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Abstract The steadily increasing obesity epidemic affects cur-
rently 30% of western populations and is causative for numerous
disorders. It has been demonstrated that immune cells such as
macrophages reside in or infiltrate metabolic organs under obese
conditions and cause the so-called low-grade inflammation or
metaflammation that impairs insulin action thus leading to the
development of insulin resistance. Here, we report on data that
specifically address macrophage biology/physiology in obesity-
induced inflammation and insulin resistance.
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Introduction

The steadily rising prevalence of obesity incorporates a major
health issue because it is attended by fatal obesity-associated
disorders including not only the development of type 2 diabetes
and fatty liver diseases but also the rising incidence for certain
cancer entities [7, 54]. In the first instance, obesity alters whole
body metabolism that frequently results in insulin resistance [5].
Insulin is produced by the pancreatic beta cells in response to
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rising blood glucose levels, thereby leading to glucose uptake in
insulin responsive organs. Excessive glucose is stored in the
white adipose tissue (WAT) as lipids and in the liver as glycogen
that can be converted back to glucose during fasting or periods of
increased energy demands. All these metabolic processes and
many more are controlled by insulin [93]. The actions of insulin
are mediated via binding to the insulin receptor (IR) [5]. The IR
and the homologous insulin-like growth factor 1 receptor
(IGF1R) are receptor tyrosine kinases that use adaptor molecules
for their downstream signaling [48]. These molecules belong to
the insulin receptor substrate (IRS) family of proteins that upon
engagement of the IR or IGF1R are tyrosine phosphorylated
further leading to phosphatidylinositide 3-kinase (PI3K) and
AKT activation. In diabetes patients, insulin action is impaired.
While type 1 diabetes patients exhibit beta cell/insulin loss due to
autoimmune reactions against the pancreas, type 2 diabetes de-
velops as a consequence of insulin resistance that is frequent in
obese patients. In obesity, the compromised glucose uptake into
metabolic organs induces hyperglycemia in turn accelerating in-
sulin production in beta cells. The excessive insulin production
can partly compensate for decreased insulin sensitivity but pro-
gresses to increased beta cell mass and ultimately to beta cell
death. How obesity facilitates the development of insulin resis-
tance has been discovered over the last decade. Obesity has been
accepted as low-grade inflammatory state that is also known as
metaflammation [38]. Metaflammation is mainly derived from
innate immune cells, e.g., macrophages whose derivation, fate,
and functional consequences are discussed in this review.

Tissue resident macrophages
Macrophages are cells of the innate immune system that popu-

late every organ. They display great functional plasticity and are
required for maintenance of tissue homeostasis, immunity
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against invading pathogens, and tissue repair. Different organs
harbor different specialized tissue resident macrophages, which
include red pulp and marginal zone macrophages in the spleen,
microglia in the brain, peritoneal macrophages, osteoclasts in the
bone, alveolar macrophages in the lung, and the two major met-
abolic tissue macrophage subsets in the liver and adipose tis-
sue—liver Kupffer cells and adipose tissue macrophages, respec-
tively [73]. Certain tissue macrophage subsets populate their
organs during embryogenesis, while in adulthood, tissue resident
macrophage subsets are replenished by monocytes that are re-
cruited from the bone marrow [22]. The two major subsets of
monocytes are termed inflammatory and patrolling monocytes.
They are distinguished by a defined panel of surface markers and
chemokine receptors and have distinct chemotactic properties.
Inflammatory monocytes are C-C chemokine receptor type 2
(CCR2) and lymphocyte antigen 6 ¢ (Ly6C) positive, whereas
patrolling monocytes are CCR2 and Ly6C negative, but express
high levels of CX3 chemokine receptor 1 (CX3CR1).
Expression of these different chemokine receptors allows them
to follow diverging chemokine gradients. Under steady state,
patrolling monocytes crawl along the vasculature where they
function as immune sentinels. They can enter tissues through
expression of CX3CR1 and differentiate into tissue resident cells
with dendritic cell- and macrophage-like features [21, 86]. The
degree of macrophage turnover under homeostatic conditions
varies between organs [22]. Inflammatory monocytes are recruit-
ed to tissues in response to infection or tissue damage via che-
mokine (C-C motif) ligand 2 (CCL-2). In the absence of inflam-
mation, they remain in the blood circulation [21].

Macrophage ontogeny

Precursors of several tissue macrophage subsets emerge during
embryogenesis. Hematopoiesis during embryonic development
occurs at two sites in two stages—first extra-embryonically in
the yolk sac and later on in the fetal liver [22]. Hematopoiesis in
the yolk sac was termed “primitive” and thought to solely
preserve macrophage pools during embryogenesis, while tissue
resident macrophages are derived from adult hematopoietic
stem cells (HSC). However, fate-mapping studies revealed that
numerous tissue resident macrophage populations are of prena-
tal origin and emerge from the yolk sac or the fetal liver.
Microglia for example were shown to originate from the yolk
sac, while Langerhans cells are mainly of fetal liver origin [23].
The use of (Myb-deficient) mice, which lack the bone marrow
hematopoietic stem cell compartment, shed more light on the
development of tissue resident macrophages [96]. These mice
still develop tissue resident macrophage populations including
Langerhans cells, Kupffer cells, microglia, lung alveolar, splen-
ic red pulp, and peritoneal macrophages, indicating that yolk
sac-derived progenitors give rise to several long-lasting tissue
macrophage subsets beyond embryonic development [124].
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Notably, these macrophage populations are maintained during
adulthood under homeostatic conditions owing to their self-
renewal potential.

