Effects of Different Processing Treatments on Almond (Prunus dulcis) Bioactive Compounds, Antioxidant Activities, Fatty Acids, and Sensorial Characteristics
"> Figure 1
<p>Spider plot of the sensory profile of raw (<b>A</b>), roasted (<b>B</b>) and blanched (<b>C</b>) almond kernles. Asterisks (*) indicate represent significant differences among cultivars <span class="html-italic">p</span> < 0.05, ANOVA Tukey’s test.</p> "> Figure 2
<p>Principal component analysis of bioactive compounds, antioxidant activities and fatty acids data from raw, roasted and blanched almond kernels: scores plot of the first and second principal components (<b>a</b>) showing the clustering of cultivars and treatments; loadings plot (<b>b</b>) reflecting the influence of parameters on the separation of samples.</p> ">
Abstract
:1. Introduction
2. Results and Discussion
2.1. Content of Bioactive Compounds in Almond Cultivars
2.2. Effects of Roasting and Blanching on the Content of Bioactive Compounds in Almond
2.3. Antioxidant Activities of Almond Raw Extracts
2.4. Effects of Roasting and Blanching on the Antioxidant Activities of Almond Extracts
2.5. Fatty Acid Composition of Almond Cultivars
2.6. Effects of Roasting and Blanching on the Fatty Acid Composition of Almonds
2.7. Health Lipid Indices of Almond Cultivars
2.8. Effects of Roasting and Blanching on Almond Health Lipid Indices
2.9. Sensorial Analysis of Raw Almond Samples
2.10. Effects of Roasting and Blanching on Sensory Characteristics of Almonds
2.11. Multivariate Analyses of Bioactive Compounds, Antioxidant Activities and Fatty Acids Data
3. Materials and Methods
3.1. Almond Samples and Processing Treatments
3.2. Bioactive Compounds: Total Phenolic and Total Flavonoid Contents
3.3. Antioxidant Activities
3.4. Fatty Acids
3.5. Sensorial Analysis
3.6. Statistical Analyses
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Rabadán, A.; Álvarez-Ortí, M.; Pardo, J. A comparison of the effect of genotype and weather conditions on the nutritional composition of most important commercial nuts. Sci. Horti. 2019, 244, 218–224. [Google Scholar] [CrossRef]
- Berryman, C.; Preston, A.; Karmally, W.; Deckelbaum, R.; Kris−Etherton, P. Effects of almond consumption on the reduction of LDL−cholesterol: A discussion of potential mechanisms and future research directions. Nutr. Rev. 2011, 69, 171–185. [Google Scholar] [CrossRef] [PubMed]
- Garrido, I.; Monagas, M.; Gómez−Cordovés, C.; Bartolomé, B. Polyphenols and antioxidant properties of almond skins: Influence of industrial processing. J. Food Sci. 2008, 73, C106–C115. [Google Scholar] [CrossRef] [PubMed]
- Gradziel, T.M. Origin and dissemination of almond. In Horticultural Reviews; Janick, J., Ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2011; pp. 23–81. [Google Scholar]
