Electroencephalography Longitudinal Markers of Central Neuropathic Pain Intensity in Spinal Cord Injury: A Home-Based Pilot Study
<p>Location of most intense pain for each participant.</p> "> Figure 2
<p>Comparison of PSD in eyes open and eyes closed states within each brain lobe for pre-medication session (<b>a</b>–<b>d</b>) and post-medication session (<b>e</b>–<b>h</b>).</p> "> Figure 3
<p>Comparison of PSD in pre-medication and post-medication sessions within each brain lobe in eyes open state (<b>a</b>–<b>d</b>) and eyes closed state (<b>e</b>–<b>h</b>).</p> "> Figure 4
<p>Correlation (Pearson coefficient) between EEG power after taking medications in the frontal cortex for the theta/alpha (6–10 Hz), alpha (8–12 Hz), and alpha/beta (10–15 Hz) (<b>a</b>–<b>c</b>), respectively, and in the central region for the theta/alpha (6–10 Hz), alpha (8–12 Hz) and alpha/beta (10–15 Hz) (<b>d</b>–<b>f</b>), respectively. R and <span class="html-italic">p</span> values are shown in figures.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Measures
2.2.1. Pain Intensity
2.2.2. EEG Recording
2.3. EEG Pre-Processing
2.4. Power Spectrum Density
2.5. Statistical Analysis
2.6. Linear Regression Analysis
3. Results
3.1. EEG Power in Eyes Opened vs. Eyes Closed Resting State Before and After Medications
3.2. Correlation Between Relative EEG Power and Pain Intensity
3.3. Correlation Between the Relative Changes in EEG and Relative Changes in Pain
3.4. Correlation Between the EO/EC Ratio (Reactivity) and Pain Intensity
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jensen, T.S.; Baron, R.; Haanpää, M.; Kalso, E.; Loeser, J.D.; Rice, A.S.; Treede, R.D. A new definition of neuropathic pain. Pain 2011, 152, 2204–2205. [Google Scholar] [CrossRef] [PubMed]
- Van Hecke, O.; Austin, S.K.; Khan, R.A.; Smith, B.H.; Torrance, N. Neuropathic pain in the general population: A systematic review of epidemiological studies. Pain 2014, 155, 654–662. [Google Scholar] [CrossRef] [PubMed]
- Siddall, P.J.; McClelland, J.M.; Rutkowski, S.B.; Cousins, M.J. A longitudinal study of the prevalence and characteristics of pain in the first 5 years following spinal cord injury. Pain 2003, 103, 249–257. [Google Scholar] [CrossRef] [PubMed]
- Cardenas, D.D.; Jensen, M.P. Treatments for chronic pain in persons with spinal cord injury: A survey study. J. Spinal Cord Med. 2006, 29, 109–117. [Google Scholar] [CrossRef] [PubMed]
- Jensen, M.; Hoffman, A.; Cardenas, D. Chronic pain in individuals with spinal cord injury: A survey and longitudinal study. Spinal Cord 2005, 43, 704–712. [Google Scholar] [CrossRef]
- Tran, Y.; Boord, P.; Middleton, J.; Craig, A. Levels of brain wave activity (8–13 Hz) in persons with spinal cord injury. Spinal Cord 2004, 42, 73–79. [Google Scholar] [CrossRef]
- Wrigley, P.J.; Press, S.R.; Gustin, S.M.; Macefield, V.G.; Gandevia, S.C.; Cousins, M.J.; Middleton, J.W.; Henderson, L.A.; Siddall, P. Neuropathic pain and primary somatosensory cortex reorganization following spinal cord injury. Pain 2009, 141, 52–59. [Google Scholar] [CrossRef]
- Widerström-Noga, E.; Pattany, P.M.; Cruz-Almeida, Y.; Felix, E.R.; Perez, S.; Cardenas, D.D.; Martinez-Arizala, A. Metabolite concentrations in the anterior cingulate cortex predict high neuropathic pain impact after spinal cord injury. Pain 2013, 154, 204–212. [Google Scholar] [CrossRef]