It is an ongoing debate whether determination to the dis-
tinct tissue resident macrophage subsets occurs during embry-
onic development or is induced by signals from the local en-
vironment once macrophage populate their final tissue. On the
one hand, some findings support the concept that macrophage
precursors could already be committed to give rise to a certain
subset by the time they enter the circulation to populate their
target organ. Recent studies for example suggested that mi-
croglia are derived from a distinct yolk sac precursor, while
other tissue resident macrophages derive from embryonic he-
matopoietic precursors [36, 98]. Other studies in contrast pro-
vided evidence that cues from the local tissue environment are
crucial for differentiation into the distinct tissue resident mac-
rophage subsets. By comparing different tissue resident mac-
rophage populations, it has been assessed that tissue-specific
factors shape the chromatin and enhancer landscape of mac-
rophages thus enabling the transcription of subset-specific
genes [27, 59]. Retinoic acid for example drives the differen-
tiation of peritoneal macrophages by inducing the expression
of the transcription factor GATA-6, which in turn activates a
peritoneal macrophage-specific transcriptional program that is
crucial for maintenance and functionality of these cells [81,
90]. The idea of in situ differentiation is supported by findings
that tissue resident macrophages originate from a common
erythro-myeloid progenitor (EMP) in the yolk sac, which pop-
ulates the fetal liver before entering the blood stream to give
rise to tissue resident macrophages [25]. Using single-cell
RNA sequencing, a recent study investigated the chronology
of macrophage differentiation during embryogenesis. EMPs
give rise to premature macrophages that share a common gene
expression signature. Induction of specific expression profiles
is initiated during organogenesis when pre-mature macro-
phages enter the tissue [65].

Polarization states of macrophages

Tissue resident macrophages express a multitude of pattern
recognition receptors (PRRs) that enable them to sense a wide
range of microbial molecules and danger signals. Upon path-
ogen encounter, they induce a cascade that signals the quality
of infection or danger, induces an inflammatory state, and
recruits other immune cells to the site of infection [44].
Together with neutrophils, they produce bactericidal mole-
cules and phagocytose pathogens to terminate the infection.
After the infection has been cleared, they resolute inflamma-
tion by anti-inflammatory cytokines and lipid mediators and
govern tissue repair by phagocytosing debris and promoting
regeneration of extracellular matrix [73].
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Macrophages exhibit a high degree of functional plasticity,
and the nature of an inflammatory trigger as well as the local
cytokine milieu will determine the respective macrophage po-
larization and its functional state. In this regard, early on, the
distinction between classically activated and alternatively ac-
tivated or—in analogy to the Th1/Th2 nomenclature of T
cells—M1 and M2 macrophages has been made [64].
In vitro, these subsets can be induced by incubation with in-
terferon gamma (IFNvy) and lipopolysaccharide (LPS) or
interleukin-4 (IL-4), respectively. The M1/M2 nomenclature
was in particular used to classify macrophages into cells with
pro-inflammatory or anti-inflammatory properties or certain
effector functions. The following studies revealed that distinct
pro- or anti-inflammatory stimuli elicit distinct transcriptomic
profiles, which led to the proposal of the spectrum model or
more recently the multidimensional model [24]. However,
many important findings were made using the aforementioned
stimuli. Also, many classical M1 and M2 markers are still
used to assess the functional state of macrophages in vivo.
We thus will refer to macrophages with pro-inflammatory
properties as My, and macrophages with anti-inflammatory
properties as M.

Triggers like the Thl cytokine IFNy and/or toll-like recep-
tor (TLR) ligands such as LPS initiate a pro-inflammatory
response that equips macrophages to fight bacterial infections
[64]. These stimuli activate signaling cascades that result in a
global transcriptional reprogramming. In this context, signal
transducer and activator of transcription (STAT) 1 and 2 and
nuclear factor kappa-light-chain-enhancer of activated B cells
(NF-kB) are key transcription factors of [FNy and TLR sig-
naling, respectively [60]. Pro-inflammatory macrophages
(Mpy,) generally have inflammatory properties and are crucial
for fighting bacterial infections and immunity against tumors.
However, excessive activation can also result in tissue damage
and autoimmunity. They present antigen and produce bacteri-
cidal agents such as reactive oxygen species (ROS) and nitric
oxide (NO). The latter is synthesized by inducible nitric oxide
synthase (iNOS) from arginine. They furthermore secrete a
multitude of inflammatory cytokines including tumor necrosis
factor alpha (TNF«), IL1-f3, IL-6, IL-12, and IL-18 [63].