- Grundy, M.; Lapsley, K.; Ellis, P. A review of the impact of processing on nutrient bioaccessibility and digestion of almonds. Int. J. Food Sci. Technol. 2016, 51, 1937–1946. [Google Scholar] [CrossRef] [Green Version]
- Valdés, A.; Beltrán, A.; Karabagias, I.; Badeka, A.; Kontominas, M.; Garrigós, M. Monitoring the oxidative stability and volatiles in blanched, roasted and fried almonds under normal and accelerated storage conditions by DSC, thermogravimetric analysis and ATR-FTIR. Eur. J. Lipid Sci. Technol. 2015, 117, 1199–1213. [Google Scholar] [CrossRef]
- Severini, C.; Gomes, T.; de Pilli, T.; Romani, S.; Massini, R. Autoxidation of packed almonds as affected by Maillard reaction volatile compounds derived from roasting. J. Agric. Food Chem. 2000, 48, 4635–4640. [Google Scholar] [CrossRef]
- Alamprese, C.; Ratti, S.; Rossi, M. Effects of roasting conditions on hazelnut characteristics in a two-step process. J. Food Eng. 2009, 95, 272–279. [Google Scholar] [CrossRef]
- McClements, D.; Decker, E. Lı´pidos. In Fennema Quımica de los Alimentos, 3rd ed.; Samodaran, S., Parkin, K., Fennema, O., Eds.; Editorial Acribia: Zaragoza, Spain, 2010; pp. 155–214. [Google Scholar]
- Agila, A.; Barringer, S. Effect of roasting conditions on color and volatile profile including HMF level in sweet almonds (Prunus dulcis). J. Food Sci. 2012, 77, C461–C468. [Google Scholar] [CrossRef]
- Beyhan, Ö.; Aktas, M.; Yilmaz, N.; Simsek, N.; Gerçekçioglu, R. Determination of fatty acid compositions of some important almond (Prunus amygdalus L.) varieties selected from Tokat province and Eagean region of Turkey. J. Med. Plants Res. 2011, 5, 4907–4911. [Google Scholar]
- Zacheo, G.; Cappello, M.S.; Gallo, A.; Santino, A.; Cappello, A.R. Changes associated with postharvest ageing in almond seeds. LWT. Food Sci. Tech. 2000, 33, 415–423. [Google Scholar]
- Oliveira, I.; Meyer, A.; Afonso, S.; Ribeiro, C.; Gonçalves, B. Morphological, mechanical and antioxidant properties of Portuguese almond cultivars. J. Food Sci. Technol. 2018, 55, 467–478. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oliveira, I.; Malheiro, R.; Meyer, A.S.; Pereira, J.A.; Gonçalves, B. Application of chemometric tools for the comparison of volatile profile from raw and roasted regional and foreign almond cultivars (Prunus dulcis). J. Food Sci. Technol. 2019, 56, 3764–3776. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oliveira, I.; Meyer, A.S.; Afonso, S.; Aires, A.; Goufo, P.; Trindade, H.; Gonçalves, B. Phenolic and fatty acid profiles, α−tocopherol and sucrose contents, and antioxidant capacities of understudied Portuguese almond cultivars. J. Food Biochem. 2019, 43, e12887. [Google Scholar] [CrossRef] [PubMed]
- Cabrita, L.; Apostolova, H.; Neves, A.; Leitão, J. Genetic diversity assessment of the almond (Prunus dulcis (Mill.) D.A. Webb) traditional germplasm of Algarve, Portugal, using molecular markers. Plant Genet. Resour. 2014, 12, 164–167. [Google Scholar] [CrossRef]
