Uricase-Expressing Engineered Macrophages Alleviate Murine Hyperuricemia
<p><span class="html-italic">mus</span>-Uri expression in the engineered macrophage RAW264.7. (<b>A</b>) Positive rate after lentiviral transfection, detected by flow cytometry; (<b>B</b>) uricase relative expression determined by qPCR; (<b>C</b>) <span class="html-italic">mus</span>-Uri protein expression confirmed by Western blotting.</p> "> Figure 2
<p>Engineered macrophage reduces UA level in vitro. Comparison was performed between RAW-mus Uri and RAW-Ctrl groups at each time point. (n = 10, ** <span class="html-italic">p</span> < 0.01, *** <span class="html-italic">p</span> < 0.001).</p> "> Figure 3
<p>(<b>A</b>) Rate of EGFP-positive RAW264.7 after cytometry sorting; P1 represents all viable cells, while P2 represents EGFP-positive cells. (<b>B</b>) Uric acid levels in each group 0, 7, and 14 days after intervention. The levels between HUA + RAW-Ctrl and HUA + RAW-Uri were compared. (n = 10, *** <span class="html-italic">p</span> < 0.001).</p> "> Figure 4
<p>Safety evaluation of engineered macrophage RAW-<span class="html-italic">mus</span>-Uri. (<b>A</b>) Hepatic function indicators AST, ALT, TBIL and DBIL and renal function indicators urea and crea collected from serum are assessed. (n = 10, *** <span class="html-italic">p</span> < 0.001) (<b>B</b>,<b>C</b>) H&E staining and histological examination of liver (<b>B</b>) and kidney (<b>C</b>) in each group.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Strains, Plasmids and Vector Construction
2.2. Cells and Lentiviral Transfection
2.3. qPCR
2.4. Western Blot
2.5. In Vitro Evaluation of Urate-Lowering Activity
2.6. Engineered Macrophage Treatment of Hyperuricemic (HUA) Mice
2.7. Hepatic/Renal Function and Inflammatory Factors Evaluation
2.8. Histopathology
2.9. Statistical Analysis
3. Results
3.1. Engineered Macrophages Express Exogenous mus-Uri
3.2. Engineered Macrophages Lower UA Level In Vitro
3.3. Engineered Macrophages Lower Serum UA Level in HUA Mice
3.4. Safety Evaluation of Engineered Macrophages
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Taylor, W.J.; Fransen, J.; Jansen, T.L.; Dalbeth, N.; Schumacher, H.R.; Brown, M.; Louthrenoo, W.; Vazquez-Mellado, J.; Eliseev, M.; McCarthy, G.; et al. Study for Updated Gout Classification Criteria: Identification of Features to Classify Gout. Arthritis Care Res. 2015, 67, 1304–1315. [Google Scholar] [CrossRef] [PubMed]
- Dalbeth, N.; Choi, H.K.; Joosten, L.A.B.; Khanna, P.P.; Matsuo, H.; Perez-Ruiz, F.; Stamp, L.K. Gout. Nat. Rev. Dis. Primers 2019, 5, 69. [Google Scholar] [CrossRef] [PubMed]
- Du, L.; Zong, Y.; Li, H.; Wang, Q.; Xie, L.; Yang, B.; Pang, Y.; Zhang, C.; Zhong, Z.; Gao, J. Hyperuricemia and its related diseases: Mechanisms and advances in therapy. Signal Transduct. Target. Ther. 2024, 9, 212. [Google Scholar] [CrossRef] [PubMed]
- Dehlin, M.; Jacobsson, L.; Roddy, E. Global epidemiology of gout: Prevalence, incidence, treatment patterns and risk factors. Nat. Rev. Rheumatol. 2020, 16, 380–390. [Google Scholar] [CrossRef]
- Feig, D.I.; Kang, D.H.; Johnson, R.J. Uric acid and cardiovascular risk. N. Engl. J. Med. 2008, 359, 1811–1821. [Google Scholar] [CrossRef]
- Cicero, A.F.G.; Fogacci, F.; Kuwabara, M.; Borghi, C. Therapeutic Strategies for the Treatment of Chronic Hyperuricemia: An Evidence-Based Update. Medicina 2021, 57, 58. [Google Scholar] [CrossRef]