Three major pro-inflammatory cytokines are TNFe, I1-1f3,
and IL-6. TNF« is one of the first cytokines secreted by mac-
rophages during infection and crucially involved in septic
shock. It activates the vascular endothelium and initiates the
acute phase in the liver. IL-6 also activates the acute phase and
induces fever. In addition, it acts on lymphocytes and activates
cytotoxic cells or stimulates differentiation of plasma cells.
Depending on the signaling pathways that are activated upon
receptor binding, IL-6 can also have anti-inflammatory prop-
erties [68]. IL-1f3 is a strong pyrogen, but in addition can
induce the secretion of prostaglandins in the central nervous
system. Notably, IL-13 and TNF«x are both potent inducer of
IL-6 and thereby amplify the inflammatory cascade [17]. IL-

12 induces Thl differentiation and together with IL-18 in-
duces IFNy production by Thl and natural killer (NK) cells
which in turn acts on macrophages in a feed forward loop [63].

Alternatively activated macrophages (M,,;) were initially
described during helminth infections and exhibit an anti-
inflammatory phenotype. In vitro, they can be induced by the
Th2 cytokines IL-4 and IL-13. Similarly as described for pro-
inflammatory stimuli, binding of IL-4 to its receptor will result
in a global transcriptional reprogramming. One of the key tran-
scription factors mediating these changes is STAT®6. It acts in
concert with peroxisome proliferator-activated receptor gamma
coactivator 1-alpha (PGC-1x) and peroxisome proliferator-
activated receptor gamma and delta (PPARy and PPARSY)
which, as will be discussed below, are particularly involved in
reprogramming cellular energy metabolism [60]. M, are im-
portant players during helminth infection, response to tissue
damage, resolution of inflammation, and wound healing, but
can also foster fibrosis and tumor growth [26]. Their most
important effector molecules include arginase, lectins, scaven-
ger receptors and the cytokines IL-10 and the IL-1 receptor
antagonist (IL1-RA). Arginase converts arginine to ornithine,
which in turn is used during tissue repair for polyamine and
collagen synthesis. Scavenger receptors and lectins mediate
clearance of debris and apoptotic cells during resolution of
inflammation, while IL-10 and IL-1RA are potent suppressors
of inflammation [26, 63].

Macrophage metabolism

The differential use of arginine was an early indication that
pro- and anti-inflammatory triggers induce diverging metabol-
ic changes in macrophages. Over the last years, a series of
discoveries have highlighted a tight linkage between cellular
metabolism and macrophage effector functions [83]. While
distinct metabolic features of many immune cells were de-
scribed, we are just beginning to understand how nutrient
availability can shape immune responses. In the following,
we will briefly summarize these findings with a focus on gly-
colysis, 3-oxidation, and amino acid metabolism.

Glycolysis describes the sequential breakdown of glucose
to pyruvate, which is either converted to lactate and secreted
or imported into mitochondria. When shuttled into mitochon-
dria, pyruvate is converted to acetyl-coenzyme A (CoA),
which enters the tricarboxylic acid (TCA) cycle by condensa-
tion with oxaloacetate. The TCA cycle generates NADH and
FADH2, which are used to generate ATP via oxidative phos-
phorylation (OXPHOS). Apart from glycolysis, multiple cat-
abolic pathways converge into the TCA cycle such as 3-
oxidation and glutaminolysis. 3-Oxidation of fatty acids gen-
erates acetyl-CoA, while glutamine can enter the TCA by
sequential conversion to o-ketoglutarate [15]. Apart from its
central role in catabolism, the TCA cycle also serves as a
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metabolic hub that can redirect its intermediates for anabolic
reactions when required. Citrate for example can be exported
from mitochondria and cleaved to acetyl-CoA and oxaloace-
tate by ATP-citrate lyase. Acetyl-CoA in turn serves as a pre-
cursor for fatty acid or cholesterol biosynthesis and is sub-
strate for acetylation reactions in the cytoplasm and the nucle-
us. OXPHOS is the most effective way for cells to generate
ATP and is used by most quiescent cell types to cover their
energetic demands [15]. OXPHOS, however, requires oxygen
and has rather slow ATP generation kinetics. Thus, under hyp-
oxic conditions or conditions of increased ATP demand, cells
switch from OXPHOS to glycolysis to generate ATP. This
phenomenon—glycolytic activity under normoxic condi-
tions—is termed Warburg effect after its discoverer Otto
Warburg. Initially discovered in cancer cells, proliferating
cells or cells with high anabolic demands such as the devel-
oping embryo, epithelial cells, or activated immune cells ex-
hibit Warburg metabolism [108]. Switching to glycolysis does
not only allow for fast ATP generation, but also enables cells
to diverge glycolytic intermediates into anabolic pathways
such as amino acid, lipid, or nucleotide biosynthesis, instead
of oxidizing them via TCA and OXPHOS [108].

