Exploring Hidden Connections: Endophytic System and Flower Meristem Development of Pilostyles berteroi (Apodanthaceae) and Interaction with Its Host Adesmia trijuga (Fabaceae)
"> Figure 1
<p>Specimens of <span class="html-italic">A. trijuga</span>. (<b>A</b>) General aspect of the landscape with <span class="html-italic">A. trijuga</span> plants; (<b>B</b>) <span class="html-italic">A. trijuga</span> plants, where the zone of stem secondary structure is indicated by arrows and detailed in the inset; (<b>C</b>) <span class="html-italic">A. trijuga</span> plant parasitized by <span class="html-italic">P. berteroi</span> (arrows indicate the parasite’s flowers); (<b>D</b>–<b>F</b>) <span class="html-italic">P. berteroi</span> flowers emerging from host stems; (<b>E</b>) Detail of buds and flowers at anthesis; (<b>F</b>) Basal region with older staminate flowers and scarring from previous year’s flowers. Abbreviations: b: flower buds, f: flowers in blossom, mf: mature flowers; sf: scars of flower or fruits. Scales: (<b>B</b>,<b>C</b>): 10 cm; (<b>D</b>): 1.5 cm; (<b>E</b>,<b>F</b>): 0.5 cm.</p> "> Figure 2
<p>Anatomy of the non-parasitized stem of <span class="html-italic">A. trijuga</span> in transversal (<b>A</b>–<b>G</b>), and radial longitudinal sections (<b>H</b>,<b>I</b>) are analyzed with a light microscope (LM). (<b>A</b>) Transection of 2-year-old non-parasitized stem; (<b>B</b>,<b>C</b>) phloem and cambial zone in a stem with vessels in the process of formation (*); (<b>D</b>) periderm; (<b>E</b>) secondary phloem; (<b>F</b>) wood anatomy showing its diffuse porosity; (<b>G</b>) detail of vessels, paratracheal parenchyma and libriform fibers; the crystals in the area indicated with a square are shown in the inset (polarized light); (<b>H</b>) vessels, libriform fibers and rays; crystals in the inset; (<b>I</b>) vessels showing simple perforation plates; (<b>J</b>) detail of vestured pits. Abbreviations: as: air spaces; cc: companion cells; ck: cork; co: cortex; cr: prismatic crystals; cz: cambial zone; lf: libriform fibers; le: lenticels; p: phellogen; pe: periderm; pf: primary phloem fibers; ph: secondary phloem; pi: pith; pl: phelloderm; pp: simple perforation plate; ra: rays; se: sieve elements; ve: vessels; xy: xylem. Scales: (<b>A</b>) 0.5 mm; (<b>B</b>,<b>C</b>,<b>F</b>) 50 µm; (<b>D</b>,<b>H</b>) 20 µm; (<b>E</b>,<b>G</b>,<b>I</b>) 10 µm; (<b>J</b>) 2 µm.</p> "> Figure 3
<p>Stems of <span class="html-italic">A. trijuga</span> parasitized by <span class="html-italic">P. berteroi</span> in transverse (<b>A</b>–<b>D</b>,<b>G</b>–<b>J</b>), and radial longitudinal section (<b>E</b>,<b>F</b>), analyzed with LM. (<b>A</b>) Stem of <span class="html-italic">A. trijuga</span> with early stages of parasite development; the first endophytic patches (EPs) of <span class="html-italic">P. berteroi</span> cells are seen in the phloem (box); (<b>B</b>) detail of an EP of <span class="html-italic">P. berteroi</span> corresponding to the box in (<b>A</b>); (<b>C</b>) detail of EPs of <span class="html-italic">P. berteroi</span> and cells of secondary phloem of <span class="html-italic">A. trijuga</span>; (<b>D</b>–<b>F</b>) parasitized stems showing the presence of numerous EPs that occupied most of the secondary phloem. (<b>G</b>) EP stained with Safranin–Astra blue; (<b>H</b>–<b>J</b>) EP subjected to histochemical tests, combined with Astra blue to enhance cell wall identification: (<b>H</b>) lugol (black) for starch, (<b>I</b>) ferric chloride (brown) for phenol groups, (<b>J</b>) sudan black (blue–black) for lipids. Abbreviations: cc: companion cells; co: cortex; cz: cambial zone; hc: host cells; EP: endophytic patches; lra: lignified rays; nra: non-lignified rays; np: parasite nuclei; pe: periderm; ph: secondary phloem; pra: phloem rays; ra: rays; se: sieve elements; xy: secondary xylem. Scales: (<b>A</b>,<b>F</b>) 100 µm; (<b>B</b>,<b>C</b>,<b>E</b>,<b>G</b>–<b>J</b>) 10 µm; (<b>D</b>) 50 µm.</p> "> Figure 4
