The Application of Molecularly Imprinted Polymers in Forensic Toxicology: Issues and Perspectives
Abstract
:1. Introduction
2. Materials and Methods
2.1. Literature Search and Selection Process
- Non-biological matrices (molecularly imprinted polymers) AND (inorganic matrices) OR (explosives);
- Biological matrices: (gunshot OR gunshot wound OR gunshot injur* OR ballistic forensic) AND (radiolog* OR imaging).
- English language.
- Relevance to the topic (i.e., application of MIPs in forensic science).
- c.
- A time range of 10 years was considered for this review, and papers published before 2014 were excluded.
2.2. Data Extraction
3. Results
3.1. Biological Matrices
3.2. Non-Biological Matrices
4. Discussion
Author Contributions
Funding
Conflicts of Interest
Abbreviations
AM | Acrylamide |
AIBN | azobisisobutyronitrile |
CL-20LC-MS | liquid chromatography coupled with mass spectrometry |
DNT | 2,4-dinitrotoluene |
DVB | divinylbenzene |
EDMA | ethylene dimethacrylate |
EGDMA | ethylene glycol dimethacrylate |
GC | gas chromatography |
HMX | cyclotetramethylene-tetranitramine |
IMS | ion mobility spectrometry |
LC | liquid chromatography |
LLOQ | lower limit of quantification |
LOD | limit of detection |
MAA | methacrylic acid |
MIPs | molecularly imprinted polymers |
MMA | methyl methacrylate |
MPEA | N-methylphenylethylamine |
MS | mass spectrometry |
MS/MS | tandem mass spectrometry |
NPS | new psychoactive substance |
PE | polyethylene |
RDX | Royal Demolition eXplosive |
SPE | solid-phase extraction |
TATP | triacetone triperoxide |
THC | tetrahydrocannabinol |
TNP | trinitrophenol |
TNT | trinitrotoluene |
References
- Vasapollo, G.; Sole, R.D.; Mergola, L.; Lazzoi, M.R.; Scardino, A.; Scorrano, S.; Mele, G. Molecularly imprinted polymers: Present and future prospective. Int. J. Mol. Sci. 2011, 12, 5908–5945. [Google Scholar] [CrossRef] [PubMed]
- Sajini, T.; Mathew, B. A brief overview of molecularly imprinted polymers: Highlighting computational design, nano and photo-responsive imprinting. Talanta Open 2021, 4, 100072. [Google Scholar] [CrossRef]
- Andersson, L.I. Molecular imprinting: Developments and applications in the analytical chemistry field. J. Chromatogr. B Biomed. Sci. Appl. 2000, 745, 3–13. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Li, S.; Gong, B.; Sanford, A.R.; Ferguson, J.S. Molecular imprinting: A versatile tool for separation, sensors and catalysis. Adv. Polym. Sci. 2007, 206, 191–210. [Google Scholar] [CrossRef]
- Liu, R.; Poma, A. Advances in Molecularly Imprinted Polymers as Drug Delivery Systems. Molecules 2021, 26, 3589. [Google Scholar] [CrossRef]
- Mattiasson, B. MIPs as Tools in Environmental Biotechnology. Adv. Biochem. Eng. Biotechnol. 2015, 150, 183–205. [Google Scholar] [CrossRef]
- Kadhem, A.J.; Gentile, G.J.; Fidalgo de Cortalezzi, M.M. Molecularly Imprinted Polymers (MIPs) in Sensors for Environmental and Biomedical Applications: A Review. Molecules 2021, 26, 6233. [Google Scholar] [CrossRef]
- Ayankojo, A.G.; Reut, J.; Syritski, V. Electrochemically Synthesized MIP Sensors: Applications in Healthcare Diagnostics. Biosensors 2024, 14, 71. [Google Scholar] [CrossRef]
- Yılmaz, E.; Garipcan, B.; Patra, H.K.; Uzun, L. Molecular Imprinting Applications in Forensic Science. Sensors 2017, 17, 691. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, G.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.B.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372:n71. [Google Scholar] [CrossRef]