- Yoon, E.J.; Kim, Y.K.; Shin, H.I.; Lee, Y.; Kim, S.E. Cortical and white matter alterations in patients with neuropathic pain after spinal cord injury. Brain Res. 2013, 1540, 64–73. [Google Scholar] [CrossRef]
- Gustin, S.; Wrigley, P.; Youssef, A.; McIndoe, L.; Wilcox, S.; Rae, C.; Edden, R.; Siddall, P.; Henderson, L. Thalamic activity and biochemical changes in individuals with neuropathic pain after spinal cord injury. Pain 2014, 155, 1027–1036. [Google Scholar] [CrossRef]
- Boord, P.; Siddall, P.; Tran, Y.; Herbert, D.; Middleton, J.; Craig, A. Electroencephalographic slowing and reduced reactivity in neuropathic pain following spinal cord injury. Spinal Cord 2008, 46, 118–123. [Google Scholar] [CrossRef]
- Vuckovic, A.; Hasan, M.A.; Fraser, M.; Conway, B.A.; Nasseroleslami, B.; Allan, D.B. Dynamic oscillatory signatures of central neuropathic pain in spinal cord injury. J. Pain 2014, 15, 645–655. [Google Scholar] [CrossRef]
- Mussigmann, T.; Bardel, B.; Lefaucheur, J.P. Resting-state electroencephalography (EEG) biomarkers of chronic neuropathic pain. A systematic review. NeuroImage 2022, 258, 119351. [Google Scholar] [CrossRef]
- Llinás, R.R.; Ribary, U.; Jeanmonod, D.; Kronberg, E.; Mitra, P.P. Thalamocortical dysrhythmia: A neurological and neuropsychiatric syndrome characterized by magnetoencephalography. Proc. Natl. Acad. Sci. USA 1999, 96, 15222–15227. [Google Scholar] [CrossRef]
- Zebhauser, P.T.; Hohn, V.D.; Ploner, M. Resting-state electroencephalography and magnetoencephalography as biomarkers of chronic pain: A systematic review. Pain 2023, 164, 1200–1221. [Google Scholar] [CrossRef]
- Adrian, E.D.; Matthews, B.H. The Berger rhythm: Potential changes from the occipital lobes in man. Brain 1934, 57, 355–385. [Google Scholar] [CrossRef]
- Barry, R.J.; Clarke, A.R.; Johnstone, S.J.; Magee, C.A.; Rushby, J.A. EEG differences between eyes-closed and eyes-open resting conditions. Clin. Neurophysiol. 2007, 118, 2765–2773. [Google Scholar] [CrossRef]
- Vuckovic, A.; Jajrees, M.; Purcell, M.; Berry, H.; Fraser, M. Electroencephalographic predictors of neuropathic pain in subacute spinal cord injury. J. Pain 2018, 19, 1256-e1. [Google Scholar] [CrossRef]
- Vuckovic, A.; Gallardo, V.J.F.; Jarjees, M.; Fraser, M.; Purcell, M. Prediction of central neuropathic pain in spinal cord injury based on EEG classifier. Clin. Neurophysiol. 2018, 129, 1605–1617. [Google Scholar] [CrossRef] [PubMed]
- Vastano, R.; Costantini, M.; Alexander, W.H.; Widerstrom-Noga, E. Multisensory integration in humans with spinal cord injury. Sci. Rep. 2022, 12, 22156. [Google Scholar] [CrossRef] [PubMed]
- Michels, L.; Moazami-Goudarzi, M.; Jeanmonod, D. Correlations between EEG and clinical outcome in chronic neuropathic pain: Surgical effects and treatment resistance. Brain Imaging Behav. 2011, 5, 329–348. [Google Scholar] [CrossRef] [PubMed]
- Di Pietro, F.; Macey, P.M.; Rae, C.D.; Alshelh, Z.; Macefield, V.G.; Vickers, E.R.; Henderson, L.A. The relationship between thalamic GABA content and resting cortical rhythm in neuropathic pain. Hum. Brain Mapp. 2018, 39, 1945–1956. [Google Scholar] [CrossRef] [PubMed]
- Jensen, M.; Sherlin, L.; Gertz, K.; Braden, A.; Kupper, A.; Gianas, A.; Howe, J.; Hakimian, S. Brain EEG activity correlates of chronic pain in persons with spinal cord injury: Clinical implications. Spinal Cord 2013, 51, 55–58. [Google Scholar] [CrossRef]
