Vegetation Dynamics and Recovery Potential in Arid and Semi-Arid Northwest China
<p>Trend of vegetation greening in northwest China during 1982–2019: (<b>a</b>), spatial distribution map of multi-year average satellite-observed NDVI; (<b>b</b>), annual variation in NDVI; (<b>c</b>), spatial distribution of multi-year average LPJ-simulated NDVI; (<b>d</b>), annual variation in NDVI.</p> "> Figure 1 Cont.
<p>Trend of vegetation greening in northwest China during 1982–2019: (<b>a</b>), spatial distribution map of multi-year average satellite-observed NDVI; (<b>b</b>), annual variation in NDVI; (<b>c</b>), spatial distribution of multi-year average LPJ-simulated NDVI; (<b>d</b>), annual variation in NDVI.</p> "> Figure 2
<p>Changing trends of satellite-observed NDVI and LPJ-simulated NDVI in northwest China from 1982 to 2019. ((<b>a</b>), satellite-observed NDVI 1982–2019; (<b>b</b>), LPJ simulated NDV 1982–2019; (<b>c</b>), satellite-observed NDVI 1982–2000; (<b>d</b>), LPJ simulated NDVI 1982–2000; (<b>e</b>), satellite-observed NDVI 2000–2019; (<b>f</b>), LPJ simulated NDVI 2000-2019).</p> "> Figure 3
<p>Spatial distribution map of satellite-observed vegetation coverage in 1982 (<b>a</b>), 2000 (<b>b</b>), and 2019 (<b>c</b>).</p> "> Figure 4
<p>Current vegetation cover, maximum recovery cover, and natural vegetation restoration potential index in northwest China from 1982 to 2019 based on satellite-observed data and LPJ simulated data. ((<b>a</b>), satellite-observed Current; (<b>b</b>), LPJ simulated Current; (<b>c</b>), satellite-observed maximum; (<b>d</b>), LPJ simulated maximum; (<b>e</b>), satellite-observed Ivcp; (<b>f</b>), LPJ simulated lvcp).</p> "> Figure 5
<p>Atlas of grassland resources in northwest China.</p> "> Figure 6
<p>Vegetation restoration potential indices under different grassland types simulated by satellite observation (<b>left</b>) and the LPJ model (<b>right</b>).</p> "> Figure 7
<p>Differences in vegetation restoration potential index between LPJ-simulated maximum recovery cover and satellite-observed current vegetation cover in northwest China from 1982 to 2019.</p> "> Figure 8
<p>Spatial distribution of station-measured annual mean temperature (<b>a</b>) and precipitation (<b>b</b>) in northwest China during 1961 to 2019.</p> "> Figure 9
<p>Changes in Standardized Precipitation Evapotranspiration Index (SPEI) at 12-month scale in northwest China from 1961 to 2019.</p> "> Figure 10
<p>(<b>a</b>,<b>b</b>) represent the correlation and significance between NDVI and SPEI-12 in northwest China from 1982 to 2019; (<b>c</b>,<b>d</b>) represent the correlation and significance between FVC and SPEI-12 in northwest China from 1982 to 2019.</p> "> Figure 11
<p>Temporal changes in peak vegetation cover in northwest China, 1982–2019 ((<b>a</b>), satellite observation data; (<b>b</b>), LPJ model simulation).</p> "> Figure 12
<p>Spatial variation in maximum fractional vegetation cover (FVC) in northwest China from 1982 to 2019 using satellite-observed data ((<b>a</b>), 1982–1990; (<b>b</b>), 1991–1999; (<b>c</b>), 2000–2009; (<b>d</b>), 2010–2019).</p> "> Figure 13
<p>Spatial variation in maximum fractional vegetation cover (FVC) in northwest China from 1982 to 2019 using LPJ model simulation ((<b>a</b>), 1982–1990; (<b>b</b>), 1991–1999; (<b>c</b>), 2000–2009; (<b>d</b>), 2010–2019).</p> "> Figure 13 Cont.