- Sánchez-González, J.; Tabernero, M.J.; Bermejo, A.M.; Bermejo-Barrera, P.; Moreda-Piñeiro, A. Porous membrane-protected molecularly imprinted polymer micro-solid-phase extraction for analysis of urinary cocaine and its metabolites using liquid chromatography—Tandem mass spectrometry. Anal. Chim. Acta 2015, 898, 50–59. [Google Scholar] [CrossRef] [PubMed]
- Tavares, L.S.; Carvalho, T.C.; Romão, W.; Vaz, B.G.; Chaves, A.R. Paper Spray Tandem Mass Spectrometry Based on Molecularly Imprinted Polymer Substrate for Cocaine Analysis in Oral Fluid. J. Am. Soc. Mass Spectrom. 2018, 29, 566–572. [Google Scholar] [CrossRef] [PubMed]
- Sorribes-Soriano, A.; Esteve-Turrillas, F.A.; Armenta, S.; de la Guardia, M.; Herrero-Martínez, J.M. Cocaine abuse determination by ion mobility spectrometry using molecular imprinting. J. Chromatogr. A 2017, 1481, 23–30. [Google Scholar] [CrossRef] [PubMed]
- Xiong, J.; Wei, X.; Shen, X.; Zhu, W.; Yi, S.; Huang, C. Synthesis of molecularly-imprinted polymers towards a group of amphetamine-type stimulants by reflux precipitation polymerization with a pseudo template. J. Chromatogr. A 2023, 1688, 463738. [Google Scholar] [CrossRef]
- Sánchez-González, J.; Salgueiro-Fernández, R.; Cabarcos, P.; Bermejo, A.M.; Bermejo-Barrera, P.; Moreda-Piñeiro, A. Cannabinoids assessment in plasma and urine by high performance liquid chromatography-tandem mass spectrometry after molecularly imprinted polymer microsolid-phase extraction. Anal. Bioanal. Chem. 2017, 409, 1207–1220. [Google Scholar] [CrossRef]
- Cela-Pérez, M.C.; Bates, F.; Jiménez-Morigosa, C.; Lendoiro, E.; de Castro, A.; Cruz, A.; López-Rivadulla, M.; López-Vilariño, J.M.; González-Rodríguez, M.V. Water-compatible imprinted pills for sensitive determination of cannabinoids in urine and oral fluid. J. Chromatogr. A 2016, 1429, 53–64. [Google Scholar] [CrossRef]
- Ebrahimi Rahmani, M.; Ansari, M.; Kazemipour, M.; Nateghi, M. Selective extraction of morphine from biological fluids by magnetic molecularly imprinted polymers and determination using UHPLC with diode array detection. J. Sep. Sci. 2018, 41, 958–965. [Google Scholar] [CrossRef]
- Murakami, T.; Iwamuro, Y.; Ishimaru, R.; Chinaka, S.; Hasegawa, H. Molecularly imprinted polymer solid-phase extraction of synthetic cathinones from urine and whole blood samples. J. Sep. Sci. 2018, 41, 4506–4514. [Google Scholar] [CrossRef]
- Chen, H.; Wu, F.; Xu, Y.; Liu, Y.; Song, L.; Chen, X.; He, Q.; Liu, W.; Han, Q.; Zhang, Z.; et al. Synthesis, characterization, and evaluation of selective molecularly imprinted polymers for the fast determination of synthetic cathinones. RSC Adv. 2021, 11, 29752–29761. [Google Scholar] [CrossRef]
- Wu, F.; Zhang, Z.; Liu, W.; Liu, Y.; Chen, X.; Liao, P.; Han, Q.; Song, L.; Chen, H.; Liu, W. Facile synthesis of core–shell structured magnetic Fe3O4@SiO2@Au molecularly imprinted polymers for high effective extraction and determination of 4-methylmethcathinone in human urine samples. e-Polymers 2022, 22, 488–504. [Google Scholar] [CrossRef]
- Sorribes-Soriano, A.; Esteve-Turrillas, F.A.; Armenta, S.; Amorós, P.; Herrero-Martínez, J.M. Amphetamine-type stimulants analysis in oral fluid based on molecularly imprinting extraction. Anal. Chim. Acta 2019, 1052, 73–83. [Google Scholar] [CrossRef] [PubMed]
- Varenne, F.; Kadhirvel, P.; Bosman, P.; Renault, L.; Combès, A.; Pichon, V. Synthesis and characterization of molecularly imprinted polymers for the selective extraction of oxazepam from complex environmental and biological samples. Anal. Bioanal. Chem. 2022, 414, 451–463. [Google Scholar] [CrossRef] [PubMed]
