu, X.; Zhou, G.; Shao, B.; Zhou, H.; Xu, C.; Yan, F.; Wang, L.; Chen, G.; Li, J.; Fu, X. Gut Microbiota Dysbiosis Induced by Intracerebral Hemorrhage Aggravates Neuroinflammation in Mice. Front. Microbiol. 2021, 12, 647304. [Google Scholar] [CrossRef]
- Zhang, H.; Huang, Y.; Li, X.; Han, X.; Hu, J.; Wang, B.; Zhang, L.; Zhuang, P.; Zhang, Y. Dynamic Process of Secondary Pulmonary Infection in Mice With Intracerebral Hemorrhage. Front. Immunol. 2021, 12, 767155. [Google Scholar] [CrossRef]
- Wang, Y.; Bing, H.; Jiang, C.; Wang, J.; Wang, X.; Xia, Z.; Chu, Q. Gut microbiota dysbiosis and neurological function recovery after intracerebral hemorrhage: An analysis of clinical samples. Microbiol. Spectr. 2024, 12, e0117824. [Google Scholar] [CrossRef]
- Caso, J.R.; Hurtado, O.; Pereira, M.P.; Garcia-Bueno, B.; Menchen, L.; Alou, L.; Gomez-Lus, M.L.; Moro, M.A.; Lizasoain, I.; Leza, J.C. Colonic bacterial translocation as a possible factor in stress-worsening experimental stroke outcome. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2009, 296, R979–R985. [Google Scholar] [CrossRef]
- Thapa, M.; Kumari, A.; Chin, C.Y.; Choby, J.E.; Jin, F.; Bogati, B.; Chopyk, D.M.; Koduri, N.; Pahnke, A.; Elrod, E.J.; et al. Translocation of gut commensal bacteria to the brain. bioRxiv 2023. [Google Scholar] [CrossRef]
- Wen, X.; Dong, H.; Zou, W. The role of gut microorganisms and metabolites in intracerebral hemorrhagic stroke: A comprehensive review. Front. Neurosci. 2024, 18, 1346184. [Google Scholar] [CrossRef] [PubMed]
- Westendorp, W.F.; Vermeij, J.D.; Zock, E.; Hooijenga, I.J.; Kruyt, N.D.; Bosboom, H.J.; Kwa, V.I.; Weisfelt, M.; Remmers, M.J.; ten Houten, R.; et al. The Preventive Antibiotics in Stroke Study (PASS): A pragmatic randomised open-label masked endpoint clinical trial. Lancet 2015, 385, 1519–1526. [Google Scholar] [CrossRef] [PubMed]
- Kalra, L.; Irshad, S.; Hodsoll, J.; Simpson, M.; Gulliford, M.; Smithard, D.; Patel, A.; Rebollo-Mesa, I.; Investigators, S.-I. Prophylactic antibiotics after acute stroke for reducing pneumonia in patients with dysphagia (STROKE-INF): A prospective, cluster-randomised, open-label, masked endpoint, controlled clinical trial. Lancet 2015, 386, 1835–1844. [Google Scholar] [CrossRef]
- Ulm, L.; Hoffmann, S.; Nabavi, D.; Hermans, M.; Mackert, B.M.; Hamilton, F.; Schmehl, I.; Jungehuelsing, G.J.; Montaner, J.; Bustamante, A.; et al. The Randomized Controlled STRAWINSKI Trial: Procalcitonin-Guided Antibiotic Therapy after Stroke. Front. Neurol. 2017, 8, 153. [Google Scholar] [CrossRef]
- Kurita, N.; Yamashiro, K.; Kuroki, T.; Tanaka, R.; Urabe, T.; Ueno, Y.; Miyamoto, N.; Takanashi, M.; Shimura, H.; Inaba, T.; et al. Metabolic endotoxemia promotes neuroinflammation after focal cerebral ischemia. J. Cereb. Blood Flow. Metab. 2020, 40, 2505–2520. [Google Scholar] [CrossRef]
- Liu, C.; Cheng, X.; Zhong, S.; Liu, Z.; Liu, F.; Lin, X.; Zhao, Y.; Guan, M.; Xiao, T.; Jolkkonen, J.; et al. Long-term modification of gut microbiota by broad-spectrum antibiotics improves stroke outcome in rats. Stroke Vasc. Neurol. 2022, 7, 381–389. [Google Scholar] [CrossRef]
- Silva de Carvalho, T.; Singh, V.; Mohamud Yusuf, A.; Wang, J.; Schultz Moreira, A.R.; Sanchez-Mendoza, E.H.; Sardari, M.; Nascentes Melo, L.M.; Doeppner, T.R.; Kehrmann, J.; et al. Post-ischemic protein restriction induces sustained neuroprotection, neurological recovery, brain remodeling, and gut microbiota rebalancing. Brain Behav. Immun. 2022, 100, 134–144. [Google Scholar] [CrossRef]
- Huang, J.T.; Mao, Y.Q.; Han, B.; Zhang, Z.Y.; Chen, H.L.; Li, Z.M.; Kong, C.Y.; Xu, J.Q.; Cai, P.R.; Zeng, Y.P.; et al. Calorie restriction conferred improvement effect on long-term rehabilitation of ischemic stroke via gut microbiota. Pharmacol. Res. 2021, 170, 105726. [Google Scholar] [CrossRef]
- Sadler, R.; Cramer, J.V.; Heindl, S.; Kostidis, S.; Betz, D.; Zuurbier, K.R.; Northoff, B.H.; Heijink, M.; Goldberg, M.P.; Plautz, E.J.; et al. Short-Chain Fatty Acids Improve Poststroke Recovery via Immunological Mechanisms. J. Neurosci. 2020, 40, 1162–1173. [Google Scholar] [CrossRef]