Increased glycolysis was described early on in LPS-
stimulated macrophages [83]. A series of recent studies has
underpinned that commitment to Warburg metabolism equips
macrophages to fulfill their effector functions such as produc-
tion of ROS or NO, phagocytosis, and secretion of inflamma-
tory mediators in the context of bacterial infection. Upon ac-
tivation with pro-inflammatory stimuli like LPS or IFNy,
macrophages undergo metabolic reprogramming and exhibit
increased rates of glycolysis and decreased OXPHOS. By
diverting ATP generation from OXPHOS to glycolysis, mito-
chondria are available for ROS production [115].
Furthermore, instead of being used for ATP production, citrate
is exported from mitochondria and used for fatty acid biosyn-
thesis [42]. To compensate for decreased conversion of citrate
to o-ketoglutarate, glutamine is funneled into the TCA via
anaplerosis to o-ketoglutarate [102]. The molecular mecha-
nisms driving these changes are just being uncovered. Some
are NF-kB dependent: LPS for example induces PFKFB3,
which increases glycolytic flux by generating fructose-2,6-
bisphosphate [91]. Moreover, the NF-kB responsive gene
hypoxia-inducible factor 1 alpha (HIF1x) was identified as
another central metabolic regulator in response to LPS [12].
HIF 1« is an essential mediator of the hypoxic response, partly
by promoting a shift from OXPHOS to glycolysis. Under
normoxic conditions, it is constantly degraded by the protea-
some and only stabilized under hypoxic conditions.
Ubiquitination and subsequent degradation of HIF 1 « are ini-
tiated by hydroxylation of proline residues by prolyl hydrox-
ylases (PHDs). In certain cancer cells that exhibit Warburg
metabolism, inhibition of PHDs can lead to HIF 1« stabiliza-
tion under normoxic conditions [97]. A similar effect was
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observed in response to LPS stimulation. In this context,
ROS, succinate accumulation and iron were shown to contrib-
ute to PHD inhibition [76, 99, 102]. While ROS and succinate
inhibit PHD activity, PHDs require iron as cofactor for the
hydroxylation reaction. Indeed, ferritin decreases iron avail-
ability to PHDs after LPS stimulation and thereby
downregulates PHD-dependent HIF1 « hydroxylation [99].
While HIF1 « sustains proliferation in cancer cells [97], it
upregulates glycolysis [12], and also specifically boosts IL-
13 expression [102] in response to LPS stimulation. As de-
scribed before, arginine metabolism to citrulline and NO is a
key effector function of pro-inflammatory macrophages.
Indeed, changes in glutamine metabolism upon stimulation
supply arginine and boost NO production by iNOS [47].

While LPS-activated macrophages mainly rely on glycol-
ysis, IL-4-activated macrophages exhibit an oxidative pheno-
type [47]. Upon IL-4 stimulation, macrophages increase fatty
acid uptake, {3-oxidation, and OXPHOS [109]. These meta-
bolic rearrangements are initiated by STAT6 and PGC-1{. In
concert with PPARy and PPARS, they induce mitochondrial
biogenesis and expression of genes that are involved in {3-
oxidation and OXPHOS [79]. These studies also highlighted
arole for PPARs in the control of metabolic disease and main-
taining insulin sensitivity. Furthermore, recent studies have
highlighted the tight connection between macrophage metab-
olism and its effector functions in helminth infection and iden-
tified lysosomal lipolysis as alternative pathway to foster (3-
oxidation. Notably, the authors of this study showed that
blockade of lysosomal liposysis during H. polygyrus infection
results in defective clearance of the pathogen and inhibits
commitment to OXPHOS by macrophages [41]. IL-4-
stimulated macrophages maintain an intact active TCA cycle
and generate ATP mainly via OXPHOS. While changes in (3-
oxidation are the most striking metabolic adaptations in re-
sponse to [L-4, metabolomic studies also revealed that glycol-
ysis as well as glutaminolysis contribute to TCA activity [47].
Notably, glutamine deprivation inhibits M,,; macrophage in-
duction in vitro [47], whereas inhibition of glycolysis only
affects a small subset of IL-4 target genes [11]. Thus, while
macrophages undergo drastic metabolic changes in response
to pro- and anti-inflammatory triggers, like LPS and IL-4,
respectively, their diverse effector functions and locations dif-
ferentially affect whole body metabolism underlining their
central role in organismal physiology.

Adipose tissue macrophages and Kupffer cells
in homeostasis

Besides their role in sensing infection and tissue damage, tis-
sue resident macrophages have important homeostatic and
trophic functions. Limiting inflammation and maintaining tis-
sue homeostasis are extra crucial functions of the liver resident
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Kupffer cells (KC) and adipose tissue macrophages (ATM). In
obesity, insulin resistance develops as a consequence of
metaflammation in which elevated circulating levels of pro-
inflammatory cytokines such as TNFx and IL-6 negatively
affect the insulin signaling cascade [37]. The main source
for these inflammatory mediators in obesity is hepatic and
WAT macrophages [122]. Macrophages adapt in their residing
tissue to local circumstances and exert numerous effector
functions such as phagocytosis and cytokine production. In
the obese state, macrophages in the WAT and the liver are
major players in regulating metaflammation. Macrophages
sense factors derived from pathogens or from cells belonging
to innate and adaptive systems as well as from specialized
cells in the affected tissue. We will refer here on the impact
of ATM and liver-derived KC in the development of obesity-
associated insulin resistance.

