Puerarin Attenuates Obesity-Induced Inflammation and Dyslipidemia by Regulating Macrophages and TNF-Alpha in Obese Mice
<p>PPI network between hub genes of puerarin and obesity and functional pathway analysis. (<b>a</b>) Sixty-nine overlapping genes. (<b>b</b>) Ligand-target protein network. (<b>c</b>) Top 10 genes at high levels of connectivity. (<b>d</b>) GO enrichment analysis. (<b>e</b>) KEGG pathway analysis. PPI: Protein-protein interaction, GO: Gene ontology, KEGG: Kyoto Encyclopedia of Genes and Genomes.</p> "> Figure 2
<p>Molecular docking. (<b>a</b>) Puerarin and TNF. (<b>b</b>) Puerarin and M1 macrophage. (<b>c</b>) Puerarin and M2 macrophage. TNF (PDB ID: 2AZ5), M1 macrophage (PDB ID: 1GD0), and M2 macrophage (PDB ID: 1JIZ). The binding energy is written at the top right.</p> "> Figure 3
<p>Weight- and safety-related outcomes. (<b>a</b>) Bodyweight. (<b>b</b>) Liver weight. (<b>c</b>) Epididymal fat pads weight and levels of (<b>d</b>) AST, (<b>e</b>) ALT, and (<b>f</b>) creatinine. Data represent mean ± standard error of the mean (SEM). # <span class="html-italic">p</span> < 0.05, ## <span class="html-italic">p</span> < 0.01 and ### <span class="html-italic">p</span> < 0.001 versus the NC group, and * <span class="html-italic">p</span> < 0.05 and ** <span class="html-italic">p</span> < 0.01 versus the control group. AST: aspartate aminotransferase, ALT: alanine aminotransferase, NC: normal chow, HFD: high fat diet, PUE: puerarin, ATO: atorvastatin.</p> "> Figure 3 Cont.
<p>Weight- and safety-related outcomes. (<b>a</b>) Bodyweight. (<b>b</b>) Liver weight. (<b>c</b>) Epididymal fat pads weight and levels of (<b>d</b>) AST, (<b>e</b>) ALT, and (<b>f</b>) creatinine. Data represent mean ± standard error of the mean (SEM). # <span class="html-italic">p</span> < 0.05, ## <span class="html-italic">p</span> < 0.01 and ### <span class="html-italic">p</span> < 0.001 versus the NC group, and * <span class="html-italic">p</span> < 0.05 and ** <span class="html-italic">p</span> < 0.01 versus the control group. AST: aspartate aminotransferase, ALT: alanine aminotransferase, NC: normal chow, HFD: high fat diet, PUE: puerarin, ATO: atorvastatin.</p> "> Figure 4
<p>Lipid and glucose metabolism. (<b>a</b>) NEFA, (<b>b</b>) total, (<b>c</b>) LDL cholesterol, (<b>d</b>) HDL cholesterol, (<b>e</b>) TG, (f) OFTT, (<b>g</b>) AUC of OFTT, (<b>h</b>) OGTT, (<b>i</b>) AUC of OGTT, (<b>j</b>) fasting blood glucose, (<b>k</b>) fasting insulin, and (<b>l</b>) HOMA-IR. Data represent mean ± standard error of the mean (SEM). # <span class="html-italic">p</span> < 0.05, ## <span class="html-italic">p</span> < 0.01 and ### <span class="html-italic">p</span> < 0.001 versus the NC group, and * <span class="html-italic">p</span> < 0.05, ** <span class="html-italic">p</span> < 0.01 and *** <span class="html-italic">p</span> < 0.001 versus the control group. NEFA: non-esterified fatty acid, LDL: low-density lipoprotein, HDL: high-density lipoprotein, TG: triglyceride, AUC: area under the curve, HOMA-IR: homeostatic model assessment for insulin resistance, NC: normal chow, HFD: high fat diet, PUE: puerarin, ATO: atorvastatin.</p> "> Figure 5