- Lee, J.; d’Aigle, J.; Atadja, L.; Quaicoe, V.; Honarpisheh, P.; Ganesh, B.P.; Hassan, A.; Graf, J.; Petrosino, J.; Putluri, N.; et al. Gut Microbiota-Derived Short-Chain Fatty Acids Promote Poststroke Recovery in Aged Mice. Circ. Res. 2020, 127, 453–465. [Google Scholar] [CrossRef] [PubMed]
- Singh, V.; Sadler, R.; Heindl, S.; Llovera, G.; Roth, S.; Benakis, C.; Liesz, A. The gut microbiome primes a cerebroprotective immune response after stroke. J. Cereb. Blood Flow. Metab. 2018, 38, 1293–1298. [Google Scholar] [CrossRef] [PubMed]
- Chen, R.; Xu, Y.; Wu, P.; Zhou, H.; Lasanajak, Y.; Fang, Y.; Tang, L.; Ye, L.; Li, X.; Cai, Z.; et al. Transplantation of fecal microbiota rich in short chain fatty acids and butyric acid treat cerebral ischemic stroke by regulating gut microbiota. Pharmacol. Res. 2019, 148, 104403. [Google Scholar] [CrossRef] [PubMed]
- Mao, H.Z.; Xiong, F.T.; Hu, M.; Fu, Z. Effects of enteral nutrition semi-curing feeding on nutritional diarrhoea improvement in the patients with severe stroke. Bratisl. Lek. Listy 2022, 123, 214–217. [Google Scholar] [CrossRef]
- Akhoundzadeh, K.; Vakili, A.; Shadnoush, M.; Sadeghzadeh, J. Effects of the Oral Ingestion of Probiotics on Brain Damage in a Transient Model of Focal Cerebral Ischemia in Mice. Iran. J. Med. Sci. 2018, 43, 32–40. [Google Scholar]
- Sun, J.; Ling, Z.; Wang, F.; Chen, W.; Li, H.; Jin, J.; Zhang, H.; Pang, M.; Yu, J.; Liu, J. Clostridium butyricum pretreatment attenuates cerebral ischemia/reperfusion injury in mice via anti-oxidation and anti-apoptosis. Neurosci. Lett. 2016, 613, 30–35. [Google Scholar] [CrossRef]
- Yuan, Q.; Xin, L.; Han, S.; Su, Y.; Wu, R.; Liu, X.; Wuri, J.; Li, R.; Yan, T. Lactulose Improves Neurological Outcomes by Repressing Harmful Bacteria and Regulating Inflammatory Reactions in Mice After Stroke. Front. Cell Infect. Microbiol. 2021, 11, 644448. [Google Scholar] [CrossRef]
- Dou, Z.; Rong, X.; Zhao, E.; Zhang, L.; Lv, Y. Neuroprotection of Resveratrol Against Focal Cerebral Ischemia/Reperfusion Injury in Mice Through a Mechanism Targeting Gut-Brain Axis. Cell. Mol. Neurobiol. 2019, 39, 883–898. [Google Scholar] [CrossRef]
- Xie, Y.; Zou, X.; Han, J.; Zhang, Z.; Feng, Z.; Ouyang, Q.; Hua, S.; Liu, Z.; Li, C.; Cai, Y.; et al. Indole-3-propionic acid alleviates ischemic brain injury in a mouse middle cerebral artery occlusion model. Exp. Neurol. 2022, 353, 114081. [Google Scholar] [CrossRef]
- Sykora, M.; Siarnik, P.; Diedler, J.; Collaborators, V.A. Beta-Blockers, Pneumonia, and Outcome After Ischemic Stroke: Evidence From Virtual International Stroke Trials Archive. Stroke 2015, 46, 1269–1274. [Google Scholar] [CrossRef]
- Maier, I.L.; Karch, A.; Mikolajczyk, R.; Bahr, M.; Liman, J. Effect of beta-blocker therapy on the risk of infections and death after acute stroke--a historical cohort study. PLoS ONE 2015, 10, e0116836. [Google Scholar] [CrossRef] [PubMed]
- Prass, K.; Meisel, C.; Hoflich, C.; Braun, J.; Halle, E.; Wolf, T.; Ruscher, K.; Victorov, I.V.; Priller, J.; Dirnagl, U.; et al. Stroke-induced immunodeficiency promotes spontaneous bacterial infections and is mediated by sympathetic activation reversal by poststroke T helper cell type 1-like immunostimulation. J. Exp. Med. 2003, 198, 725–736. [Google Scholar] [CrossRef] [PubMed]
- Wong, C.H.; Jenne, C.N.; Lee, W.Y.; Leger, C.; Kubes, P. Functional innervation of hepatic iNKT cells is immunosuppressive following stroke. Science 2011, 334, 101–105. [Google Scholar] [CrossRef]
- Liu, Q.; Jin, W.N.; Liu, Y.; Shi, K.; Sun, H.; Zhang, F.; Zhang, C.; Gonzales, R.J.; Sheth, K.N.; La Cava, A.; et al. Brain Ischemia Suppresses Immunity in the Periphery and Brain via Different Neurogenic Innervations. Immunity 2017, 46, 474–487. [Google Scholar] [CrossRef]
- Lopez, N.E.; Krzyzaniak, M.J.; Costantini, T.W.; Putnam, J.; Hageny, A.M.; Eliceiri, B.; Coimbra, R.; Bansal, V. Vagal nerve stimulation decreases blood-brain barrier disruption after traumatic brain injury. J. Trauma. Acute Care Surg. 2012, 72, 1562–1566. [Google Scholar] [CrossRef]
- Bansal, V.; Costantini, T.; Ryu, S.Y.; Peterson, C.; Loomis, W.; Putnam, J.; Elicieri, B.; Baird, A.; Coimbra, R. Stimulating the central nervous system to prevent intestinal dysfunction after traumatic brain injury. J. Trauma 2010, 68, 1059–1064. [Google Scholar] [CrossRef]