Adipose tissue macrophages

Adipose tissue is one of the major metabolic organs that stores
excess nutrients as triacylglycerides and releases fatty acids in
the fasted state, which serve as energy source for peripheral
tissues. Under homeostatic conditions, adipose tissue is pop-
ulated with macrophages that exhibit a M,; like phenotype
and govern adipocyte lipid metabolism by secreting factors
such as IL-10 and catecholamines. IL-10 enhances adipocyte
insulin sensitivity and lipogenesis [62], whereas catechol-
amines trigger lipolysis in adipocytes [75]. Under conditions
of excessive lipolysis, they control release of fatty acids into
the circulation by serving as buffer [55]. While the ontogeny
of other tissue macrophage subsets is well studied, less is
known about ATM. Under inflammatory conditions, mono-
cytes enter adipose tissue in a CCR2-dependent manner [62].
The origin of ATMs under homeostatic conditions is a matter
of debate. Interestingly, WAT contains a pool of ¢-Kit*/Lin /
Sca-1% cells that share features of hematopoietic stem cells
[10]. This population fails to populate bone marrow in non-
irradiated mice, but is capable of replenishing the innate im-
mune cell pool in adipose tissue [85]. ATMs might thus be
regenerated in situ independent of the bone marrow.

A pioneering study from Hotamisligil and Spiegelman iden-
tified adipocytes as source of TNFo in the WAT that ultimately
impaired insulin signaling in obesity [39]. However, findings
by Xu et al. demonstrated that mainly the stromal vascular
fraction of the obese WAT expresses inflammatory cytokines
[122]. Currently, the view that the majority of other cells than
adipocytes in the obese WAT are macrophages is supported,
whereas in lean conditions, these cells represent approximately
10% [112]. While in lean WAT, mainly alternative M,,,; like
macrophages express anti-inflammatory molecules, in obese,
WAT macrophage polarization is shifted towards a pro-
inflammatory M,,, like phenotype. The increased abundance

and activation of macrophages in the obese WAT can be
accounted by adipose tissue stress that includes elevated
amounts of free fatty acids and LPS [28]. LPS, which is pre-
sumably microbiome derived, is not only abundant in WAT, but
also found in the circulation of obese individuals [8]. LPS and
fatty acids such as palmitate activate TLR4 signaling in ATMs
that polarizes them towards M,,, macrophages [13, 50].
Subsequently, these stimuli trigger expression of TNFx and
IL-6 in ATMs that compromise insulin action not only locally
in the WAT, but also systemically since they are released to
circulation [82]. Thus, it is tempting to speculate that
metaflammation is a consequence of local innate immune re-
sponse in the WAT that spills over via the blood to other organs
due to the blood soluble factors involved. Of note, caloric
restriction-induced weight loss including improvements in sys-
temic insulin sensitivity and whole body glucose metabolism
ameliorated metaflammation in the liver but not in adipose
tissue suggesting that long-lived ATMs maintain WAT inflam-
mation [95].

The M, like ATMs in lean WAT express the cell surface
marker CD206 and exhibit anti-inflammatory properties such
as IL-10 expression. These M,,; like ATMs synergize with
regulatory T cells (Treg) and innate type 2 lymphoid cells
(ILC2) to maintain the anti-inflammatory WAT environment
[18, 70]. Tregs, T cells, ILC2 cells, and even adipocytes pro-
vide anti-inflammatory IL-4, IL-13, and IL-33 in the lean
WAT to keep ATMs in an M,,; like state [49, 117]. In the
course of obesity, monocyte recruitment as well as local pro-
liferation gives rise to novel ATMs that polarize towards a pro-
inflammatory M,,, like phenotype that express the surface
marker CD11c [51, 62, 113]. Abruptly, the WAT environment
has changed from anti- to pro-inflammatory conditions indi-
cated by the lack of Treg cells and infiltration of cytotoxic and
Thl T cells as well as NK cells [78, 114]. Besides the already
mentioned M,,, polarizing LPS, T cells and NK cells in the
obese WAT provide IFNy, which sustains polarization to-
wards the M, phenotype [114]. ATMs accumulate intracel-
lular lipids not only via phagocytosis of dying adipocytes
resulting in crown like structures in the WAT, but also via fatty
acid transporter-mediated uptake [123]. The metabolism of
obese ATMs has changed to glycolysis, which is necessary
for the production of nitric oxide by iNos to increase pro-
inflammatory macrophage responses [20]. M,,;, macrophages
take up glucose via glucose transporter 1 that further triggers
M, polarization [19].

Therefore, it is not surprising that the polarizing environ-
ment in the obese WAT in vivo cannot be completely recapit-
ulated in vitro in bone marrow-derived macrophages (BMDM)
[123]. For instance, upregulation of CD11c expression is not
induced by sole LPS and IFNYy treatment in BMDM, but can be
restored by coculture with adipocytes [56]. Treatment with high
glucose, insulin, and palmitate induces a My, like phenotype in
BMDM culture that releases inflammatory cytokines [56].
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Consistently, insulin receptor inactivation in macrophages pre-
vents My, like polarization [66].