<p>Spatial variation in maximum fractional vegetation cover (FVC) in northwest China from 1982 to 2019 using LPJ model simulation ((<b>a</b>), 1982–1990; (<b>b</b>), 1991–1999; (<b>c</b>), 2000–2009; (<b>d</b>), 2010–2019).</p> "> Figure 14
<p>Study area (<b>a</b>) and distribution map of land use (<b>b</b>). Note: this study used the national standard map of China, with the Map Approval Number China_GS (2020)4619 without any modifications.</p> ">
Abstract
:1. Introduction
2. Results
2.1. Climate-Driven Vegetation Dynamics in Northwest China
2.2. Evolution of Vegetation Restoration Potential in Northwest China
2.3. Response of Vegetation Restoration Potential to Climate Warming and Humidification
3. Discussion
3.1. Characteristics of Vegetation Greening in Northwest China
3.2. Dynamic Response of Vegetation Recovery Potential to Climate Change in Northwest China
4. Materials and Methods
4.1. Study Area
4.2. Data Collection and Processing
4.2.1. Vegetation Data
4.2.2. Meteorological Data
4.2.3. SPEI Drought Index Data
4.3. Model and Methodology
4.3.1. LPJ Model
4.3.2. Vegetation Restoration Potential Methodology
4.3.3. Model for Calculating the Vegetation Restoration Potential Index
4.3.4. Mann–Kendall Trend Test
5. Conclusions
- (1)
- The vegetation cover in northwest China has shown a significant increase from 1982 to 2019, with notable concentrations in northeastern Inner Mongolia, northwestern Xinjiang, eastern and southern Qinghai, and southern Gansu. However, vast areas in central northwest China remain bare or covered with desert soil. The spread of vegetation into surrounding areas, attributed to increased precipitation resulting from the warming and humidification trend in northwest China, has contributed to an expansion of vegetation cover in the region.
- (2)
- The peak of vegetation cover in northwest China is significantly affected by climate warming and the trend of increasing humidity, and the vegetation recovery potential in northwest China is decreasing due to climate warming and increasing humidity. The overall vegetation recovery potential in northwest China is still limited, and the average value of the vegetation recovery potential index of northwest China obtained from the remote sensing data is 0.31, and there is still a 2.3% room for improvement in vegetation cover in this region.
- (3)
- The average value of the vegetation recovery potential index in northwest China obtained from the LPJ model data is 0.14, and there is a 1.1% room for improvement in vegetation cover in this region. The potential for vegetation recovery is higher in central and western Inner Mongolia, northwestern Qinghai, and parts of Xinjiang, while other areas, especially in the east and south, have less potential for vegetation recovery because the level of vegetation cover is already high.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Alkama, R.; Forzieri, G.; Duveiller, G.; Grassi, G.; Liang, S.; Cescatti, A. Vegetation-Based Climate Mitigation in a Warmer and Greener World. Nat. Commun. 2022, 13, 606. [Google Scholar] [CrossRef] [PubMed]
