Prolonged Cadmium Exposure Alters Migration Dynamics and Increases Heterogeneity of Human Uterine Fibroid Cells—Insights from Time Lapse Analysis
<p>Full track display of nuclear surface objects to illustrate migration patterns. The images were captured at time frame number 50 (at 245 min). (<b>A</b>). Ht-UtLM6 tracks showed relatively parallel bundles in multiple regions. (<b>B</b>). CR-LM6 tracks showed relatively random and disorganized patterns. Scale bar = 100 μm.</p> "> Figure 2
<p>Distribution of Nuclear Track Straightness. (<b>A</b>) Tracks with various straightness values. These individual tracks were extracted from the full track displays in <a href="#biomedicines-10-00917-f001" class="html-fig">Figure 1</a>. The Straightness is defined as the ratio between Track Displacement and Track Length. Scale bar = 100 μm. (<b>B</b>) Distribution of Track Straightness in ht-UtLM6. The data labels shown on top of the bars are the absolute counts. The Frequency in <span class="html-italic">Y</span>-axis denotes the number of counts within a specific bin. (<b>C</b>) Distribution of Track Straightness in CR-LM6. (<b>D</b>) Superimposed probability density function curves of Straightness values for both populations.</p> "> Figure 3
<p>Track Length analysis. (<b>A</b>) The full track displays for the top 6 longest tracks. The Track Length values calculated by Imaris are displayed at the top-left. A. ht-UtLM6 tracks were relatively smooth and straight. (<b>B</b>) CR-LM6 tracks had sharp turns and sometimes loops. Scale bar = 100 μm. (<b>C</b>,<b>D</b>). The histograms of Track Length distribution for ht-UtLM6 and CR-LM6. (<b>E</b>) The probability density function curves of Track Length for the two populations.</p> "> Figure 4
<p>Prolonged Cd exposure enhanced instantaneous speed and increased speed variance. The instantaneous speed values were plotted against time frame numbers 0, 20, 40, 60, 80 and 100, corresponding to imaging times (in minutes) of 0, 95, 195, 295, 395 and 495, respectively. The five colored curves correspond to median (red), 25% and 75% quantiles (gold) and 10% and 90% quantiles (green). The speed reads above the blue dashed lines are greater than 100 µm/hour. The highest speed reads are marked by blue arrows. (<b>A</b>) ht-UTLM6. (<b>B</b>) CR-LM6. (<b>C</b>) The medians of instantaneous speeds at each time point were plotted against frame numbers. (<b>D</b>) The variances of instantaneous speeds at each time point were plotted against frame numbers.</p> "> Figure 5
<p>Cd exposure increased heterogeneity in nuclear size. The nuclear size, shape and migration tracks are shown. (<b>A</b>). ht-UTLM6. (<b>B</b>). CR-LM6. Scale bar = 20 μm. (<b>C</b>,<b>D</b>). Scatterplots to show the distribution of nuclear size over time. Note the presence of large nuclei on top of the plots. The five colored curves correspond with median (red), 25% and 75% quantiles (gold) and 10% and 90% quantiles (green). (<b>C</b>). ht-UtLM6. (<b>D</b>). CR-LM6. As shown by the blue dashed line, in ht-UtLM6 there was no nuclear objects with a size greater than 300 µm<sup>2</sup>, whereas in CR-LM6 there were 190 nuclear objects with a size greater than 400 µm<sup>2</sup>. (<b>E</b>). Medians of nuclear size at each time point were plotted against frame number. (<b>F</b>). Variances of nuclear size at each time point were plotted against frame number.</p> "> Figure 6