<p>ATM populations. (<b>a</b>) CD45 + ATMs. (<b>b</b>) Flow cytometry result of CD45 + ATMs. (<b>c</b>) CD11c + ATMs, and (<b>d</b>) CD206 + ATMs. Data represent mean ± standard error of the mean (SEM). ### <span class="html-italic">p</span> < 0.001 versus the NC group, and ** <span class="html-italic">p</span> < 0.01 and *** <span class="html-italic">p</span> < 0.001 versus the control group. ATMs: adipose tissue macrophages, NC: normal chow, HFD: high rat diet, PUE: puerarin, ATO: atorvastatin.</p> "> Figure 6
<p>Pro-inflammatory gene expression. The expression of (<b>a</b>) F4/80, (<b>b</b>) TNF- α, (<b>c</b>) CCL2, (<b>d</b>) CCL4, (<b>e</b>) CCL5, and (<b>f</b>) CXCR4. Data represent mean ± standard error of the mean (SEM). # <span class="html-italic">p</span> < 0.05, ## <span class="html-italic">p</span> < 0.01 and ### <span class="html-italic">p</span> < 0.001 versus the NC group, and * <span class="html-italic">p</span> < 0.05 versus the control group. ATMs: adipose tissue macrophages, NC: normal chow, HFD: high rat diet, PUE: puerarin, ATO: atorvastatin.</p> "> Figure 6 Cont.
<p>Pro-inflammatory gene expression. The expression of (<b>a</b>) F4/80, (<b>b</b>) TNF- α, (<b>c</b>) CCL2, (<b>d</b>) CCL4, (<b>e</b>) CCL5, and (<b>f</b>) CXCR4. Data represent mean ± standard error of the mean (SEM). # <span class="html-italic">p</span> < 0.05, ## <span class="html-italic">p</span> < 0.01 and ### <span class="html-italic">p</span> < 0.001 versus the NC group, and * <span class="html-italic">p</span> < 0.05 versus the control group. ATMs: adipose tissue macrophages, NC: normal chow, HFD: high rat diet, PUE: puerarin, ATO: atorvastatin.</p> "> Figure 7
<p>Analysis of tissue microscopic results. (<b>a</b>) Histological images of liver and epididymal fat. (<b>b</b>) Fat area in the liver and (<b>c</b>) adipocyte size. Representative histological images were stained by hematoxylin and eosin (H & E) and the scale bar indicates 5 μm in liver and 100 μm in epi fat. Data represent mean ± standard error of the mean (SEM). ### <span class="html-italic">p</span> < 0.001 versus the NC group and *** <span class="html-italic">p</span> < 0.001 versus the control group. NC: normal chow, HFD: high fat diet, PUE: puerarin, ATO: atorvastatin.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. In Silico Approach for the Anti-Obesity Effects of Puerarin
2.1.1. Puerarin and Its Target Genes
2.1.2. Target Genes Prediction of Obesity
2.1.3. Protein-Protein Interaction (PPI) Network Building
2.1.4. Gene Ontology (GO) and Target Pathway
2.1.5. Docking Simulation
2.2. In Vivo Approach to Evaluate the Anti-Obesity Effects and Metabolic Benefits of Puerarin
2.2.1. Preparation of Animal Models and Study Design
2.2.2. Assessment of Lipid Metabolism and Safety Profile
2.2.3. Assessment of Glucose Metabolism and Insulin Resistance
2.2.4. Histologic Analysis
2.2.5. Extraction of RNA and Real-Time PCR
2.2.6. Isolation of Stromal Vascular Cells (SVCs) and Fluorescence-Activated Cell Sorting (FACS) Evaluation of ATMs
