Electrochemical Detection of Microplastics in Water Using Ultramicroelectrodes
<p>Cyclic voltammogram of 10 μm Pt UME in (<b>a</b>) 100 mM potassium ferrocyanide aqueous solution and (<b>b</b>) 100 mM potassium ferricyanide aqueous solution.</p> "> Figure 2
<p>Amperometric i–t curves of solution containing 100 mM potassium ferrocyanide and microplastics produced by grinding (<b>a</b>) disposable storage containers (PS) and (<b>b</b>) plastic cups (PP), using a 10 µm Pt UME at +0.5 V (vs. Ag/AgCl). The inset images provide an enlarged view of the region outlined in the red box, with arrows indicating the step current generated by microplastic collisions.</p> "> Figure 3
<p>Amperometric i–t curves of solution containing (<b>a</b>) 100 mM potassium ferrocyanide with polystyrene beads at +0.5 V (vs. Ag/AgCl) and (<b>b</b>) 100 mM potassium ferricyanide with polystyrene beads at −0.1 V (vs. Ag/AgCl).</p> "> Figure 4
<p>(<b>a</b>) Geometry of COMSOL Multiphysics simulation model to calculate degree of step current; (<b>b</b>) step current as a function of microplastic size collided with a 10 µm-diameter electrode.</p> "> Figure 5
<p>Comparison of the size distribution of microplastics obtained through simulation and the size distribution measured through DLS for (<b>a</b>) PS and (<b>b</b>) PP microplastics. SEM images of (<b>c</b>) PS microplastics and (<b>d</b>) PP microplastics.</p> "> Scheme 1
<p>Schematic of the current change caused by microplastics colliding with the electrode surface.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents and Materials
2.2. Instruments
2.3. Preparation of Pt UME
2.4. Preparation of Microplastics
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Thompson, R.C.; Olsen, Y.; Mitchell, R.P.; Davis, A.; Rowland, S.J.; John, A.W.; McGonigle, D.; Russell, A.E. Lost at sea: Where is all the plastic? Science 2004, 304, 838. [Google Scholar] [CrossRef] [PubMed]
- Eriksen, M.; Lebreton, L.C.; Carson, H.S.; Thiel, M.; Moore, C.J.; Borerro, J.C.; Galgani, F.; Ryan, P.G.; Reisser, J. Plastic pollution in the world’s oceans: More than 5 trillion plastic pieces weighing over 250,000 tons afloat at sea. PLoS ONE 2014, 9, e111913. [Google Scholar] [CrossRef] [PubMed]
- Barnes, D.K.; Galgani, F.; Thompson, R.C.; Barlaz, M. Accumulation and fragmentation of plastic debris in global environments. Philos. Trans. R. Soc. B 2009, 364, 1985–1998. [Google Scholar] [CrossRef]
- Wagner, M.; Scherer, C.; Alvarez-Muñoz, D.; Brennholt, N.; Bourrain, X.; Buchinger, S.; Fries, E.; Grosbois, C.; Klasmeier, J.; Marti, T. Microplastics in freshwater ecosystems: What we know and what we need to know. Environ. Sci. Eur. 2014, 26, 1–9. [Google Scholar] [CrossRef] [PubMed]
- McCormick, A.; Hoellein, T.J.; Mason, S.A.; Schluep, J.; Kelly, J.J. Microplastic is an abundant and distinct microbial habitat in an urban river. Environ. Sci. Technol. 2014, 48, 11863–11871. [Google Scholar] [CrossRef]
- Jambeck, J.R.; Geyer, R.; Wilcox, C.; Siegler, T.R.; Perryman, M.; Andrady, A.; Narayan, R.; Law, K.L. Plastic waste inputs from land into the ocean. Science 2015, 347, 768–771. [Google Scholar] [CrossRef]
- Gewert, B.; Plassmann, M.M.; MacLeod, M. Pathways for degradation of plastic polymers floating in the marine environment. Environ. Sci. Process. Impacts 2015, 17, 1513–1521. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.K.; Hong, S.H.; Jang, M.; Han, G.M.; Jung, S.W.; Shim, W.J. Combined effects of UV exposure duration and mechanical abrasion on microplastic fragmentation by polymer type. Environ. Sci. Technol. 2017, 51, 4368–4376. [Google Scholar] [CrossRef]
- Andrady, A.; Barnes, P.; Bornman, J.; Gouin, T.; Madronich, S.; White, C.; Zepp, R.; Jansen, M. Oxidation and fragmentation of plastics in a changing environment; from UV-radiation to biological degradation. Sci. Total Environ. 2022, 851, 158022. [Google Scholar] [CrossRef]