- Gil Tejedor, A.M.; Bravo Yagüe, J.C.; Paniagua González, G.; Garcinuño Martínez, R.M.; Fernández Hernando, P. Selective Extraction of Diazepam and Its Metabolites from Urine Samples by a Molecularly Imprinted Solid-Phase Extraction (MISPE) Method. Polymers 2024, 16, 635. [Google Scholar] [CrossRef] [PubMed]
- Sorribes-Soriano, A.; Armenta, S.; Esteve-Turrillas, F.A.; Herrero-Martínez, J.M. Tuning the selectivity of molecularly imprinted polymer extraction of arylcyclohexylamines: From class-selective to specific. Anal. Chim. Acta 2020, 1124, 94–103. [Google Scholar] [CrossRef]
- Khanlari, M.; Daraei, B.; Torkian, L.; Shekarchi, M.; Manafi, M.R. Application of the oxycodone templated molecular imprinted polymer in adsorption of the drug from human blood plasma as the real biological environment; a joint experimental and density functional theory study. Front. Chem. 2023, 10, 1045552. [Google Scholar] [CrossRef]
- El-Beqqali, A.; Abdel-Rehim, M. Molecularly imprinted polymer-sol-gel tablet toward micro-solid phase extraction: I. Determination of methadone in human plasma utilizing liquid chromatography-tandem mass spectrometry. Anal. Chim. Acta 2016, 936, 116–122. [Google Scholar] [CrossRef]
- García-Atienza, P.; Esteve-Turrillas, F.A.; Armenta, S.; Herrero-Martínez, J.M. Ethylphenidate determination in oral fluids by molecularly imprinted polymer extraction and ion mobility spectrometry. Microchem. J. 2022, 178, 107423. [Google Scholar] [CrossRef]
- Alizadeh, T. Preparation of magnetic TNT-imprinted polymer nanoparticles and their accumulation onto magnetic carbon paste electrode for TNT determination. Biosens. Bioelectron. 2014, 61, 532–540. [Google Scholar] [CrossRef]
- Leibl, N.; Duma, L.; Gonzato, C.; Haupt, K. Polydopamine-based molecularly imprinted thin films for electro-chemical sensing of nitro-explosives in aqueous solutions. Bioelectrochemistry. 2020, 135, 107541. [Google Scholar] [CrossRef]
- Dai, J.; Dong, X.; Fidalgo de Cortalezzi, M. Molecularly imprinted polymers labeled with amino-functionalized carbon dots for fluorescent determination of 2,4-dinitrotoluene. Microchim. Acta 2017, 184, 1369–1377. [Google Scholar] [CrossRef]
- Cennamo, N.; Donà, A.; Pallavicini, P.; D’Agostino, G.; Dacarro, G.; Zeni, L.; Pesavento, M. Sensitive detection of 2,4,6-trinitrotoluene by tridimensional monitoring of molecularly imprinted polymer with optical fiber and five-branched gold nanostars. Sens. Actuators B Chem. 2015, 208, 291–298. [Google Scholar] [CrossRef]
- Guo, Z.; Florea, A.; Cristea, C.; Bessueille, F.; Vocanson, F.; Goutaland, F.; Zhang, A.; Săndulescu, R.; Lagarde, F.; Jaffrezic-Renault, N. 1,3,5-Trinitrotoluene detection by a molecularly imprinted polymer sensor based on electropolymerization of a microporous-metal-organic framework. Sens. Actuators B Chem. 2015, 207 Pt B, 960–966. [Google Scholar] [CrossRef]
- Huynh, T.P.; Wojnarowicz, A.; Kelm, A.; Woznicki, P.; Borowicz, P.; Majka, A.; D’Souza, F.; Kutner, W. Chemosensor for Selective Determination of 2,4,6-Trinitrophenol Using a Custom Designed Imprinted Polymer Recognition Unit Cross-Linked to a Fluorophore Transducer. ACS Sens. 2016, 1, 636–639. [Google Scholar] [CrossRef]
- Alizadeh, T.; Atashi, F.; Ganjali, M.R. Molecularly imprinted polymer nano-sphere/multi-walled carbon nanotube coated glassy carbon electrode as an ultra-sensitive voltammetric sensor for picomolar level determination of RDX. Talanta 2019, 194, 415–421. [Google Scholar] [CrossRef]
- Lu, W.; Li, H.; Meng, Z.; Liang, X.; Xue, M.; Wang, Q.; Dong, X. Detection of nitrobenzene compounds in surface water by ion mobility spectrometry coupled with molecularly imprinted polymers. J. Hazard. Mater. 2014, 280, 588–594. [Google Scholar] [CrossRef]
