Dehydroepiandrosterone and Bone Health: Mechanisms and Insights
"> Figure 1
<p>DHEA metabolic cascade: enzymatic transformations to steroid hormones. Abbreviation: AR, androgen receptor; CYP11A1, cholesterol side-chain cleavage enzyme; CYP17A1, 17α-hydroxylase/17,20-lyase; CYP19A1, aromatase; DHEA, dehydroepiandrosterone; DHEAS, DHEA sulphated; ER, oestrogen receptor; SULT2A1, sulfotransferase 2A1; 3β-hydroxysteroid dehydrogenase; 17β-HSD, 7β-hydroxysteroid dehydrogenase; 3β-HSD. Created in BioRender. Chua, E. (2024) <a href="https://BioRender.com/q31o388" target="_blank">https://BioRender.com/q31o388</a> (accessed on 23 October 2024).</p> "> Figure 2
<p>Mechanism effect of DHEA on bone health. ALP, alkaline phosphatase; BMP2, bone morphogenetic protein 2; COL1, collagen type I alpha-1 chain; IGF-1, insulin-like growth factor 1; MAPK, mitogen-activated protein kinase; P13K, phosphoinositide 3-kinase; RANKL, receptor activator of nuclear factor kappa-Β ligand; RUNX2, runt-related transcription factor 2; OPG, osteoprotegerin; OSX, osterix. Created in BioRender. Chua, E. (2024) <a href="https://BioRender.com/u84m205" target="_blank">https://BioRender.com/u84m205</a> (accessed on 23 October 2024).</p> ">
Abstract
:1. Introduction
2. Literature Search
3. Overview of DHEA
3.1. DHEA Synthesis and Metabolism
3.2. DHEA on Androgen and Oestrogen Receptors
4. Effects of DHEA on Bone
4.1. Effects of DHEA in In Vitro (Cell-Based) Studies
4.2. Effects of DHEA in In Vivo (Animal) Studies
4.3. Effects of DHEA on Human Studies
5. Benefits and Risks of DHEA
6. Perspective and Limitation
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pluchino, N.; Drakopoulos, P.; Bianchi-Demicheli, F.; Wenger, J.M.; Petignat, P.; Genazzani, A.R. Neurobiology of DHEA and effects on sexuality, mood and cognition. J. Steroid Biochem. Mol. Biol. 2015, 145, 273–280. [Google Scholar] [CrossRef] [PubMed]
- Mannella, P.; Simoncini, T.; Caretto, M.; Genazzani, A. Dehydroepiandrosterone and cardiovascular disease. In Vitamins and hormones; Elsevier: Amsterdam, The Netherlands, 2018; pp. 333–353. [Google Scholar]
- Nenezic, N.; Kostic, S.; Strac, D.S.; Grunauer, M.; Nenezic, D.; Radosavljevic, M.; Jancic, J.; Samardzic, J. Dehydroepiandrosterone (DHEA): Pharmacological effects and potential therapeutic application. Mini Rev. Med. Chem. 2023, 23, 941–952. [Google Scholar] [CrossRef] [PubMed]
- Campbell, B. DHEAS and human development: An evolutionary perspective. Front. Endocrinol. 2020, 11, 101. [Google Scholar] [CrossRef] [PubMed]
- Tang, J.; Chen, L.-R.; Chen, K.-H. The utilization of dehydroepiandrosterone as a sexual hormone precursor in premenopausal and postmenopausal women: An overview. Pharmaceuticals 2021, 15, 46. [Google Scholar] [CrossRef]
- Davis, S.R.; Panjari, M.; Stanczyk, F.Z. Clinical review: DHEA replacement for postmenopausal women. J. Clin. Endocrinol. Metab. 2011, 96, 1642–1653. [Google Scholar] [CrossRef]
- Labrie, F.; Martel, C.; Bélanger, A.; Pelletier, G. Androgens in women are essentially made from DHEA in each peripheral tissue according to intracrinology. J. Steroid Biochem. Mol. Biol. 2017, 168, 9–18. [Google Scholar] [CrossRef]
- Labrie, F.; Luu-The, V.; Bélanger, A.; Lin, S.X.; Simard, J.; Pelletier, G.; Labrie, C. Is dehydroepiandrosterone a hormone? J. Endocrinol. 2005, 187, 169–196. [Google Scholar] [CrossRef]