- Bastin, J.-F.; Finegold, Y.; Garcia, C.; Mollicone, D.; Rezende, M.; Routh, D.; Zohner, C.M.; Crowther, T.W. The Global Tree Restoration Potential. Science 2019, 365, 76–79. [Google Scholar] [CrossRef] [PubMed]
- Laughlin, D.C. Applying Trait-Based Models to Achieve Functional Targets for Theory-Driven Ecological Restoration. Ecol. Lett. 2014, 17, 771–784. [Google Scholar] [CrossRef] [PubMed]
- Lv, Z.; Li, S.; Fan, J.; Liu, G.; Wang, H.; Meng, X. Natural Restoration Potential of Vegetation in Mongolia. J. Desert Res. 2021, 41, 192. [Google Scholar]
- Yilmaz, F.C.; Zengin, M.; Tekin Cure, C. Determination of Ecologically Sensitive Areas in Denizli Province Using Geographic Information Systems (GIS) and Analytical Hierarchy Process (AHP). Environ. Monit. Assess. 2020, 192, 589. [Google Scholar] [CrossRef]
- Jucker Riva, M.; Daliakopoulos, I.N.; Eckert, S.; Hodel, E.; Liniger, H. Assessment of Land Degradation in Mediterranean Forests and Grazing Lands Using a Landscape Unit Approach and the Normalized Difference Vegetation Index. Appl. Geogr. 2017, 86, 8–21. [Google Scholar] [CrossRef]
- Arianoutsou, M.; Koukoulas, S.; Kazanis, D. Evaluating Post-Fire Forest Resilience Using GIS and Multi-Criteria Analysis: An Example from Cape Sounion National Park, Greece. Environ. Manag. 2011, 47, 384–397. [Google Scholar] [CrossRef]
- Xu, X.; Zhang, D.; Zhang, Y.; Yao, S.; Zhang, J. Evaluating the Vegetation Restoration Potential Achievement of Ecological Projects: A Case Study of Yan’an, China. Land Use Policy 2020, 90, 104293. [Google Scholar] [CrossRef]
- Reynolds, J.F.; Smith, D.M.S.; Lambin, E.F.; Turner, B.L.; Mortimore, M.; Batterbury, S.P.J.; Downing, T.E.; Dowlatabadi, H.; Fernández, R.J.; Herrick, J.E.; et al. Global Desertification: Building a Science for Dryland Development. Science 2007, 316, 847–851. [Google Scholar] [CrossRef]
- Zheng, W.; Guo, X.; Zhou, P.; Tang, L.; Lai, J.; Dai, Y.; Yan, W.; Wu, J. Vegetation Restoration Enhancing Soil Carbon Sequestration in Karst Rocky Desertification Ecosystems: A Meta-Analysis. J. Environ. Manag. 2024, 370, 122530. [Google Scholar] [CrossRef]
- Zhang, J.; Yang, T.; Deng, M.; Huang, H.; Han, Y.; Xu, H. Spatiotemporal variations and its driving factors of NDVI in Northwest China during 2000–2021. Environ. Sci. Pollut. Res. 2023, 30, 118782–118800. [Google Scholar] [CrossRef] [PubMed]
- Ludwig, J.A.; Tongway, D.J.; Bastin, G.N.; James, C.D. Monitoring Ecological Indicators of Rangeland Functional Integrity and Their Relation to Biodiversity at Local to Regional Scales. Austral Ecol. 2004, 29, 108–120. [Google Scholar] [CrossRef]
- Li, X.; Xia, K.; Wu, T.; Wang, S.; Tang, H.; Xiao, C.; Tang, H.; Xu, N.; Jia, D. Increased precipitation has not enhanced the carbon sequestration of afforestation in Northwest China. Commun. Earth Environ. 2024, 5, 619. [Google Scholar] [CrossRef]