- Tang, H.; Li, J.; Zhou, Q.; Li, S.; Xie, C.; Niu, L.; Ma, J.; Li, C. Vagus nerve stimulation alleviated cerebral ischemia and reperfusion injury in rats by inhibiting pyroptosis via alpha7 nicotinic acetylcholine receptor. Cell Death Discov. 2022, 8, 54. [Google Scholar] [CrossRef]
- Mani, K.K.; El-Hakim, Y.; Branyan, T.E.; Samiya, N.; Pandey, S.; Grimaldo, M.T.; Habbal, A.; Wertz, A.; Sohrabji, F. Intestinal epithelial stem cell transplants as a novel therapy for cerebrovascular stroke. Brain Behav. Immun. 2023, 107, 345–360. [Google Scholar] [CrossRef]
- Hernandez-Jimenez, M.; Abad-Santos, F.; Cotgreave, I.; Gallego, J.; Jilma, B.; Flores, A.; Jovin, T.G.; Vivancos, J.; Hernandez-Perez, M.; Molina, C.A.; et al. Safety and Efficacy of ApTOLL in Patients With Ischemic Stroke Undergoing Endovascular Treatment: A Phase 1/2 Randomized Clinical Trial. JAMA Neurol. 2023, 80, 779–788. [Google Scholar] [CrossRef]
- Ma, Y.; Li, Y.; Jiang, L.; Wang, L.; Jiang, Z.; Wang, Y.; Zhang, Z.; Yang, G.Y. Macrophage depletion reduced brain injury following middle cerebral artery occlusion in mice. J. Neuroinflamm. 2016, 13, 38. [Google Scholar] [CrossRef]
- Shichita, T.; Sugiyama, Y.; Ooboshi, H.; Sugimori, H.; Nakagawa, R.; Takada, I.; Iwaki, T.; Okada, Y.; Iida, M.; Cua, D.J.; et al. Pivotal role of cerebral interleukin-17-producing gammadeltaT cells in the delayed phase of ischemic brain injury. Nat. Med. 2009, 15, 946–950. [Google Scholar] [CrossRef] [PubMed]
- Dai, Q.; Li, S.; Liu, T.; Zheng, J.; Han, S.; Qu, A.; Li, J. Interleukin-17A-mediated alleviation of cortical astrocyte ischemic injuries affected the neurological outcome of mice with ischemic stroke. J. Cell. Biochem. 2019, 120, 11498–11509. [Google Scholar] [CrossRef]
- Zhang, H.; Xia, Y.; Ye, Q.; Yu, F.; Zhu, W.; Li, P.; Wei, Z.; Yang, Y.; Shi, Y.; Thomson, A.W.; et al. In Vivo Expansion of Regulatory T Cells with IL-2/IL-2 Antibody Complex Protects against Transient Ischemic Stroke. J. Neurosci. 2018, 38, 10168–10179. [Google Scholar] [CrossRef]
- Fernandez, G.; Moraga, A.; Cuartero, M.I.; Garcia-Culebras, A.; Pena-Martinez, C.; Pradillo, J.M.; Hernandez-Jimenez, M.; Sacristan, S.; Ayuso, M.I.; Gonzalo-Gobernado, R.; et al. TLR4-Binding DNA Aptamers Show a Protective Effect against Acute Stroke in Animal Models. Mol. Ther. 2018, 26, 2047–2059. [Google Scholar] [CrossRef]
- Doycheva, D.M.; Hadley, T.; Li, L.; Applegate, R.L., 2nd; Zhang, J.H.; Tang, J. Anti-neutrophil antibody enhances the neuroprotective effects of G-CSF by decreasing number of neutrophils in hypoxic ischemic neonatal rat model. Neurobiol. Dis. 2014, 69, 192–199. [Google Scholar] [CrossRef]
- Wang, S.; Zhou, J.; Kang, W.; Dong, Z.; Wang, H. Tocilizumab inhibits neuronal cell apoptosis and activates STAT3 in cerebral infarction rat model. Bosn. J. Basic. Med. Sci. 2016, 16, 145–150. [Google Scholar] [CrossRef]
- Wu, M.H.; Huang, C.C.; Chio, C.C.; Tsai, K.J.; Chang, C.P.; Lin, N.K.; Lin, M.T. Inhibition of Peripheral TNF-alpha and Downregulation of Microglial Activation by Alpha-Lipoic Acid and Etanercept Protect Rat Brain Against Ischemic Stroke. Mol. Neurobiol. 2016, 53, 4961–4971. [Google Scholar] [CrossRef]
- Aliena-Valero, A.; Hernandez-Jimenez, M.; Lopez-Morales, M.A.; Tamayo-Torres, E.; Castello-Ruiz, M.; Pineiro, D.; Ribo, M.; Salom, J.B. Cerebroprotective Effects of the TLR4-Binding DNA Aptamer ApTOLL in a Rat Model of Ischemic Stroke and Thrombectomy Recanalization. Pharmaceutics 2024, 16, 741. [Google Scholar] [CrossRef]
- Westendorp, W.F.; Vermeij, J.D.; Smith, C.J.; Kishore, A.K.; Hodsoll, J.; Kalra, L.; Meisel, A.; Chamorro, A.; Chang, J.J.; Rezaei, Y.; et al. Preventive antibiotic therapy in acute stroke patients: A systematic review and meta-analysis of individual patient data of randomized controlled trials. Eur. Stroke J. 2021, 6, 385–394. [Google Scholar] [CrossRef]
- English, C.; MacDonald-Wicks, L.; Patterson, A.; Attia, J.; Hankey, G.J. The role of diet in secondary stroke prevention. Lancet Neurol. 2021, 20, 150–160. [Google Scholar] [CrossRef]
- Battaglini, D.; Pimentel-Coelho, P.M.; Robba, C.; Dos Santos, C.C.; Cruz, F.F.; Pelosi, P.; Rocco, P.R.M. Gut Microbiota in Acute Ischemic Stroke: From Pathophysiology to Therapeutic Implications. Front. Neurol. 2020, 11, 598. [Google Scholar] [CrossRef] [PubMed]