- Wang, J.; Meng, Z.; Xue, M.; Qiu, L.; Dong, X.; Xu, Z.; Li, J. Simultaneous selective extraction of nitramine explosives using molecularly imprinted polymer hollow spheres from post blast samples. New J. Chem. 2017, 41, 1129–1136. [Google Scholar] [CrossRef]
- Lu, W.; Asher, S.A.; Meng, Z.; Yan, Z.; Xue, M.; Qiu, L.; Yi, D. Visual detection of 2,4,6-trinitrotolune by molecularly imprinted colloidal array photonic crystal. J. Hazard. Mater. 2016, 316, 87–93. [Google Scholar] [CrossRef]
- Xu, S.; Lu, H. Ratiometric fluorescence and mesoporous structure dual signal amplification for sensitive and selective detection of TNT based on MIP@QD fluorescence sensors. Chem. Commun. 2015, 51, 3200–3203. [Google Scholar] [CrossRef]
- Mamo, S.K.; Gonzalez-Rodriguez, J. Development of a molecularly imprinted polymer-based sensor for the electrochemical determination of triacetone triperoxide (TATP). Sensors 2014, 14, 23269–23282. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Xu, S.; Lu, H. Mesoporous structured MIPs@CDs fluorescence sensor for highly sensitive detection of TNT. Biosens. Bioelectron. 2016, 85, 950–956. [Google Scholar] [CrossRef]
- Poole, C.F. Chapter 12 Principles and practice of solid-phase extraction. In Comprehensive Analytical Chemistry; Elsevier: Amsterdam, The Netherlands, 2002; Volume 37, pp. 341–387. ISBN 9780444505101. [Google Scholar] [CrossRef]
- Donato, L.; Nasser, I.I.; Majdoub, M.; Drioli, E. Green Chemistry and Molecularly Imprinted Membranes. Membranes 2022, 12, 472. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Shafqat, S.R.; Bhawani, S.A.; Bakhtiar, S.; Ibrahim MN, M.; Shafqat, S.S. Template-assisted synthesis of molecularly imprinted polymers for the re-moval of methyl red from aqueous media. BMC Chem. 2023, 17, 46. [Google Scholar] [CrossRef] [PubMed]
- Murdaya, N.; Triadenda, A.L.; Rahayu, D.; Hasanah, A.N. A Review: Using Multiple Templates for Molecular Imprinted Pol-ymer: Is It Good? Polymers 2022, 14, 4441. [Google Scholar] [CrossRef] [PubMed]
- Refaat, D.; Aggour, M.G.; Farghali, A.A.; Mahajan, R.; Wiklander, J.G.; Nicholls, I.A.; Piletsky, S.A. Strategies for Molecular Imprinting and the Evolution of MIP Nanoparticles as Plastic Antibodies-Synthesis and Applications. Int. J. Mol. Sci. 2019, 20, 6304. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Chen, L.; Xu, S.; Li, J. Recent advances in molecular imprinting technology: Current status, challenges and highlighted appli-cations. Chem. Soc. Rev. 2011, 40, 2922–2942. [Google Scholar] [CrossRef]
- Xu, S.; Lu, H.; Li, J.; Song, X.; Wang, A.; Chen, L.; Han, S. Dummy molecularly imprinted polymers-capped CdTe quantum dots for the fluorescent sensing of 2,4,6-trinitrotoluene. ACS Appl. Mater. Interfaces 2013, 5, 8146–8154. [Google Scholar] [CrossRef] [PubMed]
- Couto, R.A.S.; Coelho, C.; Mounssef, B., Jr.; Morais, S.F.d.A.; Lima, C.D.; dos Santos, W.T.P.; Carvalho, F.; Rodrigues, C.M.P.; Braga, A.A.C.; Gonçalves, L.M.; et al. 3,4-Methylenedioxypyrovalerone (MDPV) Sensing Based on Electropolymer-ized Molecularly Imprinted Polymers on Silver Nanoparticles and Carboxylated Multi-Walled Carbon Nano-tubes. Nanomaterials 2021, 11, 353. [Google Scholar] [CrossRef]
- Tao, Z.; Zhao, Y.; Wang, Y.; Zhang, G. Recent Advances in Carbon Nanotube Technology: Bridging the Gap from Fundamental Science to Wide Applications. C 2024, 10, 69. [Google Scholar] [CrossRef]
- ANSI/ASB Standard 036; Standard Practices for Method Validation in Forensic Toxicology. Academy Standards Board: Colorado Springs, CO, USA, 2019. Available online: https://www.aafs.org/sites/default/files/media/documents/036_Std_e1.pdf (accessed on 1 December 2024).