<p>Cd exposure induced rounding of nuclei. (<b>A</b>) Shapes of selected nuclei with various C/B ratios from ht-UTLM6 and CR-LM6 populations. The C/B ratio is defined as ratio between the length of the longest principal axis of a nucleus and the length of the second longest principal axis. Scale bar = 15 μm. (<b>B</b>) The distribution of C/B ratio in ht-UTLM6. The data labels shown on top of the bars are the absolute counts. (<b>C</b>) The distribution of C/B ratio in CR-LM6. (<b>D</b>) The overlay of inset B and inset C by probability density function. The <span class="html-italic">x</span>-axis is the C/B ratio and <span class="html-italic">y</span>-axis is probability density.</p> "> Figure 7
<p>Cd exposure altered orientation of nuclei along migration tracks. The superimposed images show the location, shape, and orientation of nuclei. (<b>A</b>) The longest principal axis of ht-UTLM6 nucleus aligned with the direction of migration track at frames 5, 15, 30, 58, 76, and 100. (<b>B</b>) The longest principal axis of CR-LM6 nucleus was misaligned and occasionally perpendicular to the direction of migration track at frames 15, 69, 72, and 86. For nuclear orientations at all the time points, refer to <a href="#app1-biomedicines-10-00917" class="html-app">supplementary videos (S1 and S2)</a>. Scale bar = 20 μm.</p> "> Figure 8
<p>IPA predicted that Cd exposure stimulated migration and invasion in CRLM6 cells based on the directions of the gene expression changes. (<b>A</b>). IPA function analysis derived from the PanCancer Pathways panel dataset (<span class="html-italic">z</span>-score 2.30). (<b>B</b>). IPA functions analysis derived from the PanCancer Progression panel dataset (<span class="html-italic">z</span>-score 2.35). The dashed lines with an arrow indicate that upregulation of gene expression is predicted to promote cell movement. The dashed lines with a T-bar demonstrate that downregulation of gene expression is predicted to promote cell movement.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Cd Exposure Reduced Straightness of Migration Track
3.2. Cd Exposure Increased Nuclear Track Length
3.3. Cd Exposure Increased Instantaneous Speed and Speed Variance
3.4. Cd Exposure Increased Nuclear Size and Nuclear Size Heterogeneity
3.5. Cd Exposure Modified Nuclear Shape
3.6. Cd Exposure Altered Orientation of Nucleus along Migration Track
3.7. Gene Expression Profiling with NanoString PanCancer Panels
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ye, S.; Chung, H.W.; Jeong, K.; Sung, Y.A.; Lee, H.; Park, S.Y.; Kim, H.; Ha, E.-H. Blood cadmium and volume of uterine fibroids in premenopausal women. Ann. Occup. Environ. Med. 2017, 29, 22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Verougstraete, V.; Lison, D.; Hotz, P. Cadmium, lung and prostate cancer: A systematic review of recent epidemiological data. J. Toxicol. Environ. Health B Crit. Rev. 2003, 6, 227–255. [Google Scholar] [CrossRef] [PubMed]
- Byrne, C.; Divekar, S.D.; Storchan, G.B.; Parodi, D.A.; Martin, M.B. Cadmium—A metallohormone? Toxicol. Appl. Pharmacol. 2009, 238, 266–271. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stoica, A.; Katzenellenbogen, B.S.; Martin, M.B. Activation of estrogen receptor-alpha by the heavy metal cadmium. Mol. Endocrinol. 2000, 14, 545–553. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Yu, L.; Castro, L.; Yan, Y.; Sifre, M.I.; Bortner, C.D.; Dixon, D. A nongenomic mechanism for “metalloestrogenic” effects of cadmium in human uterine leiomyoma cells through G protein-coupled estrogen receptor. Arch. Toxicol. 2019, 93, 2773–2785. [Google Scholar] [CrossRef]