- Lakkur, S.; Judd, S.E. Diet and Stroke: Recent Evidence Supporting a Mediterranean-Style Diet and Food in the Primary Prevention of Stroke. Stroke 2015, 46, 2007–2011. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Mantrana, I.; Selma-Royo, M.; Alcantara, C.; Collado, M.C. Shifts on Gut Microbiota Associated to Mediterranean Diet Adherence and Specific Dietary Intakes on General Adult Population. Front. Microbiol. 2018, 9, 890. [Google Scholar] [CrossRef] [PubMed]
- Abrignani, V.; Salvo, A.; Pacinella, G.; Tuttolomondo, A. The Mediterranean Diet, Its Microbiome Connections, and Cardiovascular Health: A Narrative Review. Int. J. Mol. Sci. 2024, 25, 4942. [Google Scholar] [CrossRef]
- Zhang, C.; Bjorkman, A.; Cai, K.; Liu, G.; Wang, C.; Li, Y.; Xia, H.; Sun, L.; Kristiansen, K.; Wang, J.; et al. Impact of a 3-Months Vegetarian Diet on the Gut Microbiota and Immune Repertoire. Front. Immunol. 2018, 9, 908. [Google Scholar] [CrossRef]
- Wilck, N.; Matus, M.G.; Kearney, S.M.; Olesen, S.W.; Forslund, K.; Bartolomaeus, H.; Haase, S.; Mahler, A.; Balogh, A.; Marko, L.; et al. Salt-responsive gut commensal modulates T(H)17 axis and disease. Nature 2017, 551, 585–589. [Google Scholar] [CrossRef]
- Faraco, G.; Brea, D.; Garcia-Bonilla, L.; Wang, G.; Racchumi, G.; Chang, H.; Buendia, I.; Santisteban, M.M.; Segarra, S.G.; Koizumi, K.; et al. Dietary salt promotes neurovascular and cognitive dysfunction through a gut-initiated TH17 response. Nat. Neurosci. 2018, 21, 240–249. [Google Scholar] [CrossRef]
- Meng, Y.; Li, X.; Zhang, J.; Wang, C.; Lu, F. Effects of Different Diets on Microbiota in The Small Intestine Mucus and Weight Regulation in Rats. Sci. Rep. 2019, 9, 8500. [Google Scholar] [CrossRef]
- Parada Venegas, D.; De la Fuente, M.K.; Landskron, G.; Gonzalez, M.J.; Quera, R.; Dijkstra, G.; Harmsen, H.J.M.; Faber, K.N.; Hermoso, M.A. Short Chain Fatty Acids (SCFAs)-Mediated Gut Epithelial and Immune Regulation and Its Relevance for Inflammatory Bowel Diseases. Front. Immunol. 2019, 10, 277. [Google Scholar] [CrossRef]
- Sun, H.; Gu, M.; Li, Z.; Chen, X.; Zhou, J. Gut Microbiota Dysbiosis in Acute Ischemic Stroke Associated With 3-Month Unfavorable Outcome. Front. Neurol. 2021, 12, 799222. [Google Scholar] [CrossRef]
- Tan, C.; Wu, Q.; Wang, H.; Gao, X.; Xu, R.; Cui, Z.; Zhu, J.; Zeng, X.; Zhou, H.; He, Y.; et al. Dysbiosis of Gut Microbiota and Short-Chain Fatty Acids in Acute Ischemic Stroke and the Subsequent Risk for Poor Functional Outcomes. JPEN J. Parenter. Enter. Nutr. 2021, 45, 518–529. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Kong, C.; Gong, L.; Zhang, X.; Zhu, Y.; Wang, H.; Qu, X.; Gao, R.; Yin, F.; Liu, X.; et al. The Association of Post-Stroke Cognitive Impairment and Gut Microbiota and its Corresponding Metabolites. J. Alzheimer’s Dis. 2020, 73, 1455–1466. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Liang, J.; Ouyang, F.; Chen, X.; Lu, T.; Jiang, Z.; Li, J.; Li, Y.; Zeng, J. Persistence of Gut Microbiota Dysbiosis and Chronic Systemic Inflammation After Cerebral Infarction in Cynomolgus Monkeys. Front. Neurol. 2019, 10, 661. [Google Scholar] [CrossRef] [PubMed]
- Park, J.; Kim, M.; Kang, S.G.; Jannasch, A.H.; Cooper, B.; Patterson, J.; Kim, C.H. Short-chain fatty acids induce both effector and regulatory T cells by suppression of histone deacetylases and regulation of the mTOR-S6K pathway. Mucosal Immunol. 2015, 8, 80–93. [Google Scholar] [CrossRef] [PubMed]
- Erny, D.; Hrabe de Angelis, A.L.; Jaitin, D.; Wieghofer, P.; Staszewski, O.; David, E.; Keren-Shaul, H.; Mahlakoiv, T.; Jakobshagen, K.; Buch, T.; et al. Host microbiota constantly control maturation and function of microglia in the CNS. Nat. Neurosci. 2015, 18, 965–977. [Google Scholar] [CrossRef]
- Kasahara, K.; Rey, F.E. The emerging role of gut microbial metabolism on cardiovascular disease. Curr. Opin. Microbiol. 2019, 50, 64–70. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, M.; Li, J.; Liang, J.; Yang, M.; Xia, G.; Ren, Y.; Zhou, H.; Wu, Q.; He, Y.; et al. Gut microbiota is causally associated with poststroke cognitive impairment through lipopolysaccharide and butyrate. J. Neuroinflamm. 2022, 19, 76. [Google Scholar] [CrossRef]