Conversely, M, macrophages in vitro similarly as present
in the lean WAT have not been reported, but M,,; can be
differentiated in BMDM cultures by several means.
Supplementation of culture media with IL-4 or IL-13 creates
different CD206 expressing M,,; macrophages, than those
that require TLR and IL1R agonists [61, 100]. Another M,
population can be differentiated by IL-10 which shares anti-
inflammatory properties with the other two BMDM subtypes
[72]. Strikingly, reactivity to IL-6 is required to polarize to-
wards all of these M, type macrophages. In particular, argi-
nase 1 and IL-4Ra expression critically depend on IL-6 sig-
naling [67]. Taken together, reallocation from M, like to-
wards M, type ATMs might be a promising strategy to re-
sume whole body insulin sensitivity that would prevent fatal
diseases associated with obesity such as development of met-
abolic syndrome and the progression to cancer. In line with
this evidence, nematode infection or vaccination with nema-
tode antigens reprograms the obese WAT microenvironment
towards anti-inflammatory conditions resulting in improved
insulin sensitivity and glucose tolerance [4].

Kupffer cells and liver infiltrating macrophages

The liver is essential for life due to its metabolic as well as
immunoregulatory functions. On the one hand, under high en-
ergy conditions and hyperglycemia, hepatocytes in the liver
import excessive glucose that is converted to glycogen.
During fasting periods, the liver maintains blood glucose levels
via hepatic glucose production that includes degradation of
glycogen by glycogenolysis and breakdown of proteins and
lipids through gluconeogenesis upon prolonged fasting. On
the other, the liver is the first line defense against pathogens
via the acute phase response and clears infected as well as
exhausted cells. In line with its immune function, the blood
stream entering the liver through the portal vein runs through
the gut as well as the WAT before. In liver sinusoids, special-
ized liver resident macrophages, the KC, sense and combat
invading commensals from the gut to prevent spreading along
circulation [88]. Gut-derived LPS for example can be detected
in portal vein but less in circulation [45]. In obesity, impaired
storage of excessive lipids in the WAT leads to liver fat accu-
mulation resulting in steatosis and fatty liver diseases [107].
The inappropriate fat storage in the liver results in lipotoxicity
which in turn leads to liver damage and inflammation [74, 118].
Thus, in obesity, lipotoxicity and elevated microbial load from
the microbiota result in excessive inflammation mediated by
KCs and infiltrating macrophages. Interestingly, depletion of
phagocytic cells in the liver via clodronate liposomes prevents
steatosis, inflammation, and the development of insulin resis-
tance thereby identifying hepatic macrophages as mediators of
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obesity-associated pathologies [58]. Hepatic macrophages
crosstalk to liver non-parenchymal cells and adapt their polar-
ization to states of liver condition. Obesity-induced pro-inflam-
matory cytokines and LPS polarize KC towards M, that in
turn induce a vicious cycle of TNF«, IL-6, and IL-1{3 that
further boosts and deteriorates liver functions [46, 53]. The
inflammatory boost in obesity does not alter KC numbers but
dramatically increases infiltration of CCR2-positive monocytes
[52, 71]. Furthermore, inflammatory TNF« released by hepatic
macrophages limits systemic insulin action, and IL-6 signaling
in hepatocytes instructs downregulation of the inflammatory
response in hepatic macrophages [120]. Collectively, inflam-
matory signaling in the liver differentially affects hepatic cell
types and might result in complicating outcomes in whole body
metabolism.

Obesity-induced low-grade inflammation and insulin
resistance

Obesity contributes to the development of insulin resistance
through the so-called obesity-associated low-grade inflamma-
tion or metaflammation. Over the course of this process, im-
mune cells infiltrate metabolic organs, mainly WAT and liver,
where they secrete pro-inflammatory cytokines that act locally
but also systemically after being released into circulation [82].

The cytokine levels in obesity do not reach levels upon
infection, but instead are elevated 2—3-fold compared to ho-
meostatic conditions. Moreover, while during infection, pro-
inflammatory cytokines increase acutely and stagnate with the
elimination of the pathogen, the obesity-associated low-grade
inflammation exhibits chronic character suggesting that dy-
namic modes of action have to be taken into account. The
best-studied inflammatory players in obesity are TNFo and
IL-6, but also include IL-17, CCL-2, and many others. In this
paragraph, we will delineate how TNFo- and IL-6-induced
signaling impact on the insulin signaling cascade.