2.2.7. Statistical Analysis
3. Results
3.1. In Silico Analysis of Anti-Obesity Effects of Puerarin
3.1.1. Ingredient Target Genes and PPI Network
3.1.2. GO and KEGG Pathway Enrichment Analysis
3.1.3. Docking
3.2. In Vivo Examination of Anti-Obesity Effects of Puerarin
3.2.1. Body, Liver, and Fat Weights
3.2.2. Serum Lipids and Lipid Metabolism
3.2.3. Insulin Resistance and Glucose Metabolism
3.2.4. Adipose Tissue Macrophages
3.2.5. Inflammatory Cytokines
3.2.6. Size of Adipocytes and Fat Area in the Liver
3.2.7. Safety of Puerarin Administration
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Lee, B.C.; Lee, J. Cellular and molecular players in adipose tissue inflammation in the development of obesity-induced insulin resistance. Biochim. Biophys. Acta 2014, 1842, 446–462. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yan, L.-P.; Chan, S.-W.; Chan, A.S.-C.; Chen, S.-L.; Ma, X.-J.; Xu, H.-X. Puerarin decreases serum total cholesterol and enhances thoracic aorta endothelial nitric oxide synthase expression in diet-induced hypercholesterolemic rats. Life Sci. 2006, 79, 324–330. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Wu, Y.; Zhuang, L.; Chen, X.; Min, H.; Song, S.; Liang, Q.; Li, A.-D.; Gao, Q. Puerarin prevents high-fat diet-induced obesity by enriching Akkermansia muciniphila in the gut microbiota of mice. PLoS ONE 2019, 16, e0218490. [Google Scholar] [CrossRef] [Green Version]
- Zhang, W.; Liu, C.Q.; Wang, P.W.; Sun, S.Y.; Su, W.J.; Zhang, H.J.; Li, X.J.; Yang, S.Y. Puerarin improves insulin resistance and modulates adipokine expression in rats fed a high-fat diet. Eur. J. Pharmacol. 2010, 649, 398–402. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.F.; Wang, L.; Wu, Y.Z.; Song, S.Y.; Min, H.Y.; Yang, Y.; He, X.; Liang, Q.; Yi, L.; Wang, Y.; et al. Effect of puerarin in promoting fatty acid oxidation by increasing mitochondrial oxidative capacity and biogenesis in skeletal muscle in diabetic rats. Nutr. Diabetes 2018, 8, 1. [Google Scholar] [CrossRef] [PubMed]
- Xu, W.; Tang, M.; Wang, J.; Wang, L. Anti-inflammatory activities of puerarin in high-fat diet-fed rats with streptozotocin-induced gestational diabetes mellitus. Mol. Biol. Rep. 2020, 47, 7537–7546. [Google Scholar] [CrossRef]
- Liu, S.; Cao, X.L.; Liu, G.Q.; Zhou, T.; Yang, X.L.; Ma, B.X. The in silico and in vivo evaluation of puerarin against Alzheimer’s disease. Food Funct. 2019, 10, 799–813. [Google Scholar] [CrossRef] [PubMed]
- Ojo, O.A.; Aruleba, R.T.; Adekiya, T.A.; Sibuyi, N.R.S.; Ojo, A.B.; Ajiboye, B.O.; Oyinloye, B.E.; Adeola, H.A.; Fadaka, A.O. Deciphering the interaction of puerarin with cancer macromolecules: An in silico investigation. J. Biomol. Struct. Dyn. 2020, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Wang, C.; Meng, Q.; Wu, J.; Sun, H.; Sun, P.; Ma, X.; Huo, X.; Liu, K. Puerarin sensitized K562/ADR cells by inhibiting NF-kappaB pathway and inducing autophagy. Phytother. Res. 2021, 35, 1658–1668. [Google Scholar] [CrossRef]