- Barreira, J.; Ferreira, I.; Oliveira, M.; Pereira, J. Antioxidant activity and bioactive compounds of ten Portuguese regional and commercial almond cultivars. Food Chem. Toxicol. 2008, 46, 2230–2235. [Google Scholar] [CrossRef]
- Milbury, P.; Chen, C.; Dolnikowski, G.; Blumberg, J. Determination of flavonoids and phenolics and their distribution in almonds. J. Agric. Food Chem. 2006, 54, 5027–5033. [Google Scholar] [CrossRef]
- Yu, J.; Ahmedna, M.; Goktepe, I.; Dai, J. Peanut skin procyanidins: Composition and antioxidant activities as affected by processing. J. Food Compos. Anal. 2006, 19, 364–371. [Google Scholar] [CrossRef]
- Rohn, S.; Buchner, N.; Driemel, G.; Rauser, M.; Kroh, L.W. Thermal degradation of onion quercetin glucosides under roasting conditions. J. Agric. Food Chem. 2007, 55, 1568–1573. [Google Scholar] [CrossRef]
- Dewanto, V.; Wu, X.; Liu, R. Processed sweet corn has higher antioxidant activity. J. Agric. Food Chem. 2002, 50, 4959–4964. [Google Scholar] [CrossRef]
- Bolling, B.; McKay, D.; Blumberg, J. The phytochemical composition and antioxidant actions of tree nuts. Asia Pacific J. Clin. Nutr. 2010, 19, 117. [Google Scholar]
- Pereira, J.; Oliveira, I.; Sousa, A.; Ferreira, I.; Bento, A.; Estevinho, L. Bioactive properties and chemical composition of six walnut (Juglans regia L.) cultivars. Food Chem. Tox. 2008, 46, 2103–2111. [Google Scholar] [CrossRef] [PubMed]
- Jesus, F.; Gonçalves, A.; Alves, G.; Silva, L. Exploring the phenolic profile, antioxidant, antidiabetic and antihemolytic potential of Prunus avium, vegetal parts. Food Res. Int. 2019, 116, 600–610. [Google Scholar] [CrossRef] [PubMed]
- Tawaha, K.; Alali, F.Q.; Gharaibeh, M.; Mohammad, M.; El−Elimat, T. Antioxidant activity and total phenolic content of selected Jordanian plant species. Food Chem. 2007, 104, 1372–1378. [Google Scholar] [CrossRef]
- Singleton, V.; Rossi, J. Colorimetry of total phenolics with phosphomolybdic−phosphotungstic acid reagents. Am. J. Enology Vitic. 1965, 16, 144–158. [Google Scholar]
- Prior, R.L.; Wu, X.; Schaich, K. Standardized methods for the determination of antioxidant capacity and phenolics in foods and dietary supplements. J. Agric. Food Chem. 2005, 53, 4290–4302. [Google Scholar] [CrossRef] [PubMed]
- Čolić, S.; Akšić, M.; Lazarević, K.; Zec, G.; Gašić, U.; Zagorac, D.; Natić, M. Fatty acid and phenolic profiles of almond grown in Serbia. Food Chem. 2017, 234, 455–463. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kodad, O.; Socias i Company R. Variability of oil content and of major fatty acid composition in almond (Prunus amygdalus Batsch) and its relationship with kernel quality. J. Agric. Food Chem. 2008, 56, 4096–4101. [Google Scholar] [CrossRef]
- Kodad, O.; Estopanán, G.; Juan, T.; Alonso, J.M.; Espiau, M.T.; Socias i Company, R. Oil content, fatty acid composition and tocopherol concentration in the Spanish almond genebank collection. Sci. Hort. 2014, 177, 99–107. [Google Scholar] [CrossRef]