- Zhu, B.; Zhang, Q.; Yang, J.-H.; Li, C.-H. Response of Potential Evapotranspiration to Warming and Wetting in Northwest China. Atmosphere 2022, 13, 353. [Google Scholar] [CrossRef]
- Sitch, S.; Smith, B.; Prentice, I.C.; Arneth, A.; Bondeau, A.; Cramer, W.; Kaplan, J.O.; Levis, S.; Lucht, W.; Sykes, M.T.; et al. Evaluation of Ecosystem Dynamics, Plant Geography and Terrestrial Carbon Cycling in the LPJ Dynamic Global Vegetation Model. Glob. Change Biol. 2003, 9, 161–185. [Google Scholar] [CrossRef]
- Xia, Y.Q.; Shao, M.A. Soil Water Carrying Capacity for Vegetation: A Hydrologic and Biogeochemical Process Model Solution. Ecol. Model. 2008, 214, 112–124. [Google Scholar] [CrossRef]
- Han, Q.; Zhang, J.; Shi, X.; Zhou, D.; Ding, Y.; Peng, S. Ecological Function-Oriented Vegetation Protection and Restoration Strategies in China’s Loess Plateau. J. Environ. Manag. 2022, 323, 116290. [Google Scholar] [CrossRef]
- Li, T.; Lü, Y.; Fu, B.; Comber, A.J.; Harris, P.; Wu, L. Gauging Policy-Driven Large-Scale Vegetation Restoration Programmes under a Changing Environment: Their Effectiveness and Socio-Economic Relationships. Sci. Total Environ. 2017, 607–608, 911–919. [Google Scholar] [CrossRef]
- Gao, H.; Pang, G.; Li, Z.; Cheng, S. Evaluating the Potential of Vegetation Restoration in the Loess Plateau. Acta Geogr. Sin. 2017, 72, 863–874. [Google Scholar] [CrossRef]
- Zhang, D.; Xu, X.; Yao, S.; Zhang, J.; Hou, X.; Yin, R. A Novel Similar Habitat Potential Model Based on Sliding-window Technique for Vegetation Restoration Potential Mapping. Land Degrad. Dev. 2020, 31, 760–772. [Google Scholar] [CrossRef]
- Zhou, S.; Duan, Y.; Zhang, Y.; Guo, J. Vegetation Dynamics of Coal Mining City in an Arid Desert Region of Northwest China from 2000 to 2019. J. Arid. Land 2021, 13, 534–547. [Google Scholar] [CrossRef]
- Duan, H.; Hou, W.; Wu, H.; Feng, T.; Yan, P. Evolution Characteristics of Sand-Dust Weather Processes in China During 1961–2020. Front. Environ. Sci. 2022, 10, 820452. [Google Scholar] [CrossRef]
- Sun, Q.; Miao, C.; Duan, Q. Projected Changes in Temperature and Precipitation in Ten River Basins over China in 21st Century. Int. J. Climatol. 2015, 35, 1125–1141. [Google Scholar] [CrossRef]
- Wang, J.; Xie, Y.; Wang, X.; Guo, K. Driving Factors of Recent Vegetation Changes in Hexi Region, Northwest China Based on a New Classification Framework. Remote Sens. 2020, 12, 1758. [Google Scholar] [CrossRef]
- Gong, X.; Du, S.; Li, F.; Ding, Y. Study of Mesoscale NDVI Prediction Models in Arid and Semiarid Regions of China under Changing Environments. Ecol. Indic. 2021, 131, 108198. [Google Scholar] [CrossRef]
- Ma, F.; Jiang, Q.; Xu, L.; Lv, K.; Chang, G. Processes, Potential, and Duration of Vegetation Restoration under Different Modes in the Eastern Margin Ecotone of Qinghai-Tibet Plateau. Ecol. Indic. 2021, 132, 108267. [Google Scholar] [CrossRef]
- Gu, F.; Xu, G.; Wang, B.; Jia, L.; Xu, M. Vegetation Cover Change and Restoration Potential in the Ziwuling Forest Region, China. Ecol. Eng. 2023, 187, 106877. [Google Scholar] [CrossRef]