- Kicman, A.T. Biochemical and physiological aspects of endogenous androgens. In Doping in Sports: Biochemical Principles, Effects and Analysis; Springer: Berlin/Heidelberg, Germany, 2010; pp. 25–64. [Google Scholar]
- Stocco, C. Tissue physiology and pathology of aromatase. Steroids 2012, 77, 27–35. [Google Scholar] [CrossRef]
- Rainey, W.E.; Nakamura, Y. Regulation of the adrenal androgen biosynthesis. J. Steroid Biochem. Mol. Biol. 2008, 108, 281–286. [Google Scholar] [CrossRef]
- Rege, J.; Rainey, W.E. The steroid metabolome of adrenarche. J. Endocrinol. 2012, 214, 133. [Google Scholar] [CrossRef]
- McConnell, D.S.; Stanczyk, F.Z.; Sowers, M.R.; Randolph, J.F., Jr.; Lasley, B.L. Menopausal transition stage-specific changes in circulating adrenal androgens. Menopause 2012, 19, 658–663. [Google Scholar] [CrossRef] [PubMed]
- Lasley, B.L.; Chen, J.; Stanczyk, F.Z.; El Khoudary, S.R.; Gee, N.A.; Crawford, S.; McConnell, D.S. Androstenediol complements estrogenic bioactivity during the menopausal transition. Menopause 2012, 19, 650–657. [Google Scholar] [CrossRef] [PubMed]
- Yokomoto-Umakoshi, M.; Umakoshi, H.; Iwahashi, N.; Matsuda, Y.; Kaneko, H.; Ogata, M.; Fukumoto, T.; Terada, E.; Nakano, Y.; Sakamoto, R.; et al. Protective Role of DHEAS in Age-related Changes in Bone Mass and Fracture Risk. J. Clin. Endocrinol. Metab. 2021, 106, e4580–e4592. [Google Scholar] [CrossRef] [PubMed]
- Ouanes, S.; Clark, C.; Richiardi, J.; Maréchal, B.; Lewczuk, P.; Kornhuber, J.; Kirschbaum, C.; Popp, J. Cerebrospinal fluid cortisol and dehydroepiandrosterone sulfate, Alzheimer’s disease pathology, and cognitive decline. Front. Aging Neurosci. 2022, 14, 892754. [Google Scholar] [CrossRef]
- Engdahl, C.; Lagerquist, M.K.; Stubelius, A.; Andersson, A.; Studer, E.; Ohlsson, C.; Westberg, L.; Carlsten, H.; Forsblad-d’Elia, H. Role of Androgen and Estrogen Receptors for the Action of Dehydroepiandrosterone (DHEA). Endocrinology 2014, 155, 889–896. [Google Scholar] [CrossRef]
- Prough, R.A.; Clark, B.J.; Klinge, C.M. Novel mechanisms for DHEA action. J. Mol. Endocrinol. 2016, 56, R139–R155. [Google Scholar] [CrossRef]
- Chen, F.; Knecht, K.; Birzin, E.; Fisher, J.; Wilkinson, H.; Mojena, M.; Moreno, C.T.; Schmidt, A.; Harada, S.-I.; Freedman, L.P. Direct agonist/antagonist functions of dehydroepiandrosterone. Endocrinology 2005, 146, 4568–4576. [Google Scholar] [CrossRef]
- Elbeltagy, K.; Honda, K.-I.; Ozaki, K.; Misugi, T.; Tokuyama, O.; Kimura, M.; Kira, Y.; Ishiko, O. In vitro effect of dehydroepiandrosterone sulfate on steroid receptors, aromatase, cyclooxygenase-2 expression, and steroid hormone production in preovulatory human granulosa cells. Fertil. Steril. 2007, 88 (Suppl. S4), 1135–1142. [Google Scholar] [CrossRef]
- Miller, K.K.; Al-Rayyan, N.; Ivanova, M.M.; Mattingly, K.A.; Ripp, S.L.; Klinge, C.M.; Prough, R.A. DHEA metabolites activate estrogen receptors alpha and beta. Steroids 2013, 78, 15–25. [Google Scholar] [CrossRef]
- Harding, G.; Mak, Y.T.; Evans, B.; Cheung, J.; MacDonald, D.; Hampson, G. The effects of dexamethasone and dehydroepiandrosterone (DHEA) on cytokines and receptor expression in a human osteoblastic cell line: Potential steroid-sparing role for DHEA. Cytokine 2006, 36, 57–68. [Google Scholar] [CrossRef]
- Wang, L.; Wang, Y.D.; Wang, W.J.; Zhu, Y.; Li, D.J. Dehydroepiandrosterone improves murine osteoblast growth and bone tissue morphometry via mitogen-activated protein kinase signaling pathway independent of either androgen receptor or estrogen receptor. J. Mol. Endocrinol. 2007, 38, 467–479. [Google Scholar] [CrossRef] [PubMed]