- Nawalage, N.S.K.; Bellanthudawa, B.K.A. Synthetic polymers in personal care and cosmetics products (PCCPs) as a source of microplastic (MP) pollution. Mar. Pollut. Bull. 2022, 182, 113927. [Google Scholar] [CrossRef] [PubMed]
- Setälä, O.; Fleming-Lehtinen, V.; Lehtiniemi, M. Ingestion and transfer of microplastics in the planktonic food web. Environ. Pollut. 2014, 185, 77–83. [Google Scholar] [CrossRef] [PubMed]
- Browne, M.A.; Dissanayake, A.; Galloway, T.S.; Lowe, D.M.; Thompson, R.C. Ingested microscopic plastic translocates to the circulatory system of the mussel, Mytilus edulis (L.). Environ. Sci. Technol. 2008, 42, 5026–5031. [Google Scholar] [CrossRef]
- Wright, S.L.; Rowe, D.; Thompson, R.C.; Galloway, T.S. Microplastic ingestion decreases energy reserves in marine worms. Curr. Biol. 2013, 23, R1031–R1033. [Google Scholar] [CrossRef]
- Güven, O.; Gökdağ, K.; Jovanović, B.; Kıdeyş, A.E. Microplastic litter composition of the Turkish territorial waters of the Mediterranean Sea, and its occurrence in the gastrointestinal tract of fish. Environ. Pollut. 2017, 223, 286–294. [Google Scholar] [CrossRef]
- Oßmann, B.E.; Sarau, G.; Holtmannspötter, H.; Pischetsrieder, M.; Christiansen, S.H.; Dicke, W. Small-sized microplastics and pigmented particles in bottled mineral water. Water Res. 2018, 141, 307–316. [Google Scholar] [CrossRef]
- Mason, S.A.; Welch, V.G.; Neratko, J. Synthetic Polymer Contamination in Bottled Water. Front. Chem. 2018, 6, 407. [Google Scholar] [CrossRef]
- Schymanski, D.; Goldbeck, C.; Humpf, H.-U.; Fürst, P. Analysis of microplastics in water by micro-Raman spectroscopy: Release of plastic particles from different packaging into mineral water. Water Res. 2018, 129, 154–162. [Google Scholar] [CrossRef] [PubMed]
- Guan, Q.; Jiang, J.; Huang, Y.; Wang, Q.; Liu, Z.; Ma, X.; Yang, X.; Li, Y.; Wang, S.; Cui, W. The landscape of micron-scale particles including microplastics in human enclosed body fluids. J. Hazard. Mater. 2023, 442, 130138. [Google Scholar] [CrossRef] [PubMed]
- Karlsson, T.M.; Vethaak, A.D.; Almroth, B.C.; Ariese, F.; van Velzen, M.; Hassellöv, M.; Leslie, H.A. Screening for microplastics in sediment, water, marine invertebrates and fish: Method development and microplastic accumulation. Mar. Pollut. Bull. 2017, 122, 403–408. [Google Scholar] [CrossRef]
- Dümichen, E.; Eisentraut, P.; Bannick, C.G.; Barthel, A.-K.; Senz, R.; Braun, U. Fast identification of microplastics in complex environmental samples by a thermal degradation method. Chemosphere 2017, 174, 572–584. [Google Scholar] [CrossRef]
- Liu, K.; Pang, X.; Chen, H.; Jiang, L. Visual detection of microplastics using Raman spectroscopic imaging. Analyst 2024, 149, 161–168. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.-L.; Thomas, K.V.; Luo, Z.; Gowen, A.A. FTIR and Raman imaging for microplastics analysis: State of the art, challenges and prospects. TrAC Trends Anal. Chem. 2019, 119, 115629. [Google Scholar] [CrossRef]
- Boika, A.; Thorgaard, S.N.; Bard, A.J. Monitoring the electrophoretic migration and adsorption of single insulating nanoparticles at ultramicroelectrodes. J. Phys. Chem. B 2013, 117, 4371–4380. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; He, W.; Quast, T.; Junqueira, J.R.; Saddeler, S.; Schulz, S.; Schuhmann, W. Single-entity electrochemistry unveils dynamic transformation during tandem catalysis of Cu2O and Co3O4 for converting NO3− to NH3. Angew. Chem. Int. Ed. 2023, 62, e202214830. [Google Scholar] [CrossRef]
- Park, J.H.; Boika, A.; Park, H.S.; Lee, H.C.; Bard, A.J. Single collision events of conductive nanoparticles driven by migration. J. Phys. Chem. C 2013, 117, 6651–6657. [Google Scholar] [CrossRef]
- Nguyen, T.H.T.; Jeong, J.-E.; Kim, J.W.; Lee, J.Y.; Yang, H.; Woo, H.Y.; Kim, B.-K. Detection of polymeric entities through Single-Entity electrochemistry via electrocatalytic amplification. J. Electroanal. Chem. 2024, 957, 118102. [Google Scholar] [CrossRef]
- Yang, H.-j.; Kwon, H.; Kim, B.-K.; Park, J.H. Electrochemical detection of single attoliter aqueous droplets in electrolyte-free organic solvent via collision events. Electrochim. Acta 2019, 320, 134620. [Google Scholar] [CrossRef]