- Matt, S.M.; Allen, J.M.; Lawson, M.A.; Mailing, L.J.; Woods, J.A.; Johnson, R.W. Butyrate and Dietary Soluble Fiber Improve Neuroinflammation Associated With Aging in Mice. Front. Immunol. 2018, 9, 1832. [Google Scholar] [CrossRef]
- Wang, M.; Wang, Z.; Lee, Y.; Lai, H.T.M.; de Oliveira Otto, M.C.; Lemaitre, R.N.; Fretts, A.; Sotoodehnia, N.; Budoff, M.; DiDonato, J.A.; et al. Dietary Meat, Trimethylamine N-Oxide-Related Metabolites, and Incident Cardiovascular Disease Among Older Adults: The Cardiovascular Health Study. Arter. Thromb. Vasc. Biol. 2022, 42, e273–e288. [Google Scholar] [CrossRef]
- Zhu, W.; Romano, K.A.; Li, L.; Buffa, J.A.; Sangwan, N.; Prakash, P.; Tittle, A.N.; Li, X.S.; Fu, X.; Androjna, C.; et al. Gut microbes impact stroke severity via the trimethylamine N-oxide pathway. Cell Host Microbe 2021, 29, 1199–1208.e5. [Google Scholar] [CrossRef]
- Tang, W.H.; Wang, Z.; Levison, B.S.; Koeth, R.A.; Britt, E.B.; Fu, X.; Wu, Y.; Hazen, S.L. Intestinal microbial metabolism of phosphatidylcholine and cardiovascular risk. N. Engl. J. Med. 2013, 368, 1575–1584. [Google Scholar] [CrossRef] [PubMed]
- Boutagy, N.E.; Neilson, A.P.; Osterberg, K.L.; Smithson, A.T.; Englund, T.R.; Davy, B.M.; Hulver, M.W.; Davy, K.P. Short-term high-fat diet increases postprandial trimethylamine-N-oxide in humans. Nutr. Res. 2015, 35, 858–864. [Google Scholar] [CrossRef] [PubMed]
- Koeth, R.A.; Wang, Z.; Levison, B.S.; Buffa, J.A.; Org, E.; Sheehy, B.T.; Britt, E.B.; Fu, X.; Wu, Y.; Li, L.; et al. Intestinal microbiota metabolism of L-carnitine, a nutrient in red meat, promotes atherosclerosis. Nat. Med. 2013, 19, 576–585. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Liu, X.; Li, Q. Interventional strategies for ischemic stroke based on the modulation of the gut microbiota. Front. Neurosci. 2023, 17, 1158057. [Google Scholar] [CrossRef]
- Evrensel, A.; Ceylan, M.E. Fecal Microbiota Transplantation and Its Usage in Neuropsychiatric Disorders. Clin. Psychopharmacol. Neurosci. 2016, 14, 231–237. [Google Scholar] [CrossRef]
- Wang, H.; Song, W.; Wu, Q.; Gao, X.; Li, J.; Tan, C.; Zhou, H.; Zhu, J.; He, Y.; Yin, J. Fecal Transplantation from db/db Mice Treated with Sodium Butyrate Attenuates Ischemic Stroke Injury. Microbiol. Spectr. 2021, 9, e0004221. [Google Scholar] [CrossRef]
- Burrello, C.; Garavaglia, F.; Cribiu, F.M.; Ercoli, G.; Lopez, G.; Troisi, J.; Colucci, A.; Guglietta, S.; Carloni, S.; Guglielmetti, S.; et al. Therapeutic faecal microbiota transplantation controls intestinal inflammation through IL10 secretion by immune cells. Nat. Commun. 2018, 9, 5184. [Google Scholar] [CrossRef]
- Hill, C.; Guarner, F.; Reid, G.; Gibson, G.R.; Merenstein, D.J.; Pot, B.; Morelli, L.; Canani, R.B.; Flint, H.J.; Salminen, S.; et al. Expert consensus document. The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat. Rev. Gastroenterol. Hepatol. 2014, 11, 506–514. [Google Scholar] [CrossRef]
- Chidambaram, S.B.; Rathipriya, A.G.; Mahalakshmi, A.M.; Sharma, S.; Hediyal, T.A.; Ray, B.; Sunanda, T.; Rungratanawanich, W.; Kashyap, R.S.; Qoronfleh, M.W.; et al. The Influence of Gut Dysbiosis in the Pathogenesis and Management of Ischemic Stroke. Cells 2022, 11, 1239. [Google Scholar] [CrossRef]
- Cavalcanti Neto, M.P.; Aquino, J.S.; Romao da Silva, L.F.; de Oliveira Silva, R.; Guimaraes, K.S.L.; de Oliveira, Y.; de Souza, E.L.; Magnani, M.; Vidal, H.; de Brito Alves, J.L. Gut microbiota and probiotics intervention: A potential therapeutic target for management of cardiometabolic disorders and chronic kidney disease? Pharmacol. Res. 2018, 130, 152–163. [Google Scholar] [CrossRef]
- Markowiak, P.; Slizewska, K. Effects of Probiotics, Prebiotics, and Synbiotics on Human Health. Nutrients 2017, 9, 1021. [Google Scholar] [CrossRef] [PubMed]
- Akagawa, S.; Akagawa, Y.; Nakai, Y.; Yamagishi, M.; Yamanouchi, S.; Kimata, T.; Chino, K.; Tamiya, T.; Hashiyada, M.; Akane, A.; et al. Fiber-Rich Barley Increases Butyric Acid-Producing Bacteria in the Human Gut Microbiota. Metabolites 2021, 11, 559. [Google Scholar] [CrossRef] [PubMed]
- Barraud, D.; Bollaert, P.E.; Gibot, S. Impact of the administration of probiotics on mortality in critically ill adult patients: A meta-analysis of randomized controlled trials. Chest 2013, 143, 646–655. [Google Scholar] [CrossRef] [PubMed]