- Yu, L.; Liu, J.; Yan, Y.; Burwell, A.; Castro, L.; Shi, M.; Dixon, D. “Metalloestrogenic” effects of cadmium downstream of G protein-coupled estrogen receptor and mitogen-activated protein kinase pathways in human uterine fibroid cells. Arch. Toxicol. 2021, 95, 1995–2006. [Google Scholar] [CrossRef]
- He, Y.; Peng, L.; Huang, Y.; Liu, C.; Zheng, S.; Wu, K. Blood cadmium levels associated with short distant metastasis-free survival time in invasive breast cancer. Environ. Sci. Pollut. Res. Int. 2017, 24, 28055–28064. [Google Scholar] [CrossRef]
- Wei, Z.; Shaikh, Z.A. Cadmium stimulates metastasis-associated phenotype in triple-negative breast cancer cells through integrin and β-catenin signaling. Toxicol. Appl. Pharmacol. 2017, 328, 70–80. [Google Scholar] [CrossRef]
- Wang, Y.; Shi, L.; Li, J.; Li, L.; Wang, H.; Yang, H. Long-term cadmium exposure promoted breast cancer cell migration and invasion by up-regulating TGIF. Ecotoxicol. Environ. Saf. 2019, 175, 110–117. [Google Scholar] [CrossRef]
- Järup, L.; Akesson, A. Current status of cadmium as an environmental health problem. Toxicol. Appl. Pharmacol. 2009, 238, 201–208. [Google Scholar] [CrossRef]
- Benbrahim-Tallaa, L.; Tokar, E.J.; Diwan, B.A.; Dill, A.L.; Coppin, J.F.; Waalkes, M.P. Cadmium malignantly transforms normal human breast epithelial cells into a basal-like phenotype. Environ. Health Perspect. 2009, 117, 1847–1852. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yan, Y.; Liu, J.; Lawrence, A.; Dykstra, M.J.; Fannin, R.; Gerrish, K.; Tucker, C.J.; Scappini, E.; Dixon, D. Prolonged cadmium exposure alters benign uterine fibroid cell behavior, extracellular matrix components, and TGFB signaling. FASEB J. 2021, 35, e21738. [Google Scholar] [CrossRef] [PubMed]
- Wolf, K.; Wu, Y.I.; Liu, Y.; Geiger, J.; Tam, E.; Overall, C.; Stack, M.S.; Friedl, P. Multi-step pericellular proteolysis controls the transition from individual to collective cancer cell invasion. Nat. Cell Biol. 2007, 9, 893–904. [Google Scholar] [CrossRef] [PubMed]
- Ghajar, C.M.; Bissell, M.J. Extracellular matrix control of mammary gland morphogenesis and tumorigenesis: Insights from imaging. Histochem. Cell Biol. 2008, 130, 1105–1118. [Google Scholar] [CrossRef] [Green Version]
- Eddy, C.Z.; Raposo, H.; Wong, R.; Sun, B. Morphodynamics facilitate cancer cells to navigate 3D extracellular matrix. Sci Rep. 2021, 11, 20434. [Google Scholar] [CrossRef]
- Carney, S.A.; Tahara, H.; Swartz, C.D.; Risinger, J.I.; He, H.; Moore, A.B.; Haseman, J.K.; Barrett, J.C.; Dixon, D. Immortalization of human uterine leiomyoma and myometrial cell lines after induction of telomerase activity: Molecular and phenotypic characteristics. Lab. Investig. 2002, 82, 719–728. [Google Scholar] [CrossRef] [Green Version]
- Krämer, A.; Green, J.; Pollard, J., Jr.; Tugendreich, S. Causal analysis approaches in Ingenuity Pathway Analysis. Bioinformatics 2014, 30, 523–530. [Google Scholar] [CrossRef]
- Dang, I.; Gautreau, A. Random Migration Assays of Mammalian Cells and Quantitative Analyses of Single Cell Trajectories. Methods Mol. Biol. 2018, 1749, 1–9. [Google Scholar] [CrossRef]
- Vicente-Manzanares, M.; Webb, D.J.; Horwitz, A.R. Cell migration at a glance. J. Cell Sci. 2005, 118, 4917–4919. [Google Scholar] [CrossRef] [Green Version]
- Gerlitz, G.; Bustin, M. The role of chromatin structure in cell migration. Trends Cell Biol. 2011, 21, 6–11. [Google Scholar] [CrossRef] [Green Version]