- Malik, A.K.; Khaldoyanidi, S.; Auci, D.L.; Miller, S.C.; Ahlem, C.N.; Reading, C.L.; Page, T.; Frincke, J.M. 5-Androstene-3β,7β,17β-triol (β-AET) slows thermal injury induced osteopenia in mice: Relation to aging and osteoporosis. PLoS ONE 2010, 5, e13566. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.-D.; Tao, M.-F.; Wang, L.; Cheng, W.-W.; Wan, X.-P. Selective regulation of osteoblastic OPG and RANKL by dehydroepiandrosterone through activation of the estrogen receptor β-mediated MAPK signaling pathway. Horm. Metab. Res. 2012, 44, 494–500. [Google Scholar] [CrossRef] [PubMed]
- Kaivosoja, E.; Sariola, V.; Chen, Y.; Konttinen, Y.T. The effect of pulsed electromagnetic fields and dehydroepiandrosterone on viability and osteo-induction of human mesenchymal stem cells. J. Tissue Eng. Regen. Med. 2015, 9, 31–40. [Google Scholar] [CrossRef]
- Qiu, X.; Gui, Y.; Xu, Y.; Li, D.; Wang, L. DHEA promotes osteoblast differentiation by regulating the expression of osteoblast-related genes and Foxp3(+) regulatory T cells. Biosci. Trends 2015, 9, 307–314. [Google Scholar] [CrossRef]
- Liang, X.; Glowacki, J.; Hahne, J.; Xie, L.; LeBoff, M.S.; Zhou, S. Dehydroepiandrosterone Stimulation of Osteoblastogenesis in Human MSCs Requires IGF-I Signaling. J. Cell Biochem. 2016, 117, 1769–1774. [Google Scholar] [CrossRef]
- Acevedo-Olvera, L.; Diaz-Garcia, H.; Rodríguez-Cortes, O.; Campos-Rodríguez, R.; Caceres-Cortes, J.; Araujo-Ávarez, J.; Parra-Barrera, A.; Gutiérrez-Iglesias, G. Effect of dehydroepiandrosterone on expression of BMP2, SPARC and RUNX2 in human bone marrow mesenchymal stem cells. Rev. Mex. Ing. Quím. 2016, 15, 39–49. [Google Scholar]
- Liang, X.; He, M.; Zhu, B.; Zhu, Y.; He, X.; Liu, D.; Wei, Q. TMT-Based Proteomic Explores the Influence of DHEA on the Osteogenic Differentiation of hBMSCs. Front. Cell Dev. Biol. 2021, 9, 726549. [Google Scholar] [CrossRef]
- Langley, E.; Velazquez-Cruz, R.; Parra-Torres, A.; Enríquez, J. The Non-Aromatic Δ5-Androstenediol Derivative of Dehydroepiandrosterone Acts as an Estrogen Agonist in Neonatal Rat Osteoblasts through an Estrogen Receptor α-related Mechanism. Endocr. Res. 2019, 44, 87–102. [Google Scholar] [CrossRef]
- Gui, Y.; Qiu, X.; Xu, Y.; Li, D.; Wang, L. Bu-Shen-Ning-Xin decoction suppresses osteoclastogenesis via increasing dehydroepiandrosterone to prevent postmenopausal osteoporosis. Biosci. Trends 2015, 9, 169–181. [Google Scholar] [CrossRef]
- Sun, H.; Zang, W.; Zhou, B.; Xu, L.; Wu, S. DHEA suppresses longitudinal bone growth by acting directly at growth plate through estrogen receptors. Endocrinology 2011, 152, 1423–1433. [Google Scholar] [CrossRef] [PubMed]
- Gentilini, M.V.; Pesce Viglietti, A.I.; Arriola Benitez, P.C.; Iglesias Molli, A.E.; Cerrone, G.E.; Giambartolomei, G.H.; Delpino, M.V. Inhibition of Osteoblast Function by Brucella abortus is Reversed by Dehydroepiandrosterone and Involves ERK1/2 and Estrogen Receptor. Front. Immunol. 2018, 9, 88. [Google Scholar] [CrossRef]
- Pesce Viglietti, A.I.; Giambartolomei, G.H.; Delpino, M.V. Endocrine modulation of Brucella abortus-infected osteocytes function and osteoclastogenesis via modulation of RANKL/OPG. Microbes Infect. 2019, 21, 287–295. [Google Scholar] [CrossRef]