- Zhou, R.; Wang, J.; Qi, W.; Liu, F.Y.; Yi, M.; Guo, H.; Wan, Y. Elevated resting state gamma oscillatory activities in electroencephalogram of patients with post-herpetic neuralgia. Front. Neurosci. 2018, 12, 750. [Google Scholar] [CrossRef]
- Simis, M.; Pacheco-Barrios, K.; Uygur-Kucukseymen, E.; Castelo-Branco, L.; Battistella, L.R.; Fregni, F. Specific electroencephalographic signatures for pain and descending pain inhibitory system in spinal cord injury. Pain Med. 2022, 23, 955–964. [Google Scholar] [CrossRef]
- Teixeira, M.; Mancini, C.; Wicht, C.A.; Maestretti, G.; Kuntzer, T.; Cazzoli, D.; Mouthon, M.; Annoni, J.M.; Chabwine, J.N. Beta electroencephalographic oscillation is a potential GABAergic biomarker of chronic peripheral neuropathic pain. Front. Neurosci. 2021, 15, 594536. [Google Scholar] [CrossRef]
- Sarnthein, J.; Stern, J.; Aufenberg, C.; Rousson, V.; Jeanmonod, D. Increased EEG power and slowed dominant frequency in patients with neurogenic pain. Brain 2006, 129, 55–64. [Google Scholar] [CrossRef]
- Hunter, A.M.; Leuchter, A.F.; Cook, I.A.; Abrams, M.; Siegman, B.E.; Furst, D.E.; Chappell, A.S. Brain functional changes and duloxetine treatment response in fibromyalgia: A pilot study. Pain Med. 2009, 10, 730–738. [Google Scholar] [CrossRef]
- Levitt, J.; Saab, C.Y. What does a pain ‘biomarker’mean and can a machine be taught to measure pain? Neurosci. Lett. 2019, 702, 40–43. [Google Scholar] [CrossRef] [PubMed]
- World Medical Association. World Medical Association Declaration of Helsinki: Ethical principles for medical research involving human subjects. JAMA 2013, 310, 2191–2194. [Google Scholar] [CrossRef]
- DeVivo, M.; Biering-Sørensen, F.; New, P.; Chen, Y. Standardization of data analysis and reporting of results from the International Spinal Cord Injury Core Data Set. Spinal Cord 2011, 49, 596–599. [Google Scholar] [CrossRef] [PubMed]
- McCaughey, E.; Purcell, M.; McLean, A.; Fraser, M.; Bewick, A.; Borotkanics, R.; Allan, D. Changing demographics of spinal cord injury over a 20-year period: A longitudinal population-based study in Scotland. Spinal Cord 2016, 54, 270–276. [Google Scholar] [CrossRef] [PubMed]
- Noonan, V.K.; Fingas, M.; Farry, A.; Baxter, D.; Singh, A.; Fehlings, M.G.; Dvorak, M.F. Incidence and prevalence of spinal cord injury in Canada: A national perspective. Neuroepidemiology 2012, 38, 219–226. [Google Scholar] [CrossRef]
- Ning, G.; Yu, T.; Feng, S.; Zhou, X.; Ban, D.; Liu, Y.; Jiao, X. Epidemiology of traumatic spinal cord injury in Tianjin, China. Spinal Cord 2011, 49, 386–390. [Google Scholar] [CrossRef]
- Kirshblum, S.C.; Burns, S.P.; Biering-Sorensen, F.; Donovan, W.; Graves, D.E.; Jha, A.; Johansen, M.; Jones, L.; Krassioukov, A.; Mulcahey, M.; et al. International standards for neurological classification of spinal cord injury (revised 2011). J. Spinal Cord Med. 2011, 34, 535–546. [Google Scholar] [CrossRef]
- Daut, R.L.; Cleeland, C.S.; Flanery, R.C. Development of the Wisconsin Brief Pain Questionnaire to assess pain in cancer and other diseases. Pain 1983, 17, 197–210. [Google Scholar] [CrossRef]
- NICE National Institute for Health and Care Excellence. Neuropathic Pain: The Pharmacological Management of Neuropathic Pain in Adults in Non-Specialist Settings. Clinical Guideline 173. 2013. Available online: http://www.nice.org.uk/guidance/cg173 (accessed on 15 October 2024).