- Noh, J.W.; Kwon, O.J.; Lee, B.C. The Immunomodulating Effect of Baicalin on Inflammation and Insulin Resistance in High-Fat-Diet-Induced Obese Mice. Evid Based Complement. Alternat. Med. 2021, 2021, 5531367. [Google Scholar] [CrossRef]
- Ruiz-Ojeda, F.J.; Mendez-Gutierrez, A.; Aguilera, C.M.; Plaza-Diaz, J. Extracellular Matrix Remodeling of Adipose Tissue in Obesity and Metabolic Diseases. Int. J. Mol. Sci. 2019, 20, 4888. [Google Scholar] [CrossRef] [Green Version]
- Fang, Q.; Zou, C.; Zhong, P.; Lin, F.; Li, W.; Wang, L.; Zhang, Y.; Zheng, C.; Wang, Y.; Li, X.; et al. EGFR mediates hyperlipidemia-induced renal injury via regulating inflammation and oxidative stress: The detrimental role and mechanism of EGFR activation. Oncotarget 2016, 7, 24361–24373. [Google Scholar] [CrossRef] [Green Version]
- Hardbower, D.M.; Singh, K.; Asim, M.; Verriere, T.G.; Olivares-Villagomez, D.; Barry, D.P.; Allaman, M.M.; Washington, M.K.; Peek, R.M., Jr.; Piazuelo, M.B.; et al. EGFR regulates macrophage activation and function in bacterial infection. J. Clin. Invest. 2016, 126, 3296–3312. [Google Scholar] [CrossRef] [Green Version]
- Kanter, J.E.; Kramer, F.; Barnhart, S.; Averill, M.M.; Vivekanandan-Giri, A.; Vickery, T.; Li, L.O.; Becker, L.; Yuan, W.; Chait, A.; et al. Diabetes promotes an inflammatory macrophage phenotype and atherosclerosis through acyl-CoA synthetase 1. Proc. Natl. Acad. Sci. USA 2012, 109, E715–E724. [Google Scholar] [CrossRef] [Green Version]
- Araiz, C.; Yan, A.; Bettedi, L.; Samuelson, I.; Virtue, S.; McGavigan, A.K.; Dani, C.; Vidal-Puig, A.; Foukas, L.C. Enhanced beta-adrenergic signalling underlies an age-dependent beneficial metabolic effect of PI3K p110alpha inactivation in adipose tissue. Nat. Commun. 2019, 10, 1546. [Google Scholar] [CrossRef] [Green Version]
- Nelson, V.L.; Jiang, Y.P.; Dickman, K.G.; Ballou, L.M.; Lin, R.Z. Adipose tissue insulin resistance due to loss of PI3K p110alpha leads to decreased energy expenditure and obesity. Am. J. Physiol. Endocrinol. Metab. 2014, 306, E1205–E1216. [Google Scholar] [CrossRef] [Green Version]
- Merecz-Sadowska, A.; Sitarek, P.; Sliwinski, T.; Zajdel, R. Anti-Inflammatory Activity of Extracts and Pure Compounds Derived from Plants via Modulation of Signaling Pathways, Especially PI3K/AKT in Macrophages. Int. J. Mol. Sci. 2020, 21, 9605. [Google Scholar] [CrossRef]
- Arranz, A.; Doxaki, C.; Vergadi, E.; Martinez de la Torre, Y.; Vaporidi, K.; Lagoudaki, E.D.; Ieronymaki, E.; Androulidaki, A.; Venihaki, M.; Margioris, A.N.; et al. Akt1 and Akt2 protein kinases differentially contribute to macrophage polarization. Proc. Natl. Acad. Sci. USA 2012, 109, 9517–9522. [Google Scholar] [CrossRef] [Green Version]
- Lujambio, A.; Akkari, L.; Simon, J.; Grace, D.; Tschaharganeh, D.F.; Bolden, J.E.; Zhao, Z.; Thapar, V.; Joyce, J.A.; Krizhanovsky, V.; et al. Non-cell-autonomous tumor suppression by p53. Cell 2013, 153, 449–460. [Google Scholar] [CrossRef] [Green Version]
- Fujisaka, S.; Usui, I.; Ikutani, M.; Aminuddin, A.; Takikawa, A.; Tsuneyama, K.; Mahmood, A.; Goda, N.; Nagai, Y.; Takatsu, K.; et al. Adipose tissue hypoxia induces inflammatory M1 polarity of macrophages in an HIF-1alpha-dependent and HIF-1alpha-independent manner in obese mice. Diabetologia 2013, 56, 1403–1412. [Google Scholar] [CrossRef] [Green Version]