- Wang, L.; Wang, Y.D.; Wang, W.J.; Li, D.J. Differential regulation of dehydroepiandrosterone and estrogen on bone and uterus in ovariectomized mice. Osteoporos. Int. 2009, 20, 79–92. [Google Scholar] [CrossRef]
- Park, J.H.; Aizawa, K.; Iemitsu, M.; Sato, K.; Akimoto, T.; Agata, U.; Maeda, S.; Ezawa, I.; Omi, N. DHEA administration activates local bioactive androgen metabolism in cancellous site of tibia of ovariectomized rats. Calcif. Tissue Int. 2011, 89, 105–110. [Google Scholar] [CrossRef]
- Park, J.; Omi, N. DHEA administration has limited effect onintestinal Ca absorption in ovariectomized rats. J. Exerc. Nutr. Biochem. 2014, 18, 333. [Google Scholar] [CrossRef] [PubMed]
- Hattori, S.; Park, S.; Park, J.-H.; Omi, N. The effect of dehydroepiandrosterone administration on intestinal calcium absorption in ovariectomized female rats. Phys. Act. Nutr. 2020, 24, 24. [Google Scholar] [CrossRef]
- Zhang, N.; Gui, Y.; Qiu, X.; Tang, W.; Li, L.; Gober, H.-J.; Li, D.; Wang, L. DHEA prevents bone loss by suppressing the expansion of CD4+ T cells and TNFa production in the OVX-mouse model for postmenopausal osteoporosis. BioSci. Trends 2016, 10, 277–287. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, H.H.; Morcos, N.Y.; Eskander, E.F.; Seoudi, D.M.; Shalby, A.B. Role of dehydroepiandrosterone in management of glucocorticoid-induced secondary osteoporosis in female rats. Exp. Toxicol. Pathol. 2012, 64, 659–664. [Google Scholar] [CrossRef]
- Sakr, H.F.; Hussein, A.M.; Eid, E.A.; Boudaka, A.; Lashin, L.S. Impact of Dehydroepiandrosterone (DHEA) on Bone Mineral Density and Bone Mineral Content in a Rat Model of Male Hypogonadism. Vet. Sci. 2020, 7, 185. [Google Scholar] [CrossRef]
- Nair, K.S.; Rizza, R.A.; O’Brien, P.; Dhatariya, K.; Short, K.R.; Nehra, A.; Vittone, J.L.; Klee, G.G.; Basu, A.; Basu, R. DHEA in elderly women and DHEA or testosterone in elderly men. N. Engl. J. Med. 2006, 355, 1647–1659. [Google Scholar] [CrossRef] [PubMed]
- Jankowski, C.M.; Gozansky, W.S.; Schwartz, R.S.; Dahl, D.J.; Kittelson, J.M.; Scott, S.M.; Van Pelt, R.E.; Kohrt, W.M. Effects of dehydroepiandrosterone replacement therapy on bone mineral density in older adults: A randomized, controlled trial. J. Clin. Endocrinol. Metab. 2006, 91, 2986–2993. [Google Scholar] [CrossRef] [PubMed]
- Bácsi, K.; Kósa, J.P.; Borgulya, G.; Balla, B.; Lazáry, Á.; Nagy, Z.; Horváth, C.; Speer, G.; Lakatos, P. CYP3A7*1C polymorphism, serum dehydroepiandrosterone sulfate level, and bone mineral density in postmenopausal women. Calcif. Tissue Int. 2007, 80, 154–159. [Google Scholar] [CrossRef]
- Gurnell, E.M.; Hunt, P.J.; Curran, S.E.; Conway, C.L.; Pullenayegum, E.M.; Huppert, F.A.; Compston, J.E.; Herbert, J.; Chatterjee, V.K.K. Long-term DHEA replacement in primary adrenal insufficiency: A randomized, controlled trial. J. Clin. Endocrinol. Metab. 2008, 93, 400–409. [Google Scholar] [CrossRef] [PubMed]
- Marder, W.; Somers, E.C.; Kaplan, M.; Anderson, M.; Lewis, E.; McCune, W. Effects of prasterone (dehydroepiandrosterone) on markers of cardiovascular risk and bone turnover in premenopausal women with systemic lupus erythematosus: A pilot study. Lupus 2010, 19, 1229–1236. [Google Scholar] [CrossRef]
- Ghebre, M.A.; Hart, D.J.; Hakim, A.J.; Kato, B.S.; Thompson, V.; Arden, N.K.; Spector, T.D.; Zhai, G. Association between DHEAS and bone loss in postmenopausal women: A 15-year longitudinal population-based study. Calcif. Tissue Int. 2011, 89, 295–302. [Google Scholar] [CrossRef]