- Terkeltaub, R. Emerging Urate-Lowering Drugs and Pharmacologic Treatment Strategies for Gout: A Narrative Review. Drugs 2023, 83, 1501–1521. [Google Scholar] [CrossRef]
- Kratzer, J.T.; Lanaspa, M.A.; Murphy, M.N.; Cicerchi, C.; Graves, C.L.; Tipton, P.A.; Ortlund, E.A.; Johnson, R.J.; Gaucher, E.A. Evolutionary history and metabolic insights of ancient mammalian uricases. Proc. Natl. Acad. Sci. USA 2014, 111, 3763–3768. [Google Scholar] [CrossRef]
- Pui, C.H. Rasburicase: A potent uricolytic agent. Expert Opin. Pharmacother. 2002, 3, 433–442. [Google Scholar] [CrossRef]
- Reinders, M.K.; Jansen, T.L. New advances in the treatment of gout: Review of pegloticase. Ther. Clin. Risk Manag. 2010, 6, 543–550. [Google Scholar] [CrossRef]
- Allen, K.C.; Champlain, A.H.; Cotliar, J.A.; Belknap, S.M.; West, D.P.; Mehta, J.; Trifilio, S.M. Risk of anaphylaxis with repeated courses of rasburicase: A Research on Adverse Drug Events and Reports (RADAR) project. Drug Saf. 2015, 38, 183–187. [Google Scholar] [CrossRef] [PubMed]
- Schlesinger, N.; Lipsky, P.E. Pegloticase treatment of chronic refractory gout: Update on efficacy and safety. Semin. Arthritis Rheum. 2020, 50, S31–S38. [Google Scholar] [CrossRef] [PubMed]
- Hershfield, M.S.; Ganson, N.J.; Kelly, S.J.; Scarlett, E.L.; Jaggers, D.A.; Sundy, J.S. Induced and pre-existing anti-polyethylene glycol antibody in a trial of every 3-week dosing of pegloticase for refractory gout, including in organ transplant recipients. Arthritis Res. Ther. 2014, 16, R63. [Google Scholar] [CrossRef] [PubMed]
- Sundy, J.S.; Baraf, H.S.; Yood, R.A.; Edwards, N.L.; Gutierrez-Urena, S.R.; Treadwell, E.L.; Vázquez-Mellado, J.; White, W.B.; Lipsky, P.E.; Horowitz, Z.; et al. Efficacy and tolerability of pegloticase for the treatment of chronic gout in patients refractory to conventional treatment: Two randomized controlled trials. JAMA 2011, 306, 711–720. [Google Scholar] [CrossRef] [PubMed]
- Botson, J.K.; Tesser, J.R.P.; Bennett, R.; Kenney, H.M.; Peloso, P.M.; Obermeyer, K.; LaMoreaux, B.; Weinblatt, M.E.; Peterson, J. Pegloticase in Combination with Methotrexate in Patients with Uncontrolled Gout: A Multicenter, Open-Label Study (MIRROR). J. Rheumatol. 2021, 48, 767–774. [Google Scholar] [CrossRef]
- Kishimoto, T.K. Development of ImmTOR Tolerogenic Nanoparticles for the Mitigation of Anti-Drug Antibodies. Front. Immunol. 2020, 11, 969. [Google Scholar] [CrossRef]
- Kivitz, A.; DeHaan, W.; Azeem, R.; Park, J.; Rhodes, S.; Inshaw, J.; Leung, S.S.; Nicolaou, S.; Johnston, L.; Kishimoto, T.K.; et al. Phase 2 Dose-Finding Study in Patients with Gout Using SEL-212, a Novel PEGylated Uricase (SEL-037) Combined with Tolerogenic Nanoparticles (SEL-110). Rheumatol. Ther. 2023, 10, 825–847. [Google Scholar] [CrossRef]
- He, L.; Tang, W.; Huang, L.; Zhou, W.; Huang, S.; Zou, L.; Yuan, L.; Men, D.; Chen, S.; Hu, Y. Rational design of a genome-based insulated system in Escherichia coli facilitates heterologous uricase expression for hyperuricemia treatment. Bioeng. Transl. Med. 2023, 8, e10449. [Google Scholar] [CrossRef]
- Liu, J.; Lin, C.; Wu, M.; Wang, Y.; Chen, S.; Yang, T.; Xie, C.; Kong, Y.; Wu, W.; Wang, J.; et al. Co-delivery of indomethacin and uricase as a new strategy for inflammatory diseases associated with high uric acid. Drug Deliv. Transl. Res. 2024, 14, 1820–1838. [Google Scholar] [CrossRef]