- Xiongyi, Z.; Quanqin, S.; Jia, N.; Xueqing, Y.; Guoli, G.; Guobo, L.I.U. Effect of Vegetation Restoration on Soil Wind Erosion and Vegetation Restoration Potential in The Three-North Afforestation Program. J. Geo-Inf. Sci. 2022, 24, 2153–2170. [Google Scholar] [CrossRef]
- Deng, H.; Tang, Q.; Yun, X.; Tang, Y.; Liu, X.; Xu, X.; Sun, S.; Zhao, G.; Zhang, Y.; Zhang, Y. Wetting Trend in Northwest China Reversed by Warmer Temperature and Drier Air. J. Hydrol. 2022, 613, 128435. [Google Scholar] [CrossRef]
- Hu, Y.; Tian, Q.; Zhang, J.; Benoy, G.; Badreldin, N.; Xing, Z.; Luo, Z.; Zhang, F. Effectiveness of Chinese Pine (Pinus Tabulaeformis) Plantation at Reducing Runoff and Erosion Rates in Anjiagou Watershed in Semi-Arid Region of Gansu, China. PLoS ONE 2022, 17, e0271200. [Google Scholar] [CrossRef]
- Zhang, T.; Wang, H. Trend Patterns of Vegetative Coverage and Their Underlying Causes in the Deserts of Northwest China over 1982–2008. PLoS ONE 2015, 10, e0126044. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.; Shen, Y.; Kang, E.; Li, D.; Ding, Y.; Zhang, G.; Hu, R. Recent and Future Climate Change in Northwest China. Clim. Change 2007, 80, 379–393. [Google Scholar] [CrossRef]
- Li, B.; Chen, Y.; Shi, X. Why Does the Temperature Rise Faster in the Arid Region of Northwest China? J. Geophys. Res. Atmos. 2012, 117, 16115. [Google Scholar] [CrossRef]
- Bayarjargal, Y.; Karnieli, A.; Bayasgalan, M.; Khudulmur, S.; Gandush, C.; Tucker, C.J. A Comparative Study of NOAA–AVHRR Derived Drought Indices Using Change Vector Analysis. Remote Sens. Environ. 2006, 105, 9–22. [Google Scholar] [CrossRef]
- Zhao, W.; Jing, C. Response of the Natural Grassland Vegetation Change to Meteorological Drought in Xinjiang from 1982 to 2015. Front. Environ. Sci. 2022, 10, 1047818. [Google Scholar] [CrossRef]
- Zhao, H.-Y.; Jun-Qin, G.; Cun-Jie, Z.; Lan-Dong, S.; Xu-Dong, Z.; Jing-Jing, L.; You-Heng, W.; Feng, F.; Peng-Li, M.; Cai-Hong, L.; et al. Climate Change Impacts and Adaptation Strategies in Northwest China. Adv. Clim. Change Res. 2014, 5, 7–16. [Google Scholar] [CrossRef]
- Yang, S.; Liu, J.; Wang, C.; Zhang, T.; Dong, X.; Liu, Y. Vegetation Dynamics Influenced by Climate Change and Human Activities in the Hanjiang River Basin, Central China. Ecol. Indic. 2022, 145, 109586. [Google Scholar] [CrossRef]
- Bai, B.; Yue, P.; Zhang, Q.; Yang, J.; Ma, P.; Han, T.; Jiang, Y.; Huang, P.; Ma, Y. Changing Characteristics of Ecosystem and Water Storage under the Background of Warming and Humidification in the Qilian Mountains, China. Sci. Total Environ. 2023, 893, 164959. [Google Scholar] [CrossRef]
- Yang, B.; Gong, J.; Zhang, Z.; Wang, B.; Zhu, C.; Shi, J.; Liu, M.; Liu, Y.; Li, X. Stabilization of Carbon Sequestration in a Chinese Desert Steppe Benefits from Increased Temperatures and from Precipitation Outside the Growing Season. Sci. Total Environ. 2019, 691, 263–277. [Google Scholar] [CrossRef]