- Papierska, L.; Rabijewski, M.; Kasperlik-Załuska, A.; Zgliczyński, W. Effect of DHEA supplementation on serum IGF-1, osteocalcin, and bone mineral density in postmenopausal, glucocorticoid-treated women. Adv. Med. Sci. 2012, 57, 51–57. [Google Scholar] [CrossRef]
- Lee, D.; Kim, H.; Ahn, S.H.; Lee, S.H.; Bae, S.J.; Kim, E.H.; Kim, H.K.; Choe, J.W.; Kim, B.J.; Koh, J.M. The association between serum dehydroepiandrosterone sulphate (DHEA-S) level and bone mineral density in Korean men. Clin. Endocrinol. 2015, 83, 173–179. [Google Scholar] [CrossRef] [PubMed]
- Park, S.-G.; Hwang, S.; Kim, J.-S.; Park, K.-C.; Kwon, Y.; Kim, K.-C. The association between dehydroepiandrosterone sulfate (DHEA-S) and bone mineral density in Korean men and women. J. Bone Metab. 2017, 24, 31–36. [Google Scholar] [CrossRef]
- Ohlsson, C.; Nethander, M.; Kindmark, A.; Ljunggren, Ö.; Lorentzon, M.; Rosengren, B.E.; Karlsson, M.K.; Mellström, D.; Vandenput, L. Low Serum DHEAS Predicts Increased Fracture Risk in Older Men: The MrOS Sweden Study. J. Bone Miner. Res. 2017, 32, 1607–1614. [Google Scholar] [CrossRef]
- Ahn, S.H.; Kim, J.H.; Cho, Y.Y.; Suh, S.; Kim, B.J.; Hong, S.; Lee, S.H.; Koh, J.M.; Song, K.H. The effects of cortisol and adrenal androgen on bone mass in Asians with and without subclinical hypercortisolism. Osteoporos. Int. 2019, 30, 1059–1069. [Google Scholar] [CrossRef] [PubMed]
- Jankowski, C.M.; Wolfe, P.; Schmiege, S.J.; Nair, K.S.; Khosla, S.; Jensen, M.; von Muhlen, D.; Laughlin, G.A.; Kritz-Silverstein, D.; Bergstrom, J.; et al. Sex-specific effects of dehydroepiandrosterone (DHEA) on bone mineral density and body composition: A pooled analysis of four clinical trials. Clin. Endocrinol. 2019, 90, 293–300. [Google Scholar] [CrossRef] [PubMed]
- Shcherbyna, M.; Muryzina, I.; Gargin, V.; Nechyporenko, A.; Baryshevska, V.; Vorobyova, O.; Alekseeva, V. Relationship between bone density of paranasal sinuses and adrenal steroids pattern in women during menopausal transition. Anthr. Rev. 2020, 83, 407–418. [Google Scholar]
- Du, Y.; Xu, C.; Shi, H.; Jiang, X.; Tang, W.; Wu, X.; Chen, M.; Li, H.; Zhang, X.; Cheng, Q. Serum concentrations of oxytocin, DHEA and follistatin are associated with osteoporosis or sarcopenia in community-dwelling postmenopausal women. BMC Geriatr. 2021, 21, 542. [Google Scholar] [CrossRef] [PubMed]
- Jankowski, C.M.; Gozansky, W.S.; Kittelson, J.M.; Van Pelt, R.E.; Schwartz, R.S.; Kohrt, W.M. Increases in bone mineral density in response to oral dehydroepiandrosterone replacement in older adults appear to be mediated by serum estrogens. J. Clin. Endocrinol. Metab. 2008, 93, 4767–4773. [Google Scholar] [CrossRef]
- Labrie, F.; Luu-The, V.; Labrie, C.; Bélanger, A.; Simard, J.; Lin, S.-X.; Pelletier, G. Endocrine and Intracrine Sources of Androgens in Women: Inhibition of Breast Cancer and Other Roles of Androgens and Their Precursor Dehydroepiandrosterone. Endocr. Rev. 2003, 24, 152–182. [Google Scholar] [CrossRef]
- Weiss, E.P.; Shah, K.; Fontana, L.; Lambert, C.P.; Holloszy, J.O.; Villareal, D.T. Dehydroepiandrosterone replacement therapy in older adults: 1- and 2-y effects on bone. Am. J. Clin. Nutr. 2009, 89, 1459–1467. [Google Scholar] [CrossRef]
- Omura, Y. Beneficial effects & side effects of DHEA: True anti-aging & age-promoting effects, as well as anti-cancer & cancer-promoting effects of DHEA evaluated from the effects on the normal & cancer cell telomeres & other parameters. Acupunct. Electro-Ther. Res. 2005, 30, 219–261. [Google Scholar]