- Duris, K.; Lipkova, J.; Jurajda, M. Cholinergic Anti-inflammatory Pathway and Stroke. Curr. Drug Deliv. 2017, 14, 449–457. [Google Scholar] [CrossRef]
- De Raedt, S.; Haentjens, P.; De Smedt, A.; Brouns, R.; Uyttenboogaart, M.; Luijckx, G.J.; De Keyser, J. Pre-stroke use of beta-blockers does not affect ischaemic stroke severity and outcome. Eur. J. Neurol. 2012, 19, 234–240. [Google Scholar] [CrossRef]
- Zeng, Y.; Nie, K.; Wallace, K.L.; Li, F.; Zhang, J.; Li, C.; Wang, Y.; Zhang, J.; Wang, J.; Jiang, C. Premorbid Use of Beta-Blockers or Angiotensin-Converting Enzyme Inhibitors/Angiotensin Receptor Blockers in Patients with Acute Ischemic Stroke. Oxid. Med. Cell Longev. 2023, 2023, 7733857. [Google Scholar] [CrossRef]
- Shaker, A.; Rubin, D.C. Stem cells: One step closer to gut repair. Nature 2012, 485, 181–182. [Google Scholar] [CrossRef]
- Thevaranjan, N.; Puchta, A.; Schulz, C.; Naidoo, A.; Szamosi, J.C.; Verschoor, C.P.; Loukov, D.; Schenck, L.P.; Jury, J.; Foley, K.P.; et al. Age-Associated Microbial Dysbiosis Promotes Intestinal Permeability, Systemic Inflammation, and Macrophage Dysfunction. Cell Host Microbe 2017, 21, 455–466.e4. [Google Scholar] [CrossRef]
- van Gemmeren, T.; Schuppner, R.; Grosse, G.M.; Fering, J.; Gabriel, M.M.; Huber, R.; Worthmann, H.; Lichtinghagen, R.; Weissenborn, K. Early Post-Stroke Infections Are Associated with an Impaired Function of Neutrophil Granulocytes. J. Clin. Med. 2020, 9, 872. [Google Scholar] [CrossRef]
- Klimiec, E.; Pera, J.; Chrzanowska-Wasko, J.; Golenia, A.; Slowik, A.; Dziedzic, T. Plasma endotoxin activity rises during ischemic stroke and is associated with worse short-term outcome. J. Neuroimmunol. 2016, 297, 76–80. [Google Scholar] [CrossRef]
- Duran-Laforet, V.; Pena-Martinez, C.; Garcia-Culebras, A.; Alzamora, L.; Moro, M.A.; Lizasoain, I. Pathophysiological and pharmacological relevance of TLR4 in peripheral immune cells after stroke. Pharmacol. Ther. 2021, 228, 107933. [Google Scholar] [CrossRef] [PubMed]
- Caso, J.R.; Pradillo, J.M.; Hurtado, O.; Lorenzo, P.; Moro, M.A.; Lizasoain, I. Toll-like receptor 4 is involved in brain damage and inflammation after experimental stroke. Circulation 2007, 115, 1599–1608. [Google Scholar] [CrossRef] [PubMed]
- Xu, K.; Gao, X.; Xia, G.; Chen, M.; Zeng, N.; Wang, S.; You, C.; Tian, X.; Di, H.; Tang, W.; et al. Rapid gut dysbiosis induced by stroke exacerbates brain infarction in turn. Gut 2021, 70, ahead. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Zhou, Y.; Yu, Y.; He, K.; Cheng, L.M. Lipopolysaccharide preconditioning increased the level of regulatory B cells in the spleen after acute ischaemia/reperfusion in mice. Brain Res. 2018, 1701, 46–57. [Google Scholar] [CrossRef]
BT AFTER IS | ||||
---|---|---|---|---|
Authors/Ref. Number | Year | Type | Model | Main Findings |
Crasper et al. [26] | 2016 | Experimental | Male C57Bl/6 mice, aged 8–10 weeks and 18–20 months, subjected to 60 min transient MCAO (tMCAO) using the intraluminal model. | Demonstration of leaky gut and BT in young and aged animals following IS. Aged mice exhibited higher mortality, poorer functional outcomes, and differences in bacterial species found outside the gut compared to their younger counterparts. |
Stanley et al. [24] | 2016 | Experimental/Clinical | 7–10-week-old male C57BL/6J mice housed under specific-pathogen-free (SPF) conditions and germ-free (GF) 7-week-old male C57BL/6J mice subjected to 60 min tMCAO using the intraluminal model. A prospective cohort study conducted with 36 patients from Foothills Medical Centre, affiliated with the University of Calgary. | Experimentally, both GF and SPF mice exhibited significant GI dysbiosis, an imbalance in gut adrenergic/cholinergic innervation, increased intestinal permeability, and BT 24 h after IS. 22% percent of the cohort of patients with IS and SAIs exhibited growth of typical gut bacteria in blood, urine, and saliva samples. |
Oyama N. et al. [64] | 2018 | Experimental | 12-week-old male C57Bl/6J mice subjected to 60 min tMCAO using the intraluminal model. | Mice subjected to IS, despite detecting changes in tight junction protein expression in the ileum, no signs of intestinal inflammation, leaky gut, or BT were observed. |