- Guo, W.; Huang, S.; Huang, Q.; She, D.; Shi, H.; Leng, G.; Li, J.; Cheng, L.; Gao, Y.; Peng, J. Precipitation and Vegetation Transpiration Variations Dominate the Dynamics of Agricultural Drought Characteristics in China. Sci. Total Environ. 2023, 898, 165480. [Google Scholar] [CrossRef]
- Miles, E.; McCarthy, M.; Dehecq, A.; Kneib, M.; Fugger, S.; Pellicciotti, F. Health and Sustainability of Glaciers in High Mountain Asia. Nat. Commun. 2021, 12, 2868. [Google Scholar] [CrossRef] [PubMed]
- Maina, F.Z.; Kumar, S.V.; Albergel, C.; Mahanama, S.P. Warming, increase in precipitation, and irrigation enhance greening in High Mountain Asia. Commun. Earth Environ. 2022, 3, 43. [Google Scholar] [CrossRef]
- Wang, J.; You, Z.; Song, P.; Fang, Z. Rainfall’s Impact on Agricultural Production and Government Poverty Reduction Efficiency in China. Sci. Rep. 2024, 14, 9320. [Google Scholar] [CrossRef] [PubMed]
- Sun, F.; Li, Y.; Chen, Y.; Fang, G.; Duan, W.; Li, B.; Li, Z.; Hao, X.; Yang, Y.; Zhang, X. The Dominant Warming Season Shifted from Winter to Spring in the Arid Region of Northwest China. npj Clim. Atmos. Sci. 2024, 7, 178. [Google Scholar] [CrossRef]
- Zhang, R.; Ouyang, Z.-T.; Xie, X.; Guo, H.-Q.; Tan, D.-Y.; Xiao, X.-M.; Qi, J.-G.; Zhao, B. Impact of Climate Change on Vegetation Growth in Arid Northwest of China from 1982 to 2011. Remote Sens. 2016, 8, 364. [Google Scholar] [CrossRef]
- Yang, J.; Zhang, Q.; Lu, G.; Liu, X.; Wang, Y.; Wang, D.; Liu, W.; Yue, P.; Zhu, B.; Duan, X. Climate Transition from Warm-Dry to Warm-Wet in Eastern Northwest China. Atmosphere 2021, 12, 548. [Google Scholar] [CrossRef]
- Rantanen, M.; Karpechko, A.Y.; Lipponen, A.; Nordling, K.; Hyvärinen, O.; Ruosteenoja, K.; Vihma, T.; Laaksonen, A. The Arctic Has Warmed Nearly Four Times Faster than the Globe since 1979. Commun. Earth Environ. 2022, 3, 168. [Google Scholar] [CrossRef]
- Luo, M.; Ning, G.; Xu, F.; Wang, S.; Liu, Z.; Yang, Y. Observed Heatwave Changes in Arid Northwest China: Physical Mechanism and Long-Term Trend. Atmos. Res. 2020, 242, 105009. [Google Scholar] [CrossRef]
- Ren, Y.; Yu, H.; Liu, C.; He, Y.; Huang, J.; Zhang, L.; Hu, H.; Zhang, Q.; Chen, S.; Liu, X.; et al. Attribution of Dry and Wet Climatic Changes over Central Asia. J. Clim. 2022, 35, 1399–1421. [Google Scholar] [CrossRef]
- Zhang, H.; Hu, Z.; Zhang, Z.; Li, Y.; Song, S.; Chen, X. How Does Vegetation Change under the Warm–Wet Tendency across Xinjiang, China? Int. J. Appl. Earth Obs. Geoinf. 2024, 127, 103664. [Google Scholar] [CrossRef]
- Shi, Y.; Cai, Y.; Zhao, M. Social Interaction Effect of Rotational Grazing and Its Policy Implications for Sustainable Use of Grassland: Evidence from Pastoral Areas in Inner Mongolia and Gansu, China. Land Use Policy 2021, 111, 105734. [Google Scholar] [CrossRef]
- Zhang, Z.; Huisingh, D. Combating Desertification in China: Monitoring, Control, Management and Revegetation. J. Clean. Prod. 2018, 182, 765–775. [Google Scholar] [CrossRef]