- Barreira, J.; Casal, S.; Ferreira, I.; Peres, A.; Pereira, J.; Oliveira, M. Supervised chemical pattern recognition in almond (Prunus dulcis) portuguese PDO cultivars: PCA-and LDA-based triennial study. J. Agric. Food Chem. 2012, 60, 9697–9704. [Google Scholar] [CrossRef]
- Rabadán, A.; Álvarez-Ortí, M.; Gómez, R.; Pardo–Giménez, A.; Pardo, J. Suitability of Spanish almond cultivars for the industrial production of almond oil and defatted flour. Scientia Hort. 2017, 225, 539–546. [Google Scholar] [CrossRef]
- Zamany, A.; Samadi, G.; Kim, D.; Keum, Y.; Saini, R. Comparative Study of Tocopherol Contents and Fatty Acids Composition in Twenty Almond Cultivars of Afghanistan. J. Am. Oil Chem. Soc. 2017, 94, 805–817. [Google Scholar] [CrossRef]
- Zhu, Y.; Wilkinson, K.; Wirthensohn, M. Lipophilic antioxidant content of almonds (Prunus dulcis): A regional and varietal study. J. Food Compos. Anal. 2015, 39, 120–127. [Google Scholar] [CrossRef]
- Askin, M.; Balta, M.; Tekintas, F.; Kazankaya, A.; Balta, F. Fatty acid composition affected by kernel weight in almond [Prunus dulcis (Mill.) DA Webb.] genetic resources. J. Food Compos. Anal. 2007, 20, 7–12. [Google Scholar] [CrossRef]
- Virtanen, J.; Mursu, J.; Voutilainen, S.; Uusitupa, M.; Tuomainen, T. Serum omega-3 polyunsaturated fatty acids and risk of incident type 2 diabetes in men: The Kuopio Ischemic Heart Disease Risk Factor study. Diabetes Care 2014, 37, 189–196. [Google Scholar] [CrossRef] [Green Version]
- Ghazzawi, H.A.; Al-Ismail, K. A comprehensive study on the effect of roasting and frying on fatty acids profiles and antioxidant capacity of almonds, pine, cashew, and pistachio. J. Food Quality 2017, 2017, 9038257. [Google Scholar] [CrossRef] [Green Version]
- Buranasompob, A.; Tang, J.; Powers, J.R.; Reyes, J.; Clark, S.; Swanson, B.G. Lipoxygenase activity in walnuts and almonds. LWT. Food Sci. Technol. 2007, 40, 893–899. [Google Scholar]
- Gama, T.; Wallace, H.; Trueman, S.; Hosseini−Bai, S. Quality and shelf life of tree nuts: A review. Sci. Hort. 2018, 242, 116–126. [Google Scholar] [CrossRef]
- Yada, S.; Lapsley, K.; Huang, G. A review of composition studies of cultivated almonds: Macronutrients and micronutrients. J. Food Compos. Analysis 2011, 24, 469–480. [Google Scholar] [CrossRef]
- Lin, J.T.; Liu, S.C.; Hu, C.C.; Shyu, Y.S.; Hsu, C.Y.; Yang, D.J. Effects of roasting temperature and duration on fatty acid composition, phenolic composition, Maillard reaction degree and antioxidant attribute of almond (Prunus dulcis) kernel. Food Chem. 2016, 190, 520–528. [Google Scholar] [CrossRef]
- Schlörmann, W.; Birringer, M.; Böhm, V.; Löber, K.; Jahreis, G.; Lorkowski, S.; Müller, A.; Schöne, F.; Glei, M. Influence of roasting conditions on health−related compounds in different nuts. Food Chem. 2015, 180, 77–85. [Google Scholar] [CrossRef]