- Fatima, L.A.; Campello, R.S.; Santos, R.S.; Freitas, H.S.; Frank, A.P.; Machado, U.F.; Clegg, D.J. Estrogen receptor 1 (ESR1) regulates VEGFA in adipose tissue. Sci. Rep. 2017, 7, 16716. [Google Scholar] [CrossRef] [Green Version]
- Dahlman, I.; Vaxillaire, M.; Nilsson, M.; Lecoeur, C.; Gu, H.F.; Cavalcanti-Proenca, C.; Efendic, S.; Ostenson, C.G.; Brismar, K.; Charpentier, G.; et al. Estrogen receptor alpha gene variants associate with type 2 diabetes and fasting plasma glucose. Pharmacogenet. Genom. 2008, 18, 967–975. [Google Scholar] [CrossRef]
- Sun, H.; Kim, G.R. Obesity and insulin resistance: An ongoing saga. Diabetes 2010, 59, 2105–2106. [Google Scholar] [CrossRef] [Green Version]
- Lauterbach, M.A.; Wunderlich, F.T. Macrophage function in obesity-induced inflammation and insulin resistance. Pflugers Arch. 2017, 469, 385–396. [Google Scholar] [CrossRef] [Green Version]
- Peter, J.M.; Judith, E.A.; Subhra, K.B.; Edward, A.F.; Derek, W.G.; Sergij, G.; Siamon, G.; John, A.H.; Lionel, B.I.; Toby, L.; et al. Macrophage activation and polarization: Nomenclature and experimental guidelines. Immunity 2014, 41, 14–20. [Google Scholar] [CrossRef] [Green Version]
- Kechagias, S.; Nasr, P.; Blomdahl, J.; Ekstedt, M. Established and emerging factors affecting the progression of nonalcoholic fatty liver disease. Metabolism 2020, 111S, 154183. [Google Scholar] [CrossRef]
- Wieser, V.; Moschen, A.R.; Tilg, H. Inflammation, cytokines and insulin resistance: A clinical perspective. Arch. Immunol. Ther. Exp. (Warsz) 2013, 61, 119–125. [Google Scholar] [CrossRef]
- Charo, I.F.; Ransohoff, R.M. The many roles of chemokines and chemokine receptors in inflammation. N. Engl. J. Med. 2006, 354, 610–621. [Google Scholar] [CrossRef]
- Kurita, K.; Ishikawa, K.; Takeda, K.; Fujimoto, M.; Ono, H.; Kumagai, J.; Inoue, H.; Yokoh, H.; Yokote, K. CXCL12-CXCR4 pathway activates brown adipocytes and induces insulin resistance in CXCR4-deficient mice under high-fat diet. Sci. Rep. 2019, 9, 6165. [Google Scholar] [CrossRef]
- Ruytinx, P.; Proost, P.; Van Damme, J.; Struyf, S. Chemokine-Induced Macrophage Polarization in Inflammatory Conditions. Front. Immunol. 2018, 9, 1930. [Google Scholar] [CrossRef] [Green Version]
- Ota, T. Chemokine systems link obesity to insulin resistance. Diabetes Metab. J. 2013, 37, 165–172. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jung, H.W.; Kang, A.N.; Kang, S.Y.; Park, Y.K.; Song, M.Y. The root extract of pueraria lobate and its main compound, puerarin, prevent obesity by increasing the energy metabolism in skeletal muscle. Nutrients 2017, 9, 33. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Yang, F.-J.; Shang, L.-C.; Zhang, Y.-H.; Zhou, Y.; Shi, X.-L. Puerarin protects against high-fat high-sucrose diet-induced non-alcoholic fatty liver disease by modulating PARP-1/PI3K/AKT signaling pathway and facilitating mitochondrial homeostasis. Phytother. Res. 2019, 33, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Peng, J.-H.; Cui, T.; Huang, F.; Chen, L.; Zhao, Y.; Xu, L.; Xu, L.-L.; Feng, Q.; Hu, Y.-Y. Puerarin Ameliorates Experimental Alcoholic Liver Injury by Inhibition of Endotoxin Gut Leakage, Kupffer Cell Activation, and Endotoxin Receptors Expression. J. Pharmacol. Exp. Ther. 2012, 344, 646–654. [Google Scholar] [CrossRef] [Green Version]