Wen et al. [65] | 2019 | Experimental/Clinical | Male C57BL/6J mice, aged 7–10 weeks and 12–15 months, subjected to 20 min tMCAO using the intraluminal model. Logistic regression modeling was used to determine the association between stroke and infection in a cohort of 509 patients from Monash Medical Centre. | Aged mice showed a higher number of bacterial lung infections, elevated gut inflammation, and leaky gut after IS compared to their young counterparts. Multivariable regression model of risk factors analysis showed that age, stroke severity, and the use of an indwell-ing catheter had a significant association with post-stroke infection and hence are independent predictors. |
Diaz-Marugan et al. [40] | 2024 | Experimental | Male C57BL/6J mice aged 10–11 weeks and male and female Cx3cr1eGFP/+ mice subjected to 45 min tMCAO using the intraluminal model. | IS induced lymphopenia, intestinal permeability, GI dysbiosis, and altered gut inflammation 48 h after surgery. Additionally, IS caused BT to the peritoneal organs and lungs at this time point. |
DYSBIOSIS, LEAKY GUT, AND BT AFTER HS | ||||
Authors/Ref. Number | Year | Type | Main Findings | |
Cheng et al. [66] | 2018 | Experimental | Male C57BL/6J mice aged 6–8 weeks subjected to ICH by the autologous blood infusion model. | HS caused destruction of the gut mucosa, impaired small intestinal motility, increased intestinal permeability, and elevated gut inflammation and oxidative stress. These effects began as early as 2 h after HS and persisted for 7 days. |
Yu X. et al. [67] | 2021 | Experimental | Male C57BL/6J mice aged 10–12 weeks subjected to HS by the collagenase model. | The GI dysbiosis found in HS mice, also affected the outcome through immune-mediated mechanisms. FMT from healthy/young mice to HS mice reduced the GI barrier damage. |
Zhang et al. [68] | 2021 | Experimental | Male C57BL/6J mice aged 6–8-weeks subjected to HS by the collagenase model. | HS in mice induced changes in the immune response, signs of small intestine damage, morphological gut alterations, and increased intestinal permeability from 3 to 7 days after surgery. Similar dysbiosis was observed in both the ileum and lungs at 7 days, suggesting BT from the gut to the lungs following HS. |
Wang et al. [69] | 2024 | Clinical | A study involving two cohorts: 30 control participants and 51 HS patients admitted to the emergency department of Zhengzhou Central Hospital, affiliated with Zhengzhou University, between May and September 2023. | Patients with HS exhibited significant differences in the composition and diversity of their GI microbiota compared to healthy subjects. These alterations changed dynamically over the course of HS, suggesting that GI dysbiosis could serve as a predictor of disease progression. |
Clinical | Experimental | ||
---|---|---|---|
ANTIBIOTICS | |||
Ischemic stroke trials: PASS (Nº patients = 2225) [73], STROKE-INF (Nº patients = 1224) [74], and STRAWINSKI (Nº patients = 227) [75]. | Reduction of overall infection rates but not improvements in stroke outcome. | Male and female C57Bl/6 and db/db mice aged 7–8 weeks subjected to 35 and 60 min tMCAO using the intraluminal model [27,48,76]. Male Wistar rats aged 4 weeks subjected to MCA occlusion using the endothelin-1 model [77]. | Beneficial anti-inflammatory effects related to microbiota modifications [48,76,77]. GI dysbiosis increases the risk of infection through the production of bacterial fragments [27]. |
DIETARY INTERVENTIONS | |||
- | - | Male and female C57Bl/6 mice aged 6–10 weeks subjected to 30 and 60 min tMCAO using the intraluminal, and pMCAO photothrombotic and electrocoagulation models [78,79,80]. | Beneficial anti-inflammatory effects, restoring gut microbiota after protein and caloric diet restrictions [78,79]. Preserved gut barrier integrity with butyric components [80]. |
FECAL MICROBIOTA TRANSPLANTATION | |||
- | - | Male and female C57Bl/6 mice aged 10–12 weeks and 16–18 months subjected to 60 min tMCAO using the intraluminal and pMCAO electrocoagulation models [81,82]. Male Sprague Dawley rats aged 9 weeks subjected to 120 min tMCAO using the intraluminal model [83]. | Increased Lactobacillus [83] and T-regs cells [81,82] production, reducing gut leakage and gut inflammation after FMT. |