- Kaaks, R.; Rinaldi, S.; Key, T.; Berrino, F.; Peeters, P.; Biessy, C.; Dossus, L.; Lukanova, A.; Bingham, S.; Khaw, K. Postmenopausal serum androgens, oestrogens and breast cancer risk: The European prospective investigation into cancer and nutrition. Endocr. Relat. Cancer 2005, 12, 1071–1082. [Google Scholar] [CrossRef]
- Chen, S.; Li, S.; Zhang, X.; Fan, Y.; Liu, M. Low serum dehydroepiandrosterone is associated with diabetic dyslipidemia risk in males with type 2 diabetes. Front. Endocrinol. 2023, 14, 1272797. [Google Scholar] [CrossRef]
- Rodda, S.J.; McMahon, A.P. Distinct roles for Hedgehog and canonical Wnt signaling in specification, differentiation and maintenance of osteoblast progenitors. Development 2006, 133, 3231–3244. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, N.; Maeda, K.; Ishihara, A.; Uehara, S.; Kobayashi, Y. Regulatory mechanism of osteoclastogenesis by RANKL and Wnt signals. Front. Biosci. 2011, 16, 21–30. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Lin, A.S.; Li, Y.; Reiter, C.E.; Ver, M.R.; Quon, M.J. Dehydroepiandrosterone Stimulates Phosphorylation of FoxO1 in Vascular Endothelial Cells via Phosphatidylinositol 3-Kinase-and Protein Kinase A-dependent Signaling Pathways to Regulate ET-1 Synthesis and Secretion. J. Biol. Chem. 2008, 283, 29228–29238. [Google Scholar] [CrossRef] [PubMed]
Type of Cells | Treatment (Concentration) | Findings | References |
---|---|---|---|
Human bone marrow stromal, HCC1cell line | DHEA 10−8, 10−7 M | RANKL, OPG, RANKL/OPG mRNA ratio, IL-4, IL-6, IFN-, MIF, VEGF | [22] |
Murine osteoblastic cells from calvariae of neonatal BALB/c | DHEA 10−5–10−10 M | endoplasmic reticulum area per unit cytoplasmic volume, mitochondrial density, S-phase and G2/M phase, G0/G1 phase, PI, apoptosis, phosphorylation of ERKs | [23] |
Human sarcoma cell line MG-63 and hBM-MSCs | -AET 0, 0.1, 1, or 10 M | IL-6, IL-8, OPG, cell proliferation | [24] |
Human osteoblastic cell lines, hMG63 (hMG63-ER and hMG63-shER) | DHEA 10−7 mol/L | endogenous ER mRNA levels, variation of ER mRNA, osteoblastic proliferation, OPG, ERpERK1/2, ER RANKL | [25] |
Human osteogenic sarcoma SaOS-2 and hBM-MSCs | DHEA 1, 10, or 100 mM | viability rate MSCs and SaOS-2 cells, ALP, RUNX2, SMAD1, OP, OC, osteogenic differentiation | [26] |
MSC-derived osteoblasts | DHEA 10−7 M | ALP activity, bone nodules, collagen I, OC, RUNX2, osterix expression, Foxp3+ Tregs, adipocytes, PPAR | [27] |
Human marrow stromal cells (KM101) and hBM-MSCs | DHEA 0.01, 0.1, 1, and 10 nM | ALP activity, IGF-I gene expression, ALP, RUNX2, COL I genes | [28] |
hBM-MSCs | DHEA 1, 10, and 100 M | BMP2, RUNX2, SPARC, Ca accumulation | [29] |
hBM-MSCs | DHEA 0–100 M | ALP activity, BMP2, RUNX2, COL1a1 | [30] |
Calvarial osteoblasts isolated from female rats | DHEA 1–500 nM | osteoblast proliferation, AP activity, steoblast ER, ALPL, OSX expression | [31] |
BMMs from femurs and tibias of OVX mice | DHEA 10−6–10−9 M | TRAP-positive cells, cell viability | [32] |
Metatarsal bone rudiments isolated from Sprague Dawley rat foetuses | DHEA 30 nM and 100 nM | metatarsal longitudinal growth, height of the growth plate hypertrophic zone, type X collagen mRNA, thymidine incorporation and collagen X expression, cell death, caspase 3, Bcl-2 to Bax ratio, NF-B p65-DNA-binding, ERE-luciferase | [33] |