- Kwon, T.; Kwon, O.S.; Cha, H.J.; Sung, B.J. Stochastic and Heterogeneous Cancer Cell Migration: Experiment and Theory. Sci. Rep. 2019, 9, 16297. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saha, B.N.; Ray, N.; Greiner, R.; Murtha, A.; Zhang, H. Quick detection of brain tumors and edemas: A bounding box method using symmetry. Comput. Med. Imaging Graph. 2012, 36, 95–107. [Google Scholar] [CrossRef] [PubMed]
- Rajchl, M.; Lee, M.C.; Oktay, O.; Kamnitsas, K.; Passerat-Palmbach, J.; Bai, W.; Damodaram, M.; Rutherford, M.A.; Hajnal, J.V.; Kainz, B.; et al. DeepCut: Object Segmentation From Bounding Box Annotations Using Convolutional Neural Networks. IEEE Trans. Med. Imaging 2017, 36, 674–683. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Edgar, R.; Domrachev, M.; Lash, A.E. Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res. 2002, 30, 207–210. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Svensson, C.M.; Medyukhina, A.; Belyaev, I.; Al-Zaben, N.; Figge, M.T. Untangling cell tracks: Quantifying cell migration by time lapse image data analysis. Cytometry A 2018, 93, 357–370. [Google Scholar] [CrossRef]
- Daley, W.P.; Yamada, K.M. ECM-modulated cellular dynamics as a driving force for tissue morphogenesis. Curr. Opin. Genet. Dev. 2013, 23, 408–414. [Google Scholar] [CrossRef] [Green Version]
- Pankov, R.; Endo, Y.; Even-Ram, S.; Araki, M.; Clark, K.; Cukierman, E.; Matsumoto, K.; Yamada, K.M. A Rac switch regulates random versus directionally persistent cell migration. J. Cell Biol. 2005, 170, 793–802. [Google Scholar] [CrossRef] [Green Version]
- Petrie, R.J.; Doyle, A.D.; Yamada, K.M. Random versus directionally persistent cell migration. Nat. Rev. Mol. Cell Biol. 2009, 10, 538–549. [Google Scholar] [CrossRef] [Green Version]
- Mitchell, C.N.C.; Islam, M.S.; Afrin, S.; Brennan, J.; Psoter, K.J.; Segars, J.H. Mechanical stiffness augments ligand-dependent progesterone receptor B activation via MEK 1/2 and Rho/ROCK-dependent signaling pathways in uterine fibroid cells. Fertil. Steril. 2021, 116, 255–265. [Google Scholar] [CrossRef]
- Werner, M.; Petersen, A.; Kurniawan, N.A.; Bouten, C.V.C. Cell-Perceived Substrate Curvature Dynamically Coordinates the Direction, Speed, and Persistence of Stromal Cell Migration. Adv. Biosyst. 2019, 3, e1900080. [Google Scholar] [CrossRef] [Green Version]
- Ricard-Blum, S. The collagen family. Cold Spring Harb. Perspect. Biol. 2011, 3, a004978. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stephens, A.D.; Banigan, E.J.; Marko, J.F. Chromatin’s physical properties shape the nucleus and its functions. Curr. Opin. Cell Biol. 2019, 58, 76–84. [Google Scholar] [CrossRef] [PubMed]
- Morgan, M.A.; Shilatifard, A. Chromatin signatures of cancer. Genes Dev. 2015, 29, 238–249. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Piscopo, M.; Trifuoggi, M.; Notariale, R.; Labar, S.; Troisi, J.; Giarra, A.; Rabbito, D.; Puoti, R.; Brundo, M.V.; Basile, A.; et al. Protamine-like proteins’ analysis as an emerging biotechnique for cadmium impact assessment on male mollusk Mytilus galloprovincialis (Lamarck 1819). Acta Biochim. Pol. 2018, 65, 259–267. [Google Scholar] [CrossRef]
- De Guglielmo, V.; Puoti, R.; Notariale, R.; Maresca, V.; Ausió, J.; Troisi, J.; Verrillo, M.; Basile, A.; Febbraio, F.; Piscopo, M. Alterations in the properties of sperm protamine-like II protein after exposure of Mytilus galloprovincialis (Lamarck 1819) to sub-toxic doses of cadmium. Ecotoxicol. Environ. Saf. 2019, 169, 600–606. [Google Scholar] [CrossRef]