TNF«x

In a ground breaking report, Hotamisligil and colleagues dis-
covered that the obese WAT contains high levels of the pro-
inflammatory cytokine TNF« [39]. In a follow-up study, they
could show in tissue culture experiments that media supple-
mented with TNFo impaired insulin action [40]. On a molec-
ular level, TNFa compromises activating tyrosine phosphory-
lations in the insulin signaling cascade mainly of IRS mole-
cules, but also the IR. While at that time, adipocytes were
believed to be the source of TNF in obesity, Xu et al. dem-
onstrated that the stromal vascular fraction of WAT secretes
pro-inflammatory cytokines that inhibit insulin signaling
[122]. Moreover, bone marrow transplantation experiments
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revealed that mainly macrophages are the source of TNFo in
the obese WAT [14]. TNF« interferes with insulin recpetor
signaling at the level of IRS molecules. IRS molecules are
phosphorylated on inhibitory serine residues by TNF«x-
induced kinases such as IkB kinase (IKK), c-Jun N-terminal
kinase (JNK), and atypical protein kinase C (aPKC) thereby
preventing further downstream signaling [77]. Of note, these
kinases have redundant as well as individual functions in IRS
phosphorylation and point mutations of IRS1 serine residues to
non-phosporylatable counterparts yielded the conflicting result
that mutant mice developed insulin resistance [9].
Nevertheless, genetic mouse models provided novel insight
into how TNFa-induced signaling interferes with insulin sig-
naling in obesity. On the one hand, TNFo knockout mice ex-
hibit normal glucose tolerance when exposed to normal food,
but are protected from the development of obesity-induced
insulin resistance in the absence of body weight gain alterations
on the other [106]. While this study demonstrated the critical
importance of TNF«x in the development of insulin resistance,
the dissection of further downstream signaling at the TNF -
induced kinase level has revealed surprising results. TNFo
induces a dual kinase system that comprises the IKK complex
and the JNK kinases [101]. The IKK complex contains the
kinases IKK-1 and IKK-2 as well as the NF«kB essential mod-
ulator NEMO, all of which are essential for mouse viability as
revealed by knockout studies. Muscle-specific IKK-2 inactiva-
tion showed no effect on diet-induced obesity and alterations in
glucose homeostasis [89]. However, while hepatic IKK-2 inac-
tivation conferred insulin sensitivity in this organ, but not in
muscle and WAT, myeloid IKK-2 inactivation resulted in sys-
temic improvements of insulin sensitivity upon high-fat diet
(HFD) challenge mainly due to reduced inflammatory cytokine
release [1, 6]. Otherwise, hepatic NEMO inactivation resulted
in global improvements in insulin sensitivity under obese con-
ditions, but in contrast to IKK-2 KO mice, these mice devel-
oped liver tumors due to ongoing TNFo-induced cell death and
compensatory hyperproliferation [119]. Thus, though activated
by the same upstream stimulus, kinases may play redundant
and non-redundant roles in impairing the actions of insulin.

In contrast to the IKK complex genes, knockout of one of
the three individual JNK kinases (JNK-1, JNK-2, and INK-3) is
well tolerated in mice, whereas double knockout for the most
abundant peripheral JNK-1 and JNK-2 is embryonic lethal [57].
It has been shown that JNK-1 but not JNK-2 knockout mice are
protected against obesity-induced impairments of glucose ho-
meostasis suggesting an essential role for JINK-1 in serine phos-
phorylation of IRS molecules [35]. However, conditional
mouse models aimed at unraveling the cell type-specific as well
as redundant functions of the JNK genes in the development of
obesity-associated insulin resistance. Opposite to what was ex-
pected, hepatic inactivation of JNK-1 revealed a modestly im-
paired glucose tolerance and hepatic lipid accumulation sug-
gesting a function of JNK-1 in the prevention of steatosis and

liver fat accumulation [110]. Moreover, skeletal muscle-specific
INK-1 deficiency revealed a minor role in glucose metabolism
[84], whereas WAT-specific JNK-1 deletion decreased obesity-
induced IL-6 levels and thus ameliorated diet-induced insulin
resistance [92]. However, neuronal-specific JNK-1 deficiency
most closely resembled the phenotype of complete JNK-1
knockout mice indicating that a redundancy between JNK iso-
forms in peripheral organs exist [3]. In line with these findings,
JNK-1/INK-2 double-deficient macrophages are unable to pro-
duce inflammatory cytokines, and thus, mice with macrophage-
specific deletion of INK-1 and 2 are protected against obesity-
induced disorders [30, 31]. Collectively, deciphering organ-
specific downstream actions of TNF«x in obesity-induced insu-
lin resistance revealed redundant as well as non-redundant ki-
nase functions on inhibitory IRS serine phosphorylation.

IL-6

IL-6 is a pleiotropic cytokine that plays crucial roles in meta-
bolic and immune cells. Similar to TNFx, IL-6 is also slightly
increased in serum of obese individuals and mice, which is
believed to be detrimental for metabolism [2]. Here, a bulk of
IL-6 is produced by the stromal vascular fraction of visceral fat
depots, which is directly delivered to the liver via the portal
vein [92]. In contrast, IL-6 is increased manifold during intense
exercise in muscle (regulated by JNK-1) that provides benefi-
cial effects on metabolism [116]. IL-6 exerts its function by
binding to the IL-6 receptor « chain (IL-6Rex) and the GP130
signaling chain complex in classical membrane-bound path-
way. The IL-6R« is expressed mainly on hepatocytes and im-
mune cells, but also non-IL-6R-expressing cells can be ren-
dered IL-6-responsive by a mechanism called trans-signaling
[33, 94]. IL-6 trans-signaling is the process where adam prote-
ases cleave/shed the IL-6Rx from the surface of IL-6Rox-
expressing cells that when bound to serum IL-6 generates the
soluble IL-6Ra (SIL-6R ). sIL-6R « in turn binds ubiquitously
expressed GP130 on cells not expressing IL-6Rx to activate
the same signaling cascade as the classical membrane IL-6R«
signaling [94]. Both cascades initiate Janus kinase (JAK)2/
STAT-3-dependent transcriptional activation of target genes
such as SOCS-3 [33]. SOCS-3 is not only a negative regulator
of IL-6 signaling but also inhibits insulin signal transduction at
the IRS protein level. Here, IL-6-induced SOCS-3 leads to
ubiquitination and subsequent proteasomal degradation of
IRS1 [104, 105]. Consistently, clinical studies link obesity-
induced insulin resistance with increased IL-6 levels.
Importantly, weight loss reduces circulating IL-6 and improves
insulin sensitivity [2]. On the other hand, however, IL-6 itself
provides beneficial effects on metabolic processes such as reg-
ulation of hepatic gluconeogenesis indicating that the molecu-
lar mechanism of how IL-6 affects metabolism and insulin
sensitivity is not completely understood [43, 87]. When IL-6
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would exert negative effects on glucose metabolism exclusive-
ly, the expectation for IL-6 knockout mice would be the main-
tenance of insulin sensitivity. However, while Di Gregorio et al.
did not observe metabolic alterations in IL-6 knockout mice
[16], Wallenius and colleagues demonstrated that IL-6 inacti-
vation favors the development of mature onset obesity and
diabetes implicating that IL-6 action on metabolism might be
even more complex than hitherto assumed [111].