- Bouhassira, D.; Attal, N.; Fermanian, J.; Alchaar, H.; Gautron, M.; Masquelier, E.; Rostaing, S.; Lanteri-Minet, M.; Collin, E.; Grisart, J.; et al. Development and validation of the neuropathic pain symptom inventory. Pain 2004, 108, 248–257. [Google Scholar] [CrossRef]
- Melzack, R. The short-form McGill pain questionnaire. Pain 1987, 30, 191–197. [Google Scholar] [CrossRef]
- Acharya, J.N.; Hani, A.J.; Cheek, J.; Thirumala, P.; Tsuchida, T.N. American clinical neurophysiology society guideline 2: Guidelines for standard electrode position nomenclature. Neurodiagn. J. 2016, 56, 245–252. [Google Scholar] [CrossRef]
- Plechawska-Wojcik, M.; Kaczorowska, M.; Zapala, D. The artifact subspace reconstruction (ASR) for EEG signal correction. A comparative study. In Proceedings of the Information Systems Architecture and Technology: Proceedings of 39th International Conference on Information Systems Architecture and Technology–ISAT 2018: Part II, Nysa, Poland, 16–18 September 2018; Springer: Berlin/Heidelberg, Germany, 2019; pp. 125–135. [Google Scholar]
- Perrin, F.; Pernier, J.; Bertrand, O.; Echallier, J.F. Spherical splines for scalp potential and current density mapping. Electroencephalogr. Clin. Neurophysiol. 1989, 72, 184–187. [Google Scholar] [CrossRef]
- Bigdely-Shamlo, N.; Mullen, T.; Kothe, C.; Su, K.M.; Robbins, K.A. The PREP pipeline: Standardized preprocessing for large-scale EEG analysis. Front. Neuroinf. 2015, 9, 16. [Google Scholar] [CrossRef]
- Dinh, S.T.; Nickel, M.M.; Tiemann, L.; May, E.S.; Heitmann, H.; Hohn, V.D.; Edenharter, G.; Utpadel-Fischler, D.; Tölle, T.R.; Sauseng, P.; et al. Brain dysfunction in chronic pain patients assessed by resting-state electroencephalography. Pain 2019, 160, 2751–2765. [Google Scholar] [CrossRef]
- Wilcoxon, F. Individual comparisons by ranking methods. In Breakthroughs in Statistics: Methodology and Distribution; Springer: Berlin/Heidelberg, Germany, 1992; pp. 196–202. [Google Scholar]
- Gibbons, J.D.; Chakraborti, S. Nonparametric Statistical Inference: Revised and Expanded; CRC Press: Boca Raton, FL, USA, 2014. [Google Scholar]
- Fisher, R.A. Statistical methods for research workers. In Breakthroughs in Statistics: Methodology and Distribution; Springer: Berlin/Heidelberg, Germany, 1970; pp. 66–70. [Google Scholar]
- Nunez-Iglesias, J.; Van der Walt, S.; Dashnow, H. Elegant SciPy: The Art of Scientific Python; O’Reilly Media, Inc.: Sebastopol, CA, USA, 2017. [Google Scholar]
- Seabold, S.; Perktold, J. Statsmodels: Econometric and statistical modeling with python. SciPy 2010, 7, 92–96. [Google Scholar]
- Leys, C.; Ley, C.; Klein, O.; Bernard, P.; Licata, L. Detecting outliers: Do not use standard deviation around the mean, use absolute deviation around the median. J. Exp. Soc. Psychol. 2013, 49, 764–766. [Google Scholar] [CrossRef]
- Wilcox, R.R. Fundamentals of Modern Statistical Methods: Substantially Improving Power and Accuracy; Springer: Berlin/Heidelberg, Germany, 2010; Volume 249. [Google Scholar]
- Salinsky, M.C.; Binder, L.M.; Oken, B.S.; Storzbach, D.; Aron, C.R.; Dodrill, C.B. Effects of gabapentin and carbamazepine on the EEG and cognition in healthy volunteers. Epilepsia 2002, 43, 482–490. [Google Scholar] [CrossRef]