- Lu, C.; Romo-Bucheli, D.; Wang, X.; Janowczyk, A.; Ganesan, S.; Gilmore, H.; Rimm, D.; Madabhushi, A. Nuclear shape and orientation features from H&E images predict survival in early-stage estrogen receptor-positive breast cancers. Lab. Investig. 2018, 98, 1438–1448. [Google Scholar] [CrossRef]
- McDonald, K.A.; Kawaguchi, T.; Qi, Q.; Peng, X.; Asaoka, M.; Young, J.; Opyrchal, M.; Yan, L.; Patnaik, S.; Otsuji, E.; et al. Tumor Heterogeneity Correlates with Less Immune Response and Worse Survival in Breast Cancer Patients. Ann. Surg. Oncol. 2019, 26, 2191–2199. [Google Scholar] [CrossRef]
- Sakaue-Sawano, A.; Kurokawa, H.; Morimura, T.; Hanyu, A.; Hama, H.; Osawa, H.; Kashiwagi, S.; Fukami, K.; Miyata, T.; Miyoshi, H.; et al. Visualizing spatiotemporal dynamics of multicellular cell-cycle progression. Cell 2008, 132, 487–498. [Google Scholar] [CrossRef] [Green Version]
- Boucher, H.; Vanneaux, V.; Domet, T.; Parouchev, A.; Larghero, J. Circadian Clock Genes Modulate Human Bone Marrow Mesenchymal Stem Cell Differentiation, Migration and Cell Cycle. PLoS ONE 2016, 11, e0146674. [Google Scholar] [CrossRef] [Green Version]
- Wesley, U.V.; Bove, P.F.; Hristova, M.; McCarthy, S.; van der Vliet, A. Airway epithelial cell migration and wound repair by ATP-mediated activation of dual oxidase 1. J. Biol. Chem. 2007, 282, 3213–3220. [Google Scholar] [CrossRef] [Green Version]
- Minton, K. Cell migration: Coordinating calcium signalling. Nat. Rev. Mol. Cell Biol. 2014, 15, 152. [Google Scholar] [CrossRef] [PubMed]
- Banerjee, B.; Bhattacharya, D.; Shivashankar, G.V. Chromatin structure exhibits spatio-temporal heterogeneity within the cell nucleus. Biophys. J. 2006, 91, 2297–2303. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, G.; Ali, S.; Veltri, R.; Epstein, J.I.; Christudass, C.; Madabhushi, A. Cell orientation entropy (COrE): Predicting biochemical recurrence from prostate cancer tissue microarrays. Med. Image Comput. Comput. Assist. Interv. 2013, 16, 396–403. [Google Scholar] [CrossRef] [PubMed]
- Lamort, A.S.; Giopanou, I.; Psallidas, I.; Stathopoulos, G.T. Osteopontin as a Link between Inflammation and Cancer: The Thorax in the Spotlight. Cells 2019, 8, 815. [Google Scholar] [CrossRef] [Green Version]
- Liu, F.; Bai, C.; Guo, Z. The prognostic value of osteopontin in limited-stage small cell lung cancer patients and its mechanism. Oncotarget 2017, 8, 70084–70096. [Google Scholar] [CrossRef] [Green Version]
- Suhaimi, S.A.; Chan, S.C.; Rosli, R. Matrix Metallopeptidase 3 Polymorphisms: Emerging genetic Markers in Human Breast Cancer Metastasis. J. Breast Cancer 2020, 23, 1–9. [Google Scholar] [CrossRef]
- Lai, J.P.; Sandhu, D.S.; Shire, A.M.; Roberts, L.R. The tumor suppressor function of human sulfatase 1 (SULF1) in carcinogenesis. J. Gastrointest. Cancer 2008, 39, 149–158. [Google Scholar] [CrossRef] [Green Version]
- da Costa, F.H.B.; Lewis, M.S.; Truong, A.; Carson, D.D.; Farach-Carson, M.C. SULF1 suppresses Wnt3A-driven growth of bone metastatic prostate cancer in perlecan-modified 3D cancer-stroma-macrophage triculture models. PLoS ONE 2020, 15, e0230354. [Google Scholar] [CrossRef]
- Bray, M.A.; Singh, S.; Han, H.; Davis, C.T.; Borgeson, B.; Hartland, C.; Kost-Alimova, M.; Gustafsdottir, S.M.; Gibson, C.C.; Carpenter, A.E. Cell Painting, a high-content image-based assay for morphological profiling using multiplexed fluorescent dyes. Nat. Protoc. 2016, 11, 1757–1774. [Google Scholar] [CrossRef] [Green Version]
- Gao, X.; Yu, L.; Moore, A.B.; Kissling, G.E.; Waalkes, M.P.; Dixon, D. Cadmium and Proliferation in Human Uterine Leiomyoma Cells: Evidence of a Role for EGFR/MAPK Pathways but Not Classical Estrogen Receptor Pathways. Environ. Health Perspect. 2015, 123, 331–336. [Google Scholar] [CrossRef] [Green Version]