A potential aspect that may explain these differences might
be the chronic/constant presence of IL-6 under obesity condi-
tions. We have demonstrated that in diet-induced obesity, the
chronically high IL-6 levels lead to the development of hepatic
IL-6 resistance [29]. IL-6 resistance is caused by basal IL-6-
activated STAT3 that chronically increases expression of
SOCS-3 [121]. SOCS-3 in turn inhibits IL-6 receptor signaling,
which can be identified by the inability of liver cells to react with
STAT3 phosphorylation upon exogenous IL-6 treatment. Such
high hepatic SOCS-3 levels might not only have impact on IL-6
signaling, but also on the insulin receptor signaling cascade by
interfering with IRS proteins. Consistently, inactivation of
SOCS-3 in hepatocytes improves hepatic insulin action and
steatosis in young mice, but at older age, these mice develop
obesity and insulin resistance due to the activation of acute phase
response and overt inflammation [103]. IL-6 signaling in hepa-
tocytes therefore somehow crosstalks with liver resident KCs
that are the source for the inflammatory response. In line with
this evidence, inactivation of the IL-6 receptor in hepatocytes
fulminates in the development of systemic insulin resistance as a
consequence of KC-mediated inflammation. Thus, IL-6 signal-
ing in hepatocytes controls whole body insulin sensitivity by
limiting KC-mediated inflammation [120]. Therefore, consider-
ing the differential aspects of IL-6 action under lean and obese
conditions will contribute to our molecular knowledge how the
low-grade metaflammation impacts on insulin signaling to ulti-
mately result in the development of metabolic disorders. Given
that IL-6 not only impacts on metabolism but also on the devel-
opment of cancer and that obesity increases the incidence of
cancer entities with an inflammatory microenvironment, the
context-specific dissection of signaling cascades will be neces-
sary for the development of novel therapeutic interventions to
combat such fatal obesity-associated diseases [68].

Conclusion/outlook

Inflammation triggered by macrophages constitutes a turning
point in the development of obesity-related insulin resistance. It
is not only that mediators secreted by macrophages trigger in-
sulin resistance, at the same time, also beneficial effects exerted
by ATM and KCs under homeostasis are compromised. These
include maintenance of a local anti-inflammatory milieu, insu-
lin sensitivity, and control of lipolysis and energy expenditure.
Research over the last 15 years has uncovered mechanisms that
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drive changes in macrophage polarization and how molecules
secreted by macrophages affect lipid metabolism and insulin
receptor signaling in metabolic organs. The use of mouse
models pointed out that macrophage polarization in adipose
tissue and the liver is critical for development and progression
of metabolic disease. Reprogramming from inflammatory My,
towards alternative M,,,; macrophages might represent a prom-
ising strategy to recover whole body insulin sensitivity that
would prevent fatal diseases associated with obesity. Indeed,
thiazolidinediones and omega 3 fatty acids are such exemplary
drugs or dietary factors that improve metabolic disease partly
by dampening macrophage-mediated inflammation [34, 80]. In
this context, targeting immune cell metabolism might also hold
great potential. Systemic insulin resistance is also observed dur-
ing pregnancy or puberty, but most notably also during infec-
tion, in particular sepsis. During sepsis, inflammatory cytokines
in particular IL-6 and TNF« induce a state of insulin resistance
[69]. Moreover, while in type 2 diabetes, lipolysis in adipose
tissue and gluconeogenesis in the liver slowly emerge as a result
of insulin resistance, inflammatory cytokines actively induce
lipolysis in adipose tissue, protein catabolism in the muscle,
and gluconeogenesis in the liver and muscle during sepsis.
Central mediators include glucagon, epinephrine, and cortisol,
which are released as a consequence of the inflammatory cas-
cade [32]. From an evolutionary point of view, this metabolic
response serves to support the immune system in fighting the
infection and limiting its spread throughout the body in the
context of sepsis. As outlined above M,,, macrophages and
also other immune cells rely on glycolysis to fuel their inflam-
matory response to fight infection [83]. In the context of type 2
diabetes and obesity, increased glucose availability to immune
cells might initiate a feed forward loop that fosters inflamma-
tion and further aggravates disease.
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