<p>Flower development of <span class="html-italic">P. berteroi</span> in stems of <span class="html-italic">A. trijuga</span>, analyzed with LM (<b>A</b>–<b>D</b>,<b>G</b>), and CLSM for autofluorescence (<b>E</b>,<b>F</b>). (<b>A</b>,<b>B</b>,<b>E</b>,<b>G</b>) Cross-sections and (<b>C</b>,<b>D</b>,<b>F</b>) radial sections of infested <span class="html-italic">A. trijuga</span> stems. (<b>A</b>) Origin of the <span class="html-italic">P. berteroi</span> floral meristem from an EP (box); (<b>B</b>) Close-up of box in (<b>A</b>) showing the polarity of EP with vegetative and reproductive cells surrounded by collapsed host cells; (<b>C</b>) floral meristem; (<b>D</b>) meristem with first bract whorl; (<b>E</b>–<b>G</b>) <span class="html-italic">P. berteroi</span> staminate flowers at various stages of development, with some already emerging through the periderm of the stem of <span class="html-italic">A. trijuga</span>. Abbreviations: ch: collapsed host cells; co: cortex; cz: cambial zone; EP: endophytic patches; fb: floral bud; fm: floral meristem; pe: periderm; ph: phloem; rc: reproductive cells; sf: staminate flower; sk: sinker; vc: vegetative cells; xy: xylem. Scales: (<b>A</b>) 200 µm; (<b>B</b>) 20 µm; (<b>C</b>) 100 µm; (<b>D</b>,<b>E</b>) 200 µm; (<b>F</b>,<b>G</b>) 1 mm.</p> "> Figure 5
<p>Sinker formation in <span class="html-italic">P. berteroi</span> flowers in transverse (<b>A</b>,<b>B</b>) and longitudinal radial section (<b>C</b>–<b>F</b>), analyzed with LM. (<b>A</b>–<b>D</b>) Flowers of <span class="html-italic">P. berteroi</span> and their sinkers; (<b>B</b>) detail of the sinker showing parasite and host tracheary elements separated by parenchymal cells, corresponding to the box indicated in photo (<b>A</b>); (<b>D</b>) close-up of the plate in the radial longitudinal section of the stem, corresponding to the boxed area in (<b>C</b>); (<b>E</b>) detail of the cambial zone showing the sinker with the <span class="html-italic">A. trijuga</span> tracheary elements and the tracheoids of <span class="html-italic">P. berteroi</span>; (<b>F</b>) another detail showing the <span class="html-italic">A. trijuga</span> vessels of the axial system and the tracheary elements entering the sinker. The tracheary elements of <span class="html-italic">A. trijuga</span> and the tracheoids of <span class="html-italic">P. berteroi</span> are in contact. Abbreviations: ahx: axial host xylem; cz: cambial zone; EP: endophytic patches; he: host tracheary elements; pc: parenchyma cell; pt: parasite tracheoid; ra: rays; xy: xylem. Scales: (<b>A</b>) 200 µm; (<b>B</b>,<b>E</b>,<b>F</b>) 20 µm; (<b>C</b>) 500 µm; (<b>D</b>) 100 µm.</p> "> Figure 6
<p>Host vessels and parasite tracheoids of sinkers analyzed with SEM (<b>A</b>–<b>F</b>), and CLSM maximum images projection of 30 optical sections at 0.95-µm intervals (<b>G</b>–<b>I</b>). (<b>A</b>,<b>B</b>) Parasite tracheoids and host tracheary elements separated by parenchymatic cells; (<b>C</b>) parasite tracheoids and parenchymatic cells; (<b>D</b>) detail of tracheoid with smooth ridges; (<b>E</b>,<b>F</b>) host tracheary elements with vestured pits; (<b>G</b>,<b>H</b>) CLSM merged two channels images, green: ex/em 503/508–633; red: 627/635–750; (<b>G</b>) detail of sinker highlighting elements of the parasite and host xylem; (<b>H</b>) tracheoids from the flower of <span class="html-italic">P. berteroi</span>; (<b>I</b>) detail of macerated host stem secondary xylem axial elements from a region not invaded by the parasite, CLSM green: 503/508–633 nm. Abbreviations: ahv: axial host vessel; lf: libriform fibers; he: host tracheary elements; ht: helical thickenings; pc: parenchyma cell; pt: parasite tracheoids; rc: rays cells; vp: vestured pits. Scales: (<b>A</b>,<b>B</b>,<b>E</b>) 10 µm; (<b>C</b>) 5 µm; (<b>D</b>,<b>F</b>) 2 µm; (<b>G</b>–<b>I</b>) 20 µm.</p> ">
Abstract
:1. Introduction
2. Results
2.1. Pilostyles berteroi–Adesmia trijuga System
2.2. Anatomy of Non-Parasitized Stems of Adesmia trijuga
2.3. Parasitized Stems
2.4. Origin of Pilostyles’ Flowers
2.5. Sinkers of Flowers
3. Discussion
4. Materials and Methods
4.1. Plant (Parasite and Host) Material
4.2. Light Microscopy (LM)
4.3. Scanning Electron Microscopy (SEM)
4.4. Confocal Laser Scanning Microscope (CLSM)
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Heide-Jørgensen, H