PROBIOTIC AND PREBIOTIC AGENTS | |||
Ischemic stroke study (Nº patients = 60) [84]. | Maintenance of GI barrier integrity and diarrhea prevention with Lactobacillus and Bifidobacterium treatment. | Male C57Bl/6 and ICR mice aged 6–10 weeks subjected to 45, 60, and 90 min tMCAO using the intraluminal, 20 min BCCAO using vascular clips, and pMCAO photothrombotic models [85,86,87,88,89]. | TNF-α and free radical suppression through modulation of gut TLRs [85]. Antioxidant and anti-apoptotic effects by Clostridium butyricum treatment [86]. GI barrier repair and decreased inflammation after lactulose treatment [87]. Regulated intestinal T cell response by resveratrol [88]. Reduced harmful bacteria, regulated T-reg response, and maintained GI barrier integrity by IPA [89]. |
ANS MODULATORS | |||
Virtual International Stroke Trials Archive [90]. Historical cohort study with ischemic or hemorrhagic stroke patients (Nº patients = 625) [91]. | Reduced urinary [90] or lung post-stroke infections after β-blockers treatment [91]. | Male and female C57Bl/6 and Balb/c mice aged 7–12 weeks subjected to 30 and 60 min tMCAO using the intraluminal and TBI models [24,92,93,94,95,96]. Male Sprague Dawley rats aged 7 weeks subjected to 120 min tMCAO, using the intraluminal model [97]. | Decreased BT from the gut to the lungs, liver, and spleen [24] and prevented bacterial infections after β-blockers [92,93,94]. Anti-inflammatory effects [95,96] and prevented GI permeability after cholinergic agonist treatment [97]. |
STEM CELL TRANSPLANTATION | |||
- | - | Male and female Sprague Dawley rats aged 5–7 and 12 months subjected to pMCAO by the endothelin-1 model. | Reduced GI permeability and LPS/IL-17 levels after IESCs transplant [98]. |
ANTI-INFLAMMATORY STRATEGIES | |||
Ischemic stroke trial (Nº patients = 151) [99]. | ApTOLL showed excellent safety and reduced mortality and 90-day disability after treatment. | Male C57Bl/6 and ICR mice aged 6–15 weeks subjected to 20, 45, 60, and 90 min tMCAO using the intraluminal, and pMCAO using ligature models [40,65,100,101,102,103,104]. Male and female Sprague Dawley and Wistar rats aged 96 h and 5–12 weeks subjected to pMCAO, 120 min tMCAO using the ligature, and 45 and 60 min tMCAO using the intraluminal models [104,105,106,107,108]. | Anti-inflammatory effects targeting neutrophils [105], macrophages [100], T cells [101], IL-6 [106], IL-17 [102], TNF-α [107], or modulating approaches of T-regs [103]. Reduced bacterial dissemination and dysbiosis targeting TFN-α [65]. Reduced stroke-induced gut overgrowth of Enterobacteriaceae after NF-κB inhibition [40]. Neuroprotective and anti-inflammatory effects displayed by ApTOLL [104,108]. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Granados-Martinez, C.; Alfageme-Lopez, N.; Navarro-Oviedo, M.; Nieto-Vaquero, C.; Cuartero, M.I.; Diaz-Benito, B.; Moro, M.A.; Lizasoain, I.; Hernandez-Jimenez, M.; Pradillo, J.M. Gut Microbiota, Bacterial Translocation, and Stroke: Current Knowledge and Future Directions. Biomedicines 2024, 12, 2781. https://doi.org/10.3390/biomedicines12122781
Granados-Martinez C, Alfageme-Lopez N, Navarro-Oviedo M, Nieto-Vaquero C, Cuartero MI, Diaz-Benito B, Moro MA, Lizasoain I, Hernandez-Jimenez M, Pradillo JM. Gut Microbiota, Bacterial Translocation, and Stroke: Current Knowledge and Future Directions. Biomedicines. 2024; 12(12):2781. https://doi.org/10.3390/biomedicines12122781
Chicago/Turabian StyleGranados-Martinez, Cristina, Nuria Alfageme-Lopez, Manuel Navarro-Oviedo, Carmen Nieto-Vaquero, Maria Isabel Cuartero, Blanca Diaz-Benito, Maria Angeles Moro, Ignacio Lizasoain, Macarena Hernandez-Jimenez, and Jesus Miguel Pradillo. 2024. "Gut Microbiota, Bacterial Translocation, and Stroke: Current Knowledge and Future Directions" Biomedicines 12, no. 12: 2781. https://doi.org/10.3390/biomedicines12122781
APA StyleGranados-Martinez, C., Alfageme-Lopez, N., Navarro-Oviedo, M., Nieto-Vaquero, C., Cuartero, M. I., Diaz-Benito, B., Moro, M. A., Lizasoain, I., Hernandez-Jimenez, M., & Pradillo, J. M. (2024). Gut Microbiota, Bacterial Translocation, and Stroke: Current Knowledge and Future Directions. Biomedicines, 12(12), 2781. https://doi.org/10.3390/biomedicines12122781