MC3T3-E1 cell line | DHEA 1 × 10−8 M | osteoblast proliferation, osteoblast apoptosis, collagen deposition, Ca deposition, RANKL, OPG, RANKL/OPG | [34] |
MLO-Y4 cell line | DHEA 1 × 10−8 M | TNF-α, IL-6, RANKL, MMP-2 | [35] |
Type of Animal Models (Age) | Treatment/Intervention (Dose, Route, and Duration) | Findings | References |
---|---|---|---|
Ovariectomised inbred strains of BALB/c mice (10–12 weeks old) | DHEA (5 mg/kg per day orally, 90 days) | vertebrae BV/TV, femur BV/TV, fluorescence intensity, positive cell percentage | [23] |
Thermal trauma-induced bone loss in male BALB/c mice (12–14 weeks old, 25 g) | -AET (25 and 50 mg/kg, subcutaneously, 3 times/week, 4 weeks) | wet femur, dry femur, femur ash, whole-body BMC, bone percentage, Pm/Ar, longitudinal growth rate, endocortical erosion | [24] |
Ovariectomised C57BL/6 mice (6–8 weeks old) | DHEA (5 mg/kg per day orally, 3 months) | BV, BMD, Tb.N, Tb.Sp | [27] |
Ovariectomised inbred strains of BALB/c mice (10–12 weeks old) | DHEA (5 mg/kg per day intragastrically, 90 days) | vertebrae BV/TV, femur BV/TV, E2, aromatase | [36] |
Ovariectomised female Sprague Dawley rats (6 weeks old) | DHEA (20 mg/kg b.wt, intraperitoneally, 8 weeks) | DHEA, E2, BMD tibial proximal metaphysis, BMD diaphysis | [37] |
Ovariectomised female Sprague Dawley rats (6 weeks old) | DHEA (20 mg/kg b.wt intraperitoneally, 8 weeks) | BMC, BMD, femoral weight wet/body weight, long and short width and length, breaking force | [38] |
Ovariectomised female Sprague Dawley rats (n = 23, 6 weeks old) | DHEA (20 mg/kg b.wt, intraperitoneally, once every 3 days 8 weeks) | BMD at proximal metaphysis, BMD at proximal diaphysis, Ca accumulation | [39] |
Ovariectomised mice female BALB/c (8 weeks old, 20–30 g) | DHEA (5 mg/kg per day intragastrically, 12 weeks) | BMD femur and vertebra, BV/TV, Ob. S/BS, OS/BS, MS/BS, BFR, Oc. S/BS, Oc. N/BP, ES/BS, CD4+T, TNF-α, E2, Ca accumulation | [40] |
Osteoporotic adult female Sprague Dawley rats induced with prednisolone (130–150 g) | DHEA (250 mg/kg b.wt orally, 3× per week, 60 days) | OPG, RANKL, OC, 1,25-dihydroxyvitamin D3, PTH, normal trabecular bone and epiphyseal bony structure | [41] |
Orchidectomised male Wistar-Kyoto rats (12–14 weeks old) | DHEA (50 mg implanted subcutaneously, 12 weeks) | testosterone, PTH, BMD, BMC, OPG, RANK, DPD, TRAP-5b, NTX1, OC, ALP | [42] |
Type of Study | Subject Characteristics | Findings | References | |
---|---|---|---|---|
Two-year placebo-controlled, randomised, double-blind study | 87 men with low levels of DHEA (average age 60 years) | DHEA tablet 75 mg per day, 24 months | BMD at femoral neck, sulphated DHEA, oestradiol | [43] |
57 women with low levels of DHEA (average age 60 years) | DHEA tablet 50 mg per day, 24 months | BMD of the ultra-distal radius, sulphated DHEA, oestradiol | ||
Randomised, double-blinded, controlled trial | 70 women and 70 men with low level of DHEAS (aged 60–88 years) Oral DHEA 50 mg/d, 1 year | BMD at the total hip, trochanter, and shaft, BMD at lumbar spine, BMD at hip regions | [44] | |
Cross-sectional study | 319 postmenopausal women (average age 68 years) | DHEAS positively correlated with BMD at the lumbar spine, significant regression between DHEAS and BMD at lumbar spine and femoral neck | [45] | |