- Ji, L.; Du, Q.; Li, Y.; Hu, W. Puerarin inhibits the inflammatory response in atherosclerosis via modulation of the NF-kappaB pathway in a rabbit model. Pharmacol. Rep. 2016, 68, 1054–1059. [Google Scholar] [CrossRef]
- Tu, Y.M.; Gong, C.X.; Ding, L.; Liu, X.Z.; Li, T.; Hu, F.F.; Wang, S.; Xiong, C.P.; Liang, S.D.; Xu, H. A high concentration of fatty acids induces TNF-alpha as well as NO release mediated by the P2X4 receptor, and the protective effects of puerarin in RAW264.7 cells. Food Funct. 2017, 8, 4336–4346. [Google Scholar] [CrossRef]
- McArdle, M.A.; Finucane, O.M.; Connaughton, R.M.; McMorrow, A.M.; Roche, H.M. Mechanisms of obesity-induced inflammation and insulin resistance: Insights into the emerging role of nutritional strategies. Front. Endocrinol. (Lausanne) 2013, 4, 52. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.J.; Zhao, J.; Gu, X.Y. The effects of genistein and puerarin on the activation of nuclear factor-kappaB and the production of tumor necrosis factor-alpha in asthma patients. Pharmazie 2010, 65, 127–131. [Google Scholar]
- Lee, Y.S.; Olefsky, J. Chronic tissue inflammation and metabolic disease. Genes Dev. 2021, 35, 307–328. [Google Scholar] [CrossRef]
- Zheng, G.; Lin, L.; Zhong, S.; Zhang, Q.; Li, D. Effects of Puerarin on Lipid Accumulation and Metabolism in High-Fat Diet-Fed Mice. PLoS ONE 2015, 10, e0122925. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Li, J.; Zhuge, L.; Su, D.; Yang, M.; Tao, S.; Li, J. Comparison between the efficacies of curcumin and puerarin in C57BL/6 mice with steatohepatitis induced by a methionine- and choline-deficient diet. Exp. Ther. Med. 2014, 7, 663–668. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Noh, J.-W.; Yang, H.-K.; Jun, M.-S.; Lee, B.-C. Puerarin Attenuates Obesity-Induced Inflammation and Dyslipidemia by Regulating Macrophages and TNF-Alpha in Obese Mice. Biomedicines 2022, 10, 175. https://doi.org/10.3390/biomedicines10010175
Noh J-W, Yang H-K, Jun M-S, Lee B-C. Puerarin Attenuates Obesity-Induced Inflammation and Dyslipidemia by Regulating Macrophages and TNF-Alpha in Obese Mice. Biomedicines. 2022; 10(1):175. https://doi.org/10.3390/biomedicines10010175
Chicago/Turabian StyleNoh, Ji-Won, Hee-Kwon Yang, Min-Soo Jun, and Byung-Cheol Lee. 2022. "Puerarin Attenuates Obesity-Induced Inflammation and Dyslipidemia by Regulating Macrophages and TNF-Alpha in Obese Mice" Biomedicines 10, no. 1: 175. https://doi.org/10.3390/biomedicines10010175
APA StyleNoh, J. -W., Yang, H. -K., Jun, M. -S., & Lee, B. -C. (2022). Puerarin Attenuates Obesity-Induced Inflammation and Dyslipidemia by Regulating Macrophages and TNF-Alpha in Obese Mice. Biomedicines, 10(1), 175. https://doi.org/10.3390/biomedicines10010175