- Graversen, C.; Olesen, S.S.; Olesen, A.E.; Steimle, K.; Farina, D.; Wilder-Smith, O.H.; Bouwense, S.A.; van Goor, H.; Drewes, A.M. The analgesic effect of pregabalin in patients with chronic pain is reflected by changes in pharmaco-EEG spectral indices. Br. J. Clin. Pharmacol. 2012, 73, 363–372. [Google Scholar] [CrossRef]
- Bauer, G.; Bauer, R. EEG, drug effects and central neural system poisoning. In Electroencephalography, Basic Principle, Clinical Applications and Related Fields; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2005; pp. 701–723. [Google Scholar]
- Wauquier, A. EEG and neuropharmacology. In Electroencephalography: Basic Principles, Clinical Applications and Related Fields, 5th ed.; Williams & Wilkins: Baltimore, MD, USA, 2005. [Google Scholar]
- Malver, L.P.; Brokjær, A.; Staahl, C.; Graversen, C.; Andresen, T.; Drewes, A.M. Electroencephalography and analgesics. Br. J. Clin. Pharmacol. 2014, 77, 72–95. [Google Scholar] [CrossRef]
- Badr, G.G.; Matousek, M.; Frederiksen, P.K. A quantitative EEG analysis of the effects of baclofen on man. Neuropsychobiology 1983, 10, 13–18. [Google Scholar] [CrossRef]
- Wydenkeller, S.; Maurizio, S.; Dietz, V.; Halder, P. Neuropathic pain in spinal cord injury: Significance of clinical and electrophysiological measures. Eur. J. Neurosci. 2009, 30, 91–99. [Google Scholar] [CrossRef] [PubMed]
- Zambelli, Z.; Halstead, E.J.; Iles, R.; Fidalgo, A.R.; Dimitriou, D. The 2021 NICE guidelines for assessment and management of chronic pain: A cross-sectional study mapping against a sample of 1000* in the community. Br. J. Pain 2022, 16, 439–449. [Google Scholar] [CrossRef]
- Boldt, I.; Eriks-Hoogland, I.; Brinkhof, M.W.; de Bie, R.; Joggi, D.; Von Elm, E. Non-pharmacological interventions for chronic pain in people with spinal cord injury. Cochrane Database Syst. Rev. 2014. [Google Scholar] [CrossRef] [PubMed]
- Hagen, E.M.; Rekand, T. Management of neuropathic pain associated with spinal cord injury. Pain Ther. 2015, 4, 51–65. [Google Scholar] [CrossRef]
- Koukoulithras, I.; Alkhazi, A.; Gkampenis, A.; Stamouli, A.; Plexousakis, M.; Drousia, G.; Xanthi, E.; Roussos, C.; Kolokotsios, S. A Systematic Review of the Interventions for Management of Pain in Patients after Spinal Cord Injury. Cureus 2023, 15, e42657. [Google Scholar] [CrossRef]
- Vučković, A.; Altaleb, M.K.H.; Fraser, M.; McGeady, C.; Purcell, M. EEG correlates of self-managed neurofeedback treatment of central neuropathic pain in chronic spinal cord injury. Front. Neurosci. 2019, 13, 762. [Google Scholar] [CrossRef]
- Kaur, J.; Ghosh, S.; Sahani, A.K.; Sinha, J.K. Mental imagery as a rehabilitative therapy for neuropathic pain in people with spinal cord injury: A randomized controlled trial. Neurorehabilit. Neural Repair 2020, 34, 1038–1049. [Google Scholar] [CrossRef]
- MacIntyre, T.E.; Madan, C.R.; Moran, A.P.; Collet, C.; Guillot, A. Motor imagery, performance and motor rehabilitation. Prog. Brain Res. 2018, 240, 141–159. [Google Scholar]
- Opsommer, E.; Chevalley, O.; Korogod, N. Motor imagery for pain and motor function after spinal cord injury: A systematic review. Spinal Cord 2020, 58, 262–274. [Google Scholar] [CrossRef] [PubMed]
- Widerström-Noga, E. Neuropathic pain and spinal cord injury: Management, phenotypes, and biomarkers. Drugs 2023, 83, 1001–1025. [Google Scholar] [CrossRef] [PubMed]
ID | Age Bin | ASIA/Level | Aver Pain (VNS) | Descriptor | Medications |
---|---|---|---|---|---|