Double-blind, placebo-controlled trial | 106 male and female participants with Addison’s disease (average age 46 years) Oral micronised DHEA 50 mg, 12 months | DHEA, BMD at femoral neck, BMD at total hip, BMD at lumbar spine, BMD at radius proximal, BMD at radius mid, BMD at radius ulna distal, total BMD | [46] | |
Prospective, randomised, double-blinded, placebo-controlled 2-year crossover trial | 13 females had mild-to-moderate lupus disease (average age 38.7 years) Prasterone 200 mg/day, 22 weeks | RANKL, OPG, OC | [47] | |
Prospective population-based longitudinal study | 1003 postmenopausal women (average age 54.7 years) | DHEAS associated with less bone loss at femoral neck and lumbar spine | [48] | |
Cross-sectional study | 19 menopausal women receiving long-term glucocorticoid medication (aged 50–78 years) DHEA 25–50 mg daily, 12 months | DHEAS, androstenedione, testosterone, IGF-1, OC, BMD at lumbar spine and femoral neck | [49] | |
Cross-sectional study | 1300 consecutive healthy Korean men (average age 54.1 years) | DHEAS positively associated with BMD values at all skeletal sites | [50] | |
Cross-sectional study | 294 healthy Korean participants (aged 16–85 years) | DHEAS and IGF-1 positively correlated with BMD at various sites | [51] | |
International multicentre, prospective study | Older men in United States (n = 5994), Sweden (n = 3014), and Hong Kong (n = 2000) (average age 75.5 years) | DHEAS inversely associated with age, DHEAS marginally associated with BMD at femoral neck and lumbar spine | [52] | |
Cross-sectional data of a prospective multicentre study | 77 premenopausal (average age 38.6–42.5), 237 postmenopausal (average age 59.4–59.7), and 481 men (average age 55.3–56.9) | DHEAS positively associated while cort/DHEAS inversely associated with BMD at lumbar spine | [53] | |
Four double-blinded, randomised controlled trials | 295 women and 290 men with low levels of DHEAS (aged 55–85 years) Oral DHEA 50 mg/d, 12 months | DHEAS, testosterone, oestradiol, IGF-1, BMD at lumbar spine, BMD at trochanter, maintained total hip BMD | [54] | |
Cross-sectional associations | 63 perimenopausal women (aged 45–55 years) | DHEAS positively correlated with minimal bone density of maxillary sinus | [55] | |
Cross-sectional study | 478 healthy community-dwelling postmenopausal women (aged 50–90 years) | DHEA positively related to handgrip and gait speed, DHEA positively related with BMD at spine, and total hip | [56] | |
Randomised, double-blinded, placebo-controlled trial | 58 women and 61 men (aged 60–88 years) Oral DHEA 50 mg/d 12 months | DHEAS, testosterone, FTI, E1, E2, FEI, IGF-I, SHBG, CTX, BAP, significantly associated with BMD | [57] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mohamad, N.-V.; Razali, N.-S.C.; Shamsuddin, N.-A.M. Dehydroepiandrosterone and Bone Health: Mechanisms and Insights. Biomedicines 2024, 12, 2780. https://doi.org/10.3390/biomedicines12122780
Mohamad N-V, Razali N-SC, Shamsuddin N-AM. Dehydroepiandrosterone and Bone Health: Mechanisms and Insights. Biomedicines. 2024; 12(12):2780. https://doi.org/10.3390/biomedicines12122780
Chicago/Turabian StyleMohamad, Nur-Vaizura, Nur-Syahirah Che Razali, and Nur-Amira Mohd Shamsuddin. 2024. "Dehydroepiandrosterone and Bone Health: Mechanisms and Insights" Biomedicines 12, no. 12: 2780. https://doi.org/10.3390/biomedicines12122780
APA StyleMohamad, N.-V., Razali, N.-S. C., & Shamsuddin, N.-A. M. (2024). Dehydroepiandrosterone and Bone Health: Mechanisms and Insights. Biomedicines, 12(12), 2780. https://doi.org/10.3390/biomedicines12122780