- Nogawa, K.; Honda, R.; Yamada, Y.; Kido, T.; Tsuritani, I.; Ishizaki, M.; Yamaya, H. Critical concentration of cadmium in kidney cortex of humans exposed to environmental cadmium. Environ. Res. 1986, 40, 251–260. [Google Scholar] [CrossRef]
- Satarug, S. Dietary Cadmium Intake and Its Effects on Kidneys. Toxics 2018, 6, 15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elinder, C.-G. Normal values for cadmium in human tissues, blood, and urine in different countries. In Cadmium and Health: A Toxicological and Epidemiological Appraisal Volume 1: Exposure, Dose, and Metabolism; Friberg, L., Elinder, C.-G., Kjellstrom, T., Nordberg, G.F., Eds.; CRC Press Inc.: Boca Raton, FL, USA, 1985; pp. 81–102. [Google Scholar]
Gene Symbol | Gene Name | FDR (q-Value) | Fold Change | Location | Type(s) |
---|---|---|---|---|---|
SPP1 | secreted phosphoprotein 1 | 1.11 × 10−3 | 15.55 | Extracellular Space | cytokine |
MMP3 | matrix metallopeptidase 3 | 1.39 × 10−5 | 16.76 | Extracellular Space | peptidase |
SULF1 | sulfatase 1 | 3.63 × 10−7 | −16.67 | Cytoplasm | enzyme |
Symbol | Entrez Gene Name | FDR (q-Value) | Fold Change | Location |
---|---|---|---|---|
MMP1 | matrix metallopeptidase 1 | 1.85 × 10−4 | 7.93 | Extracellular Space |
MMP3 | matrix metallopeptidase 3 | 1.39 × 10−5 | 16.76 | Extracellular Space |
MMP10 | matrix metallopeptidase 10 | 2.15 × 10−2 | 2.91 | Extracellular Space |
COL1A2 | collagen type I alpha 2 chain | 1.48 × 10−2 | −3.03 | Extracellular Space |
COL3A1 | collagen type III alpha 1 chain | 1.10 × 10−3 | −4.49 | Extracellular Space |
COL4A2 | collagen type IV alpha 2 chain | 5.34 × 10−3 | −2.49 | Extracellular Space |
COL5A2 | collagen type V alpha 2 chain | 2.99 × 10−2 | −2.57 | Extracellular Space |
COL6A1 | collagen type VI alpha 1 chain | 1.71 × 10−2 | −2.01 | Extracellular Space |
COL7A1 | collagen type VII alpha 1 chain | 7.97 × 10−3 | −3.33 | Extracellular Space |
COL18A1 | collagen type XVIII alpha 1 chain | 1.10 × 10−2 | −2.04 | Extracellular Space |
LAMA3 | laminin subunit alpha 3 | 2.82 × 10−2 | −2.38 | Extracellular Space |
LUM | lumican | 7.15 × 10−3 | −2.36 | Extracellular Space |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yan, Y.; Shi, M.; Fannin, R.; Yu, L.; Liu, J.; Castro, L.; Dixon, D. Prolonged Cadmium Exposure Alters Migration Dynamics and Increases Heterogeneity of Human Uterine Fibroid Cells—Insights from Time Lapse Analysis. Biomedicines 2022, 10, 917. https://doi.org/10.3390/biomedicines10040917
Yan Y, Shi M, Fannin R, Yu L, Liu J, Castro L, Dixon D. Prolonged Cadmium Exposure Alters Migration Dynamics and Increases Heterogeneity of Human Uterine Fibroid Cells—Insights from Time Lapse Analysis. Biomedicines. 2022; 10(4):917. https://doi.org/10.3390/biomedicines10040917
Chicago/Turabian StyleYan, Yitang, Min Shi, Rick Fannin, Linda Yu, Jingli Liu, Lysandra Castro, and Darlene Dixon. 2022. "Prolonged Cadmium Exposure Alters Migration Dynamics and Increases Heterogeneity of Human Uterine Fibroid Cells—Insights from Time Lapse Analysis" Biomedicines 10, no. 4: 917. https://doi.org/10.3390/biomedicines10040917
APA StyleYan, Y., Shi, M., Fannin, R., Yu, L., Liu, J., Castro, L., & Dixon, D. (2022). Prolonged Cadmium Exposure Alters Migration Dynamics and Increases Heterogeneity of Human Uterine Fibroid Cells—Insights from Time Lapse Analysis. Biomedicines, 10(4), 917. https://doi.org/10.3390/biomedicines10040917