- Ban, Z.; Sun, M.; Ji, H.; Ning, Q.; Cheng, C.; Shi, T.; He, M.; Chen, X.; Lu, H.; He, X.; et al. Immunogenicity-masking delivery of uricase against hyperuricemia and gout. J. Control. Release 2024, 372, 862–873. [Google Scholar] [CrossRef]
- Chen, R.; Yang, J.; Wu, M.; Zhao, D.; Yuan, Z.; Zeng, L.; Hu, J.; Zhang, X.; Wang, T.; Xu, J.; et al. M2 Macrophage Hybrid Membrane-Camouflaged Targeted Biomimetic Nanosomes to Reprogram Inflammatory Microenvironment for Enhanced Enzyme-Thermo-Immunotherapy. Adv. Mater. 2023, 35, e2304123. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Wu, M.; Yang, J.; Zhao, D.; He, D.; Liu, Y.; Yan, X.; Liu, Y.; Pu, D.; Tan, Q.; et al. Multimodal smart systems reprogramme macrophages and remove urate to treat gouty arthritis. Nat. Nanotechnol. 2024, 19, 1544–1557. [Google Scholar] [CrossRef] [PubMed]
- Sterner, R.C.; Sterner, R.M. CAR-T cell therapy: Current limitations and potential strategies. Blood Cancer J. 2021, 11, 69. [Google Scholar] [CrossRef] [PubMed]
- Ramalingam, S.; Shah, A. Stem Cell Therapy as a Treatment for Autoimmune Disease-Updates in Lupus, Scleroderma, and Multiple Sclerosis. Curr. Allergy Asthma Rep. 2021, 21, 22. [Google Scholar] [CrossRef] [PubMed]
- Alessandrini, M.; Preynat-Seauve, O.; De Bruin, K.; Pepper, M.S. Stem cell therapy for neurological disorders. S. Afr. Med. J. 2019, 109, 70–77. [Google Scholar] [CrossRef]
- Mantovani, A.; Allavena, P.; Marchesi, F.; Garlanda, C. Macrophages as tools and targets in cancer therapy. Nat. Rev. Drug Discov. 2022, 21, 799–820. [Google Scholar] [CrossRef]
- Harizaj, A.; De Smedt, S.C.; Lentacker, I.; Braeckmans, K. Physical transfection technologies for macrophages and dendritic cells in immunotherapy. Expert Opin. Drug Deliv. 2021, 18, 229–247. [Google Scholar] [CrossRef]
- Keller, A.A.; Maeß, M.B.; Schnoor, M.; Scheiding, B.; Lorkowski, S. Transfecting Macrophages. Methods Mol. Biol. 2018, 1784, 187–195. [Google Scholar] [CrossRef]
- Sayed, N.; Allawadhi, P.; Khurana, A.; Singh, V.; Navik, U.; Pasumarthi, S.K.; Khurana, I.; Banothu, A.K.; Weiskirchen, R.; Bharani, K.K. Gene therapy: Comprehensive overview and therapeutic applications. Life Sci. 2022, 294, 120375. [Google Scholar] [CrossRef]
- Perry, C.; Rayat, A. Lentiviral Vector Bioprocessing. Viruses 2021, 13, 268. [Google Scholar] [CrossRef]
- Bhardwaj, R.; Kumar, L.; Chhabra, D.; Mehra, N.K.; Sharma, A.; Mohanty, S.; Kochupillai, V. In vitro expansion of fetal liver hematopoietic stem cells. Sci. Rep. 2021, 11, 11879. [Google Scholar] [CrossRef] [PubMed]
- Fabre, T.; Barron, A.M.S.; Christensen, S.M.; Asano, S.; Bound, K.; Lech, M.P.; Wadsworth, M.H., 2nd; Chen, X.; Wang, C.; Wang, J.; et al. Identification of a broadly fibrogenic macrophage subset induced by type 3 inflammation. Sci. Immunol. 2023, 8, eadd8945. [Google Scholar] [CrossRef] [PubMed]
- Takata, K.; Kozaki, T.; Lee, C.Z.W.; Thion, M.S.; Otsuka, M.; Lim, S.; Utami, K.H.; Fidan, K.; Park, D.S.; Malleret, B.; et al. Induced-Pluripotent-Stem-Cell-Derived Primitive Macrophages Provide a Platform for Modeling Tissue-Resident Macrophage Differentiation and Function. Immunity 2020, 52, 417–418. [Google Scholar] [CrossRef] [PubMed]
- Heideveld, E.; Horcas-Lopez, M.; Lopez-Yrigoyen, M.; Forrester, L.M.; Cassetta, L.; Pollard, J.W. Methods for macrophage differentiation and in vitro generation of human tumor associated-like macrophages. Methods Enzymol. 2020, 632, 113–131. [Google Scholar] [CrossRef] [PubMed]