- De Giovanni, N.; Marchetti, D. A Systematic Review of Solid-Phase Microextraction Applications in the Forensic Context. J. Anal. Toxicol. 2020, 44, 268–297. [Google Scholar] [CrossRef] [PubMed]
Analytes | Matrix | MIP | Technique | LOD (ng/mL) | LLOQ or Lower Concentration Point (ng/mL) | References |
---|---|---|---|---|---|---|
Cocaine and metabolites | Urine | EDMA, DVB, AIBN | HPLC-MS/MS | 0.049–0.50 | 0.081–0.83 | [11] |
Cocaine | Oral fluid | free radical polymerization | PS-MS | 0.27 | 1 | [12] |
Cocaine | Oral fluid | MAA, EDMA, AIBN | IMS | 18 | 60 | [13] |
Amphetamine-type drugs | Urine | MPEA-MIPs SPE | LC-MS/MS | 0.05–0.29 | 0.16–0.98 | [14] |
Cannabinoids | Plasma/urine | EDMA, DVB | LC-MS | plasma 0.11–0.15 urine 0.14–0.17 | 0.36 | [15] |
Cannabinoids | Urine/oral fluid | AM and EDMA | LC-MS-MS | 0.75/0.5 | 1/0.75 | [16] |
Morphine | Plasma/urine | magnetic molecularly imprinted polymer | UHPLC with diode array detection | 0.03 | 0.08 | [17] |
Synthetic cathinones | Urine/blood | AFFINILUTE MIP-Amphetamine SPE cartridge | LC-MS/MS | 0.015–0.15 | 10 | [18] |
Synthetic cathinone 4-MDMC | Urine | MAA, EGDMA | HPLC-UV | ND | ND | [19] |
Synthetic cathinone 4-MMC | Urine | Fe3O4@SiO2@Au-MIPs | HPLC-UV | ND | ND | [20] |
Amphetamine and cathinone derivates | Oral fluid | MAA, EDMA, AIBN | UHPLC-MS/MS and IMS | 0.03–1.3 10–80 | 329 | [21] |
Oxazepam bromazepam alprazolam | Urine | MAA, EGDMA | LC-UV and LC-MS/MS | 15–55 0.003–0.33 | 50–290 0.01–1.1 | [22] |
Diazepam oxazepam temazepam nordiazepam bromazepam tetrazepam | Urine | MAA, EGDMA | HPLC-DAD | 13.5–21.1 | 44.5–69.3 | [23] |
Arylcyclohexylamine | Oral fluid | MAA, EDMA, AIBN | IMS | 15 | 50 | [24] |
Oxycodone | Plasma | MAA, EDMA, AIBN | LC-UV | 1.24 | 3.76 | [25] |
Ethylphenidate | Oral fluid | MAA, EGDMA, AIBN | IMS | 20 | 66 | [26] |
Methadone | Plasma | PE | LC-MS/MS | 1 | 5 | [27] |
Analytes | Sample | MIP | Instrumentation | LOD | LLOQ or Lower Concentration Point | References | ||||
---|---|---|---|---|---|---|---|---|---|---|
TNT | Tap and sea water | MAA, TNT, EGDMA, AIBN | Carbon paste electrode | 0.5 nM | 1.0 nM | [28] | ||||
TNT and/or RDX | Aqueous solution | Trimesic acid (TMA) and Kemp’s triacid as structural analogs, dopamine as functional monomer | Gold electrode (working electrode), DRIREF-2 Ag/AgCl (WPI) (reference electrode), platinum coil (as a counter electrode) | 50–100 pM | 50–100 pM | [29] | ||||
TNT | Soil and water | Amino CDs as functional monomers | MIP carbon dot fluorescence sensor ing | 17 nM | 50 nM | [30] | ||||
TNT | Aqueous solution | TNT as template, MAA as functional monomer, DVB as cross-linker, and AIBN as the radicalic initiator | Plastic optical fibers (POFs) | 2.4 × 10−6–7.2 × 10−7 M | ND | [31] | ||||
TNT | Tap and river water | TNT as template molecule; both micro-porous metal–organic frameworks (MMOFs) as conductive films; gold electrodes; intermediate monolayer of p-aminothiophenol (PATP) | MIP-modified gold electrodes | 0.04 fM | 44 nM | [32] | ||||