- Hojjati, M.; Lipan, L.; Carbonell−Barrachina, Á.A. Effect of roasting on physicochemical properties of wild almonds (Amygdalus scoparia). J. Am. Oil Chem. Soc. 2016, 93, 1211–1220. [Google Scholar] [CrossRef]
- Ghafoor, K.; Al-Juhaimi, F.; Geçgel, Ü.; Babiker, E.E.; Özcan, M.M. Influence of Roasting on Oil Content, Bioactive Components of Different Walnut Kernel. J. Oleo Sci. 2020, 69, 423–428. [Google Scholar] [CrossRef] [PubMed]
- Čolić, S.; Zec, G.; Natić, M.; Fotirić−Akšić, M. Almond (Prunus dulcis) oil. In Fruit Oils: Chemistry and Functionality; Ramadan, M., Ed.; Springer: Berlin/Heidelberg, Germany, 2019; pp. 149–180. [Google Scholar]
- Fokou, E.; Achul, M.; Kanscil, G.; Ponkal, R.; Fotso, M.; Techouanguep, F. Chemical properties of some cucurbitacease oils from Cameroon. Pak. J. Nut. 2009, 8, 1325–1334. [Google Scholar] [CrossRef] [Green Version]
- Ulbricht, T.L.V.; Southgate, D.A.T. Coronary heart disease: Seven dietary factors. Lancet 1991, 338, 985–992. [Google Scholar] [CrossRef]
- Santos−Silva, J.; Bessa, R.J.B.; Santos−Silva, F. Effect of genotype, feeding system and slaughter weight on the quality of light lambs: II. Fatty acid composition of meat. Livest. Prod. Sci. 2002, 77, 187–194. [Google Scholar] [CrossRef]
- Civille, G.V.; Lapsley, K.; Huang, G.; Yada, S.; Seltsam, J. Development of an almond lexicon to assess the sensory properties of almond varieties. J. Sens. Stud. 2010, 25, 146–162. [Google Scholar] [CrossRef]
- Franklin, L.M.; Mitchell, A.E. Review of the Sensory and Chemical Characteristics of Almond (Prunus dulcis) Flavor. J. Agric. Food Chem. 2019, 67, 2743–2753. [Google Scholar] [CrossRef] [Green Version]
- Erten, E.; Cadwallader, K. Identification of predominant aroma components of raw, dry roasted and oil roasted almonds. Food Chem. 2017, 217, 244–253. [Google Scholar] [CrossRef]
- Vázquez−Araújo, L.; Verdú, A.; Navarro, P.; Martínez−Sánchez, F.; Carbonell−Barrachina, Á.A. Changes in volatile compounds and sensory quality during toasting of Spanish almonds. Int. J. Food Sci. Technol. 2009, 44, 2225–2233. [Google Scholar] [CrossRef]
- Xiao, L.; Lee, J.; Zhang, G.; Ebeler, S.E.; Wickramasinghe, N.; Seiber, J.; Mitchell, A.E. HS-SPME GC/MS characterization of volatiles in raw and dry-roasted almonds (Prunus dulcis). Food Chem. 2014, 151, 31–39. [Google Scholar] [CrossRef] [Green Version]
- Vickers, Z.; Peck, A.; Labuza, T.; Huang, G. Impact of almond form and moisture content on texture attributes and acceptability. J. Food Sci. 2014, 79, S1399–S1406. [Google Scholar] [CrossRef] [PubMed]
- Cheely, A.N.; Pegg, R.B.; Kerr, W.L.; Swanson, R.B.; Huang, G.; Parrish, D.R.; Kerrihard, A.L. Modeling sensory and instrumental texture changes of dry-roasted almonds under different storage conditions. LWT 2018, 91, 498–504. [Google Scholar] [CrossRef]