- Ray, M.; Lee, Y.W.; Hardie, J.; Mout, R.; Yeşilbag Tonga, G.; Farkas, M.E.; Rotello, V.M. CRISPRed Macrophages for Cell-Based Cancer Immunotherapy. Bioconj. Chem. 2018, 29, 445–450. [Google Scholar] [CrossRef]
- Morrissey, M.A.; Williamson, A.P.; Steinbach, A.M.; Roberts, E.W.; Kern, N.; Headley, M.B.; Vale, R.D. Chimeric antigen receptors that trigger phagocytosis. eLife 2018, 7, e36688. [Google Scholar] [CrossRef]
- Li, Y.; Che, J.; Chang, L.; Guo, M.; Bao, X.; Mu, D.; Sun, X.; Zhang, X.; Lu, W.; Xie, J. CD47- and Integrin α4/β1-Comodified-Macrophage-Membrane-Coated Nanoparticles Enable Delivery of Colchicine to Atherosclerotic Plaque. Adv. Healthc. Mater. 2022, 11, e2101788. [Google Scholar] [CrossRef]
- Fu, J.; Wang, D.; Mei, D.; Zhang, H.; Wang, Z.; He, B.; Dai, W.; Zhang, H.; Wang, X.; Zhang, Q. Macrophage mediated biomimetic delivery system for the treatment of lung metastasis of breast cancer. J. Control. Release 2015, 204, 11–19. [Google Scholar] [CrossRef]
- White, W.B.; Saag, K.G.; Becker, M.A.; Borer, J.S.; Gorelick, P.B.; Whelton, A.; Hunt, B.; Castillo, M.; Gunawardhana, L. Cardiovascular Safety of Febuxostat or Allopurinol in Patients with Gout. N. Engl. J. Med. 2018, 378, 1200–1210. [Google Scholar] [CrossRef]
- Yun, J.; Marcaida, M.J.; Eriksson, K.K.; Jamin, H.; Fontana, S.; Pichler, W.J.; Yerly, D. Oxypurinol directly and immediately activates the drug-specific T cells via the preferential use of HLA-B*58:01. J. Immunol. 2014, 192, 2984–2993. [Google Scholar] [CrossRef]
- Stamp, L.K.; Haslett, J.; Frampton, C.; White, D.; Gardner, D.; Stebbings, S.; Taylor, G.; Grainger, R.; Kumar, R.; Kumar, S.; et al. The safety and efficacy of benzbromarone in gout in Aotearoa New Zealand. Intern. Med. J. 2016, 46, 1075–1080. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Yang, X.L.; Yuan, Y.H.; Pu, J.; Liao, F. Site-specific PEGylation of therapeutic proteins via optimization of both accessible reactive amino acid residues and PEG derivatives. BioDrugs 2012, 26, 209–215. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Zhao, T.; Shan, L.; Cao, L.; Zhu, X.; Xue, Y. Estradiol regulates intestinal ABCG2 to promote urate excretion via the PI3K/Akt pathway. Nutr. Metab. 2021, 18, 63. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Feng, Y.-Z.; Cheng, H.; Xiong, G.-Q.; Cui, J.-Z.; Chen, Z.-L.; Lu, Y.-Y.; Meng, Z.-X.; Zhu, C.; Dong, H.-L.; Xiong, X.-H.; et al. Uricase-Expressing Engineered Macrophages Alleviate Murine Hyperuricemia. Biomedicines 2024, 12, 2602. https://doi.org/10.3390/biomedicines12112602
Feng Y-Z, Cheng H, Xiong G-Q, Cui J-Z, Chen Z-L, Lu Y-Y, Meng Z-X, Zhu C, Dong H-L, Xiong X-H, et al. Uricase-Expressing Engineered Macrophages Alleviate Murine Hyperuricemia. Biomedicines. 2024; 12(11):2602. https://doi.org/10.3390/biomedicines12112602
Chicago/Turabian StyleFeng, Yu-Zhong, Hao Cheng, Guo-Qing Xiong, Jia-Zhen Cui, Zhi-Li Chen, Yuan-Yuan Lu, Zhi-Xin Meng, Chen Zhu, Hao-Long Dong, Xiang-Hua Xiong, and et al. 2024. "Uricase-Expressing Engineered Macrophages Alleviate Murine Hyperuricemia" Biomedicines 12, no. 11: 2602. https://doi.org/10.3390/biomedicines12112602
APA StyleFeng, Y. -Z., Cheng, H., Xiong, G. -Q., Cui, J. -Z., Chen, Z. -L., Lu, Y. -Y., Meng, Z. -X., Zhu, C., Dong, H. -L., Xiong, X. -H., Liu, G., Wang, Q. -Y., & Chen, H. -P. (2024). Uricase-Expressing Engineered Macrophages Alleviate Murine Hyperuricemia. Biomedicines, 12(11), 2602. https://doi.org/10.3390/biomedicines12112602