TNT | Soil and water | 3-aminopropyl triethoxy silane (APTES) as functional monomer and tetraethyl orthosilicate (TEOS) as cross-linker in the presence of green semiconductor quantum dots | MIP-coated quantum dot fluorescence sensoring | 15 nM | 50 nM | [33] | ||||
TNT | TNT methanol/water solution | TNT as template molecule; acrylamide (AM); methylmethacrylate (MMA) | Molecularly imprinted colloidal particles photonic crystal (PhC) sensing | 3 × 10−4 mM | 0.3 mM | [34] | ||||
TNT/DNT | Industrial wastewater and surface water | TNT and DNT as templates | Ion mobility spectrometry | TNT: 0.1 ppm DNT: 0.05 ppm | TNT: 0.5 ppm DNT: 0.1 ppm | [35] | ||||
RDX | Tap water | Methacrylic acid as functional monomer, addition of EGDMA (crosslinking agent) and AIBN | Glassy carbon electrode | 4.5 × 10−6 mg/L | 0.2 nM | [36] | ||||
HMX, RDX, TNT, CL-20 | Simulated post-blast samples prepared from motor oil and vacuum pump oil. | Silca nanospheres as a sacrificial matrix, acrylamide as a functional monomer, ethylene glycol dimethacrylate as a cross-linker | HPLC-DAD | Compound | Vacuum pump oil (µmol/L) | Motor oil (µmol/L) | Compound | Vacuum pump oil(µmol/L) | Motor oil(µmol/L) | [37] |
HMX | 0.16 | 0.28 | HMX | 0.5 | 1 | |||||
RDX | 0.33 | 0.36 | RDX | 1 | 1 | |||||
TNT | 0.13 | 0.19 | TNT | 0.5 | 0.5 | |||||
CL-20 | 0.19 | 0.32 | CL-20 | 0.5 | 1 | |||||
DNT | Water | MA as functional monomer, EGDMA as the crosslinking agent, AIBN as the initiator | Amino-functionalized carbon dots | 0.28 ppm | 1 ppm | [38] | ||||
TATP | Standard solutions of PETN, TNT, RDX, and HMX and then TATP | TATP as template, pyrrole as functional monomer | MIP-modified glassy carbon electrode | 26.9 μg/L | 81.6 μg/L | [39] | ||||
TNP | TNP solution | NH2-S4 as functional monomer, CLM as crosslinking monomer | Imprinted polymer recognition unit crosslinked to fluorophore trasducer | 0.2 ng/L | 0.2 ng/L | [40] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mohamed, S.; Santelli, S.; Giorgetti, A.; Pelletti, G.; Pirani, F.; Fais, P.; Pascali, J.P. The Application of Molecularly Imprinted Polymers in Forensic Toxicology: Issues and Perspectives. Chemosensors 2024, 12, 279. https://doi.org/10.3390/chemosensors12120279
Mohamed S, Santelli S, Giorgetti A, Pelletti G, Pirani F, Fais P, Pascali JP. The Application of Molecularly Imprinted Polymers in Forensic Toxicology: Issues and Perspectives. Chemosensors. 2024; 12(12):279. https://doi.org/10.3390/chemosensors12120279
Chicago/Turabian StyleMohamed, Susan, Simone Santelli, Arianna Giorgetti, Guido Pelletti, Filippo Pirani, Paolo Fais, and Jennifer P. Pascali. 2024. "The Application of Molecularly Imprinted Polymers in Forensic Toxicology: Issues and Perspectives" Chemosensors 12, no. 12: 279. https://doi.org/10.3390/chemosensors12120279
APA StyleMohamed, S., Santelli, S., Giorgetti, A., Pelletti, G., Pirani, F., Fais, P., & Pascali, J. P. (2024). The Application of Molecularly Imprinted Polymers in Forensic Toxicology: Issues and Perspectives. Chemosensors, 12(12), 279. https://doi.org/10.3390/chemosensors12120279