- Zhang, J.-H.; Zhou, Y.-G. Nano-impact electrochemistry: Analysis of single bioentities. TrAC Trends Anal. Chem. 2020, 123, 115768. [Google Scholar] [CrossRef]
- Barlow, S.T.; Zhang, B. Fast detection of single liposomes using a combined nanopore microelectrode sensor. Anal. Chem. 2020, 92, 11318–11324. [Google Scholar] [CrossRef]
- Xiao, X.; Bard, A.J. Observing single nanoparticle collisions at an ultramicroelectrode by electrocatalytic amplification. J. Am. Chem. Soc. 2007, 129, 9610–9612. [Google Scholar] [CrossRef] [PubMed]
- Kim, B.-K.; Boika, A.; Kim, J.; Dick, J.E.; Bard, A.J. Characterizing Emulsions by Observation of Single Droplet Collisions-Attoliter Electrochemical Reactors. J. Am. Chem. Soc. 2014, 136, 4849–4852. [Google Scholar] [CrossRef] [PubMed]
- Ma, H.; Chen, J.-F.; Wang, H.-F.; Hu, P.-J.; Ma, W.; Long, Y.-T. Exploring dynamic interactions of single nanoparticles at interfaces for surface-confined electrochemical behavior and size measurement. Nat. Commun. 2020, 11, 2307. [Google Scholar] [CrossRef]
- Haddou, B.; Rees, N.V.; Compton, R.G. Nanoparticle–electrode impacts: The oxidation of copper nanoparticles has slow kinetics. Phys. Chem. Chem. Phys. 2012, 14, 13612–13617. [Google Scholar] [CrossRef] [PubMed]
- Park, H.; Park, J.H. In situ monitoring of collision and recollision events of single attoliter droplets via single-entity electrochemistry. J. Phys. Chem. Lett. 2020, 11, 10250–10255. [Google Scholar] [CrossRef] [PubMed]
- Sabaragamuwe, S.G.; Conti, D.; Puri, S.R.; Andreu, I.; Kim, J. Single-entity electrochemistry of nanoemulsion: The nanostructural effect on its electrochemical behavior. Anal. Chem. 2019, 91, 9599–9607. [Google Scholar] [CrossRef]
- Thorgaard, S.N.; Jenkins, S.; Tarach, A.R. Influence of electroosmotic flow on stochastic collisions at ultramicroelectrodes. Anal. Chem. 2020, 92, 12663–12669. [Google Scholar] [CrossRef] [PubMed]
- Sepunaru, L.; Sokolov, S.V.; Holter, J.; Young, N.P.; Compton, R.G. Electrochemical red blood cell counting: One at a time. Angew. Chem. Int. Ed. 2016, 55, 9768–9771. [Google Scholar] [CrossRef] [PubMed]
- Bai, Y.-Y.; Wu, Z.; Xu, C.-M.; Zhang, L.; Feng, J.; Pang, D.-W.; Zhang, Z.-L. One-to-many single entity electrochemistry biosensing for ultrasensitive detection of microRNA. Anal. Chem. 2019, 92, 853–858. [Google Scholar] [CrossRef]
- Lee, J.Y.; Kim, B.-K.; Kang, M.; Park, J.H. Label-free detection of single living bacteria via electrochemical collision event. Sci. Rep. 2016, 6, 30022. [Google Scholar] [CrossRef] [PubMed]
- Kim, P.; Moon, H.; Lee, H.C.; Park, J.H. Electrochemical Detection of Single Aqueous Droplets in Organic Solvents via Pitting Collisions. Anal. Chem. 2024, 96, 4528–4534. [Google Scholar] [CrossRef]
- Moon, H.; Park, J.H. In situ probing liquid/liquid interfacial kinetics through single nanodroplet electrochemistry. Anal. Chem. 2021, 93, 16915–16921. [Google Scholar] [CrossRef]
Item | Plastic Type | Zeta Potential (mV) |
---|---|---|
Disposable storage container | Polystyrene | −40.4 |
Plastic cup | Polypropylene | −24.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, C.; Han, S.; Park, J.H. Electrochemical Detection of Microplastics in Water Using Ultramicroelectrodes. Chemosensors 2024, 12, 278. https://doi.org/10.3390/chemosensors12120278
Lee C, Han S, Park JH. Electrochemical Detection of Microplastics in Water Using Ultramicroelectrodes. Chemosensors. 2024; 12(12):278. https://doi.org/10.3390/chemosensors12120278
Chicago/Turabian StyleLee, Changhui, Sangwon Han, and Jun Hui Park. 2024. "Electrochemical Detection of Microplastics in Water Using Ultramicroelectrodes" Chemosensors 12, no. 12: 278. https://doi.org/10.3390/chemosensors12120278
APA StyleLee, C., Han, S., & Park, J. H. (2024). Electrochemical Detection of Microplastics in Water Using Ultramicroelectrodes. Chemosensors, 12(12), 278. https://doi.org/10.3390/chemosensors12120278