- King, E.S.; Chapman, D.M.; Luo, K.; Ferris, S.; Huang, G.; Mitchell, A.E. Defining the Sensory Profiles of Raw Almond (Prunus dulcis) Varieties and the Contribution of Key Chemical Compounds and Physical Properties. J. Agric. Food Chem. 2019, 67, 3229–3241. [Google Scholar] [CrossRef] [Green Version]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice−Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Rad. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Siddhraju, P.; Becker, K. Antioxidant properties of various solvents extracts of total phenolic constituents from three different agroclimatic origins of drumstick tree (Moringa oleifera Lam) leaves. J. Agric. Food Chem. 2003, 51, 2144–2155. [Google Scholar] [CrossRef]
- Salleh, W.; Ahmad, F.; Yen, K.; Sirat, H. Chemical compositions, antioxidant and antimicrobial activity of the essential oils of Piper officinarum (Piperaceae). Nat. Prod. Commun. 2003, 7, 1659–1662. [Google Scholar] [CrossRef] [Green Version]
- EEC European Commision. EU Official Method (EEC Regulation 2568/91, Corresponding to AOCS Method Ch 2-91); European Commision: Brussels, Belgium, 1991. [Google Scholar]
Cultivar | Raw | Roasted | Blanched | p Value | |
---|---|---|---|---|---|
Phenolics (mg GAE/g FW) | Casanova | 0.09B a,b | 0.49A b | 0.04B b | 0.001 |
Ferragnès | 0.06B b | 0.58A b | 0.05B a,b | 0.001 | |
Glorieta | 0.05B b | 1.33A a,b | 0.01B c | 0.000 | |
Molar | 0.09B a,b | 1.16A a,b | 0.02C b,c | 0.007 | |
Pegarinhos | 0.19B a B | 0.88A a,b | 0.08C a | 0.003 | |
Refêgo | 0.02B b | 2.66A a | 0.01C c | 0.013 | |
p value | 0.002 | 0.019 | 0.023 | ||
Flavonoids (mg CE/g FW) | Casanova | 0.76A b,c | 1.23A a | 0.09B | 0.002 |
Ferragnès | 0.59A c | 0.85A a,b | 0.16B | 0.033 | |
Glorieta | 0.77A b,c | 0.62A a,b | 0.08B | 0.020 | |
Molar | 1.38A a,b | 0.58A b | 0.06C | 0.000 | |
Pegarinhos | 0.35A c | 0.44A b | 0.14B | 0.000 | |
Refêgo | 1.86A a | 0.53A b | 0.11B | 0.001 | |
p value | 0.000 | 0.014 | 0.578 | ||
DPPH (µg Trolox/g) | Casanova | 4.02B b | 9.48A b | 0.48C a,b | 0.000 |
Ferragnès | 2.82B c | 12.96A a | 0.42C b | 0.001 | |
Glorieta | 1.54B d | 4.86A b | 0.70C a | 0.016 | |
Molar | 3.37A b,c | 4.51A b | 0.49B a,b | 0.016 | |
Pegarinhos | 6.42A a | 7.60A b | 0.64B a | 0.004 | |
Refêgo | 1.01A d | 0.33B c | 0.01C c | 0.000 | |
p value | 0.000 | 0.000 | 0.014 | ||
ABTS (µg Trolox/g) | Casanova | 8.81B a,b | 13.96A a | 0.47C b | 0.000 |
Ferragnès | 5.07B c,d | 14.23A a | 0.56C a,b | 0.000 | |
Glorieta | 2.51B d,e | 8.92A b | 0.44C b | 0.000 | |
Molar | 7.27A b,c | 8.05A b | 0.52B a,b | 0.000 | |
Pegarinhos | 11.59A a | 11.14A a,b | 0.68B a | 0.000 | |
Refêgo | 1.56A e | 2.64A c | 0.41B b | 0.009 | |
p value | 0.000 | 0.000 | 0.004 | ||
ß carotene bleaching assay (% inhibition) | Casanova | 92.77A a,b | 78.50B | 71.41C | 0.000 |
Ferragnès | 95.85A a,b | 78.25B | 70.79C | 0.000 | |
Glorieta | 96.22A a | 80.65B | 67.16C | 0.000 | |
Molar | 88.60A b,c | 76.08B | 69.75C | 0.005 | |