P1 | 45–59 | B/C6 | 7 | Burning, shooting, tingling | Amitriptyline, paracetamol |
P2 | 60–74 | B/T6 | 6 | Pulsing, sharp, gnawing, burning, stinging, freezing | Pregabalin, Gabapentin |
P3 | 45–59 | B/C5 | 5 | Burning, freezing, tingling | Pregabalin, Amitriptyline, Paracetamol |
P4 | 45–59 | D/C3 | 5 | Burning, pressing, stabbing, flashing | Pregabalin, Gabapentin |
P5 | 45–59 | A/C4 | 7 | Shooting, throbbing, hot, stabbing, tingling, pressing | Amitriptyline, Codeine |
P6 | 60–74 | C/C5 | 6 | Burning, pressing, stabbing | Amitriptyline, Pregabalin, Paracetamol |
P7 | 60–74 | A/T8 | 8 | Pulsing, throbbing, stabbing, cramping, tingling | Pregabalin, Baclofen, Paracetamol |
P8 | 60–74 | A/L1,2 | 7 | Shooting, throbbing, stabbing, sharp, hot, pulling, stinging, cramping | Amitriptyline, Pregabalin, Baclofen |
P9 | 60–74 | C/C4 | 6 | Pulsing, stabbing, mulling, burning, tingling, pulling | Pregabalin, Baclofen, Paracetamol |
P10 | 45–59 | B/C3 | 5 | Burning, pressure, shooting, stabbing | Gabapentin, Paracetamol, Baclofen |
Frontal | Central | Parietal | Occipital | |||
---|---|---|---|---|---|---|
Theta (4–8 Hz) | Pre | p | ||||
67.443 | 63.094 | 60.531 | 64.883 | |||
Post | p | |||||
50.725 | 47.355 | 58.458 | 80.650 | |||
Alpha (8–12 Hz) | Pre | p | ||||
67.811 | 80.518 | 73.101 | 66.965 | |||
Post | p | |||||
55.914 | 59.416 | 60.809 | 79.112 | |||
Beta (12–30 Hz) | Pre | p | 0.01298 | 0.01208 | ||
224.826 | 34.147 | 32.368 | 40.553 | |||
Post | p | |||||
60.783 | 42.789 | 48.243 | 46.443 |
Frontal | Central | Parietal | Occipital | |||
---|---|---|---|---|---|---|
Theta (4–8 Hz) | EO | p | 0.047 | 0.288 | 0.146 | 0.141 |
29.086 | 20.829 | 24.297 | 24.439 | |||
EC | p | 0.099 | 0.581 | 0.036 | 0.031 | |
26.026 | 16.163 | 30.179 | 30.744 | |||
Alpha (8–12 Hz) | EO | p | 0.145 | 0.446 | 0.047 | 0.209 |
24.301 | 18.140 | 29.108 | 22.531 | |||
EC | p | 0.397 | 0.046 | 0.513 | 0.516 | |
18.921 | 29.182 | 17.144 | 17.098 | |||
Beta (12–30 Hz) | EO | p | 0.510 | 0.790 | 0.075 | 0.043 |
17.197 | 13.027 | 27.200 | 29.477 | |||
EC | p | 0.675 | 0.861 | 0.091 | 0.166 | |
14.811 | 11.727 | 26.386 | 23.685 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nawaz, R.; Suen, H.; Ullah, R.; Purcell, M.; Diggin, S.; McCaughey, E.; Vuckovic, A. Electroencephalography Longitudinal Markers of Central Neuropathic Pain Intensity in Spinal Cord Injury: A Home-Based Pilot Study. Biomedicines 2024, 12, 2751. https://doi.org/10.3390/biomedicines12122751
Nawaz R, Suen H, Ullah R, Purcell M, Diggin S, McCaughey E, Vuckovic A. Electroencephalography Longitudinal Markers of Central Neuropathic Pain Intensity in Spinal Cord Injury: A Home-Based Pilot Study. Biomedicines. 2024; 12(12):2751. https://doi.org/10.3390/biomedicines12122751
Chicago/Turabian StyleNawaz, Rab, Ho Suen, Rahmat Ullah, Mariel Purcell, Shannon Diggin, Euan McCaughey, and Aleksandra Vuckovic. 2024. "Electroencephalography Longitudinal Markers of Central Neuropathic Pain Intensity in Spinal Cord Injury: A Home-Based Pilot Study" Biomedicines 12, no. 12: 2751. https://doi.org/10.3390/biomedicines12122751
APA StyleNawaz, R., Suen, H., Ullah, R., Purcell, M., Diggin, S., McCaughey, E., & Vuckovic, A. (2024). Electroencephalography Longitudinal Markers of Central Neuropathic Pain Intensity in Spinal Cord Injury: A Home-Based Pilot Study. Biomedicines, 12(12), 2751. https://doi.org/10.3390/biomedicines12122751