- Lian, X.; Jiao, L.; Hu, Y.; Liu, Z. Future Climate Imposes Pressure on Vulnerable Ecological Regions in China. Sci. Total Environ. 2023, 858, 159995. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Zhang, M.; Lü, X.; Hou, L. Does Nature-Based Solution Sustain Grassland Quality? Evidence from Rotational Grazing Practice in China. J. Integr. Agric. 2023, 22, 2567–2576. [Google Scholar] [CrossRef]
- Chang, J.; Tian, J.; Zhang, Z.; Chen, X.; Chen, Y.; Chen, S.; Duan, Z. Changes of Grassland Rain Use Efficiency and NDVI in Northwestern China from 1982 to 2013 and Its Response to Climate Change. Water 2018, 10, 1689. [Google Scholar] [CrossRef]
- Tian, J.; Zhang, Z.; Ahmed, Z.; Zhang, L.; Su, B.; Tao, H.; Jiang, T. Projections of Precipitation over China Based on CMIP6 Models. Stoch. Environ. Res. Risk Assess. 2021, 35, 831–848. [Google Scholar] [CrossRef]
- Xu, Z.; Li, Y.; Li, B.; Hao, Z.; Lin, L.; Hu, X.; Zhou, X.; Yu, H.; Xiang, S.; Pascal, M.-L.-F.; et al. A Comparative Study on the Applicability and Effectiveness of NSVI and NDVI for Estimating Fractional Vegetation Cover Based on Multi-Source Remote Sensing Image. Geocarto Int. 2023, 38, 2184501. [Google Scholar] [CrossRef]
- Bae, S.; Lee, S.-H.; Yoo, S.-H.; Kim, T. Analysis of Drought Intensity and Trends Using the Modified SPEI in South Korea from 1981 to 2010. Water 2018, 10, 327. [Google Scholar] [CrossRef]
- Gerten, D.; Lucht, W.; Ostberg, S.; Heinke, J.; Kowarsch, M.; Kreft, H.; Kundzewicz, Z.W.; Rastgooy, J.; Warren, R.; Schellnhuber, H.J. Asynchronous Exposure to Global Warming: Freshwater Resources and Terrestrial Ecosystems. Environ. Res. Lett. 2013, 8, 034032. [Google Scholar] [CrossRef]
- Kong, R.; Zhang, Z.; Zhang, F.; Tian, J.; Chang, J.; Jiang, S.; Zhu, B.; Chen, X. Increasing Carbon Storage in Subtropical Forests over the Yangtze River Basin and Its Relations to the Major Ecological Projects. Sci. Total Environ. 2020, 709, 136163. [Google Scholar] [CrossRef]
- Huang, R.; Chen, X.; Hu, Q. Changes in Vegetation and Surface Water Balance at Basin-Scale in Central China with Rising Atmospheric CO2. Clim. Change 2019, 155, 437–454. [Google Scholar] [CrossRef]
- Kong, R.; Zhang, Z.; Huang, R.; Tian, J.; Feng, R.; Chen, X. Projected Global Warming-Induced Terrestrial Ecosystem Carbon across China under SSP Scenarios. Ecol. Indic. 2022, 139, 108963. [Google Scholar] [CrossRef]
- Zhu, B.; Zhang, Z.; Tian, J.; Kong, R.; Chen, X. Increasing Negative Impacts of Climatic Change and Anthropogenic Activities on Vegetation Variation on the Qinghai–Tibet Plateau during 1982–2019. Remote Sens. 2022, 14, 4735. [Google Scholar] [CrossRef]
- Yin, Y.; Ma, D.; Wu, S. Climate Change Risk to Forests in China Associated with Warming. Sci. Rep. 2018, 8, 493. [Google Scholar] [CrossRef]
- Zhao, A.; Zhang, A.; Cao, S.; Liu, X.; Liu, J.; Cheng, D. Responses of Vegetation Productivity to Multi-Scale Drought in Loess Plateau, China. CATENA 2018, 163, 165–171. [Google Scholar] [CrossRef]