Pegarinhos | 84.89A 6c | 71.33B | 62.265C | 0.000 | |
Refêgo | 89.62A b,c | 80.77A | 67.91B | 0.005 | |
p value | 0.001 | 0.119 | 0.157 |
Cultivar | Casanova | Ferragnès | Glorieta | Molar | Pegarinhos | Refêgo | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Raw | Roasted | Blanched | Raw | Roasted | Blanched | Raw | Roasted | Blanched | Raw | Roasted | Blanched | Raw | Roasted | Blanched | Raw | Roasted | Blanched | |
Palmitic | 6.94A a | 2.32B c | 6.27A a | 3.93A c | 3.02AB c | 2.71B c | 2.92c | 2.52c | 2.96c | 2.63B c | 4.95A b | 2.79B c | 6.54A ab | 2.14C c | 3.57B bc | 5.45B b | 7.10A a | 4.04C b |
Stearic | 0.132A a | n.d. | 0.071B bc | n.d. | n.d. | 0.36a | 0.13a | n.d. | 0.259ab | 0.03B c | n.d. | 0.33A a | 0.11C b | 0.17B a | 0.23A ab | n.d. | 0.09b | n.d. |
Elaidic + Oleic | 70.02A ab | 34.05B d | 68.26A a | 61.51A c | 48.28B b | 45.97B c | 77.03A a | 40.86C c | 54.11B b | 65.08A bc | 50.06B b | 40.64C d | 65.90A bc | 26.87C e | 42.67B cd | 66.07B bc | 82.19A a | 52.17C b |
Linoleic + Linolelaidic | 13.54A ab | 3.04B b | 0.15C e | 8.89A b | n.d. | 1.05B a | 10.34B ab | 2.86C b | 0.84A b | 13.09A ab | 0.36B c | 0.54B cd | 14.18A a | 3.53B a | 0.41C d | 1.08A c | 0.26C c | 0.59B c |
γ-Linolenic | 0.17B | 0.52A b | n.d. | 0.104B | 0.52B b | 3.31A a | 0.096C | 0.75B a | 2.31A b | 0.08C | 0.88B a | 2.32A b | 0.12C | 0.48B b | 1.66A c | n.d. | n.d. | 0.943d |
α-Linolenic | 4.14C cd | 33.89A b | 18.89B b | 4.99C bc | 33.54A b | 9.94B c | 4.72B bc | 32.73A b | 6.18B cd | 1.92B d | 30.59A b | 2.48B d | 6.74C b | 46.97A a | 23.85B a | 16.21A a | 4.77B c | 6.10B cd |
cis-11,14-Eicosadienoic | n.d. | 0.33b | n.d. | n.d. | n.d. | 1.39a | n.d. | 0.49B a | 0.67A b | n.d. | n.d. | 0.97b | n.d. | 0.40B ab | 0.67A b | n.d. | n.d. | 0.69b |
cis-8,11,14-Eicosatrienoic | n.d. | n.d. | 0.10e | n.d. | n.d. | 0.64c | n.d. | n.d. | 1.42a | n.d. | 0.27B b | 0.83A b | n.d. | 0.58A a | 0.37B d | n.d. | n.d. | 0.32d |
cis-5,8,11,14,17-Eicosapentaenoic | n.d. | n.d. | 0.10d | n.d. | n.d. | 0.35c | n.d. | n.d. | 0.79a | n.d. | 0.29B b | 0.62A ab | n.d. | 0.48a | 0.42bc | n.d. | n.d. | 0.30cd |
Erucic | 1.97B ab | 5.64A a | 2.25B d | 2.72B a | 3.62B b | 7.34A b | 0.98B cd | 5.73A a | 5.73A c | 0.51C d | 3.44B b | 9.35A a | 1.41C bc | 4.29B ab | 5.81C c | 2.47B a | 2.59B b | 6.32A bc |
Nervonic | 0.71B d | 5.58A a | 0.73B c | 4.26A a | 4.77A ab | 3.31C b | 1.06C c | 4.18B bc | 6.22A a | 0.47C d | 3.36B c | 5.52A a | 1.20C c | 3.70B bc | 5.18A a | 2.31B b | 0.69C d | 5.29A a |
Cultivar | Casanova | Ferragnès | Glorieta | Molar | Pegarinhos | Refêgo | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Raw | Roasted | Blanched | Raw | Roasted | Blanched | Raw | Roasted | Blanched | Raw | Roasted | Blanched | Raw | Roasted | Blanched | Raw | Roasted | Blanched | |
SFA | 8.01B c | 9.95A a | 7.68B d | 12.18A b | 5.19C d | 10.53B b | 4.36C d | 6.67B c | 9.04A c | 18.04A a | 6.55C c | 11.04B b | 8.78A c | 6.14B cd | 8.74A cd | 9.24B c | 8.07C a | 12.62A a |
MUFA | 70.73A ab | 41.71B c | 69.19A a | 66.41A b | 54.03B b | 51.63B c | 78.09A a | 46.05C c | 61.59B b | 65.58A b | 54.33B b | 47.56C d | 67.41A b | 31.55C d | 50.45B cd | 68.58B b | 82.88A a | 61.32C b |
PUFA | 21.26B abc | 48.34A b | 23.14B c | 20.88C abc | 40.78A cd | 37.84B a | 17.55C bc | 47.28A bc | 29.36B b | 16.37C c | 39.12B d | 41.39A a | 23.81C a | 62.1A a | 40.80B a | 22.17B ab | 9.04C e | 26.06A bc |
PUFA/MUFA | 0.30B ab | 1.18A b | 0.34B d | 0.32B ab | 0.76A c | 0.733A b | 0.225C b | 1.03A bc | 0.476B c | 0.25C ab | 0.72B c | 0.872A a | 0.35C a | 1.98A a | 0.81B ab | 0.32B ab | 0.11C d | 0.425A cd |
UFA/SFA | 11.60A b | 9.05B d | 12.02A a | 7.17C c | 18.38A a | 8.51B c | 21.96A a | 14.07B bc | 10.08C b | 4.57C d | 14.38A bc | 8.07B cd | 10.39B b | 15.28A ab | 10.47B b | 9.85B b | 11.39A cd | 6.929C d |
AI | 0.17A b | 0.02C b | 0.14A a | 0.09A b | 0.04B b | 0.04B c | 0.09A b | 0.03B b | 0.06A bc | 0.73A a | 0.06B b | 0.04B c | 0.14A b | 0.01C b | 0.05B c | 0.13B b | 0.43A a | 0.08C b |
TI | 0.11A b | 0.01C c | 0.04B ab | 0.06A c | 0.02B c | 0.03B b | 0.05A c | 0.02B c | 0.04A b | 0.16A a | 0.03B b | 0.03B b | 0.09A b | 0.01C c | 0.03B b | 0.05B c | 0.09A a | 0.05B a |
hH | 13.19B cd | 34.22A ab | 14.45B b | 19.12b B | 29.39b A | 27.31A a | 32.03A a | 34.02A ab | 27.29B a | 9.08C d | 17.83B c | 24.82A ab | 13.56C cd | 39.91A a | 22.38B ab | 15.91B bc | 12.70C c | 18.46A ab |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oliveira, I.; Meyer, A.S.; Afonso, S.; Sequeira, A.; Vilela, A.; Goufo, P.; Trindade, H.; Gonçalves, B. Effects of Different Processing Treatments on Almond (Prunus dulcis) Bioactive Compounds, Antioxidant Activities, Fatty Acids, and Sensorial Characteristics. Plants 2020, 9, 1627. https://doi.org/10.3390/plants9111627
Oliveira I, Meyer AS, Afonso S, Sequeira A, Vilela A, Goufo P, Trindade H, Gonçalves B. Effects of Different Processing Treatments on Almond (Prunus dulcis) Bioactive Compounds, Antioxidant Activities, Fatty Acids, and Sensorial Characteristics. Plants. 2020; 9(11):1627. https://doi.org/10.3390/plants9111627
Chicago/Turabian StyleOliveira, Ivo, Anne S. Meyer, Sílvia Afonso, Alex Sequeira, Alice Vilela, Piebiep Goufo, Henrique Trindade, and Berta Gonçalves. 2020. "Effects of Different Processing Treatments on Almond (Prunus dulcis) Bioactive Compounds, Antioxidant Activities, Fatty Acids, and Sensorial Characteristics" Plants 9, no. 11: 1627. https://doi.org/10.3390/plants9111627
APA StyleOliveira, I., Meyer, A. S., Afonso, S., Sequeira, A., Vilela, A., Goufo, P., Trindade, H., & Gonçalves, B. (2020). Effects of Different Processing Treatments on Almond (Prunus dulcis) Bioactive Compounds, Antioxidant Activities, Fatty Acids, and Sensorial Characteristics. Plants, 9(11), 1627. https://doi.org/10.3390/plants9111627