- Yi, H.; Zhang, X.; He, L.; Zou, Y.; Lyu, D.; Xu, X.; He, J.; Wang, Y.; Tian, Q. Vegetation restoration potential and land use change in different geomorphological areas of the Loess Plateau. Trans. Chin. Soc. Agric. Eng. Trans. CSAE 2022, 38, 255–263. [Google Scholar] [CrossRef]
Year | Degraded Significantly | Degraded | Degraded Slightly | No Change | Restored Slightly | Restored | Restored Significantly |
---|---|---|---|---|---|---|---|
1982–2019 | 21.3 | 4.89 | 2.09 | 29.02 | 2.8 | 6.08 | 33.82 |
1982–2000 | 0.1 | 0.35 | 0.56 | 78.36 | 7.29 | 7.28 | 6.06 |
2000–2019 | 11.92 | 7.18 | 5.03 | 59.69 | 6.91 | 4.2 | 5.07 |
Year | Degraded Significantly | Degraded | Degraded Slightly | No Change | Restored Slightly | Restored | Restored Significantly |
---|---|---|---|---|---|---|---|
1982–2019 | 0.2 | 0.75 | 0.65 | 37.34 | 3.04 | 5.63 | 52.39 |
1982–2000 | 0.93 | 2.12 | 1.74 | 54.4 | 7.11 | 8.84 | 24.86 |
2000–2019 | 0.23 | 0.24 | 0.15 | 36.66 | 7.1 | 16.76 | 38.86 |
Very Low | Low | Lower | Medium–Low | Medium | Medium–High | High | |
---|---|---|---|---|---|---|---|
FVC | <0.05 | 0.05–0.1 | 0.1–0.2 | 0.2–0.4 | 0.4–0.6 | 0.6–0.8 | >0.8 |
1982 | 54.28 | 4.63 | 3.11 | 12.26 | 9.74 | 7.63 | 8.35 |
2000 | 52.12 | 4.24 | 3.1 | 11.53 | 11.62 | 8.46 | 8.93 |
2019 | 50.63 | 3.51 | 2.62 | 11.35 | 11.3 | 10.31 | 10.28 |
0–0.05 | 0.05–0.1 | 0.1–0.2 | 0.2–0.4 | 0.4–0.6 | 0.6–0.8 | 0.8–1 | |
---|---|---|---|---|---|---|---|
IVSP (satellite-observed) | 40.47% | 10.48% | 10.94% | 8.71% | 4.02% | 2.79% | 22.59% |
IVCP (LPJ) | 68.97% | 1.81% | 2.48% | 9.99% | 7.33% | 4.89% | 4.53% |
Indicator | Correlation | Extremely Significant Positive | Significant Positive | Not Positive | Not Negative | Significant Negative | Extremely Significant Negative |
---|---|---|---|---|---|---|---|
NDVI and SPEI 12 | Proportion | 6.62% | 7.27% | 45.31% | 35.77% | 3.83% | 1.2% |
FVC and SPEI 12 | Proportion | 6.51% | 8.68% | 50.19% | 31.30% | 2.35% | 0.97% |
Degree | SPEI Value | Class |
---|---|---|
1 | SPEI > −0.5 | Near normal |
2 | −1 < SPEI ≤ −0.5 | Mildly dry |
3 | −1.5 < SPEI ≤ −1 | Moderately dry |
4 | −2 < SPEI ≤ −1.5 | Severely dry |
5 | SPEI ≤ −2 | Extremely dry (drought) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sui, X.; Xu, Q.; Tao, H.; Zhu, B.; Li, G.; Zhang, Z. Vegetation Dynamics and Recovery Potential in Arid and Semi-Arid Northwest China. Plants 2024, 13, 3412. https://doi.org/10.3390/plants13233412
Sui X, Xu Q, Tao H, Zhu B, Li G, Zhang Z. Vegetation Dynamics and Recovery Potential in Arid and Semi-Arid Northwest China. Plants. 2024; 13(23):3412. https://doi.org/10.3390/plants13233412
Chicago/Turabian StyleSui, Xiran, Qiongling Xu, Hui Tao, Bin Zhu, Guangshuai Li, and Zengxin Zhang. 2024. "Vegetation Dynamics and Recovery Potential in Arid and Semi-Arid Northwest China" Plants 13, no. 23: 3412. https://doi.org/10.3390/plants13233412
APA StyleSui, X., Xu, Q., Tao, H., Zhu, B., Li, G., & Zhang, Z. (2024). Vegetation Dynamics and Recovery Potential in Arid and Semi-Arid Northwest China. Plants, 13(23), 3412. https://doi.org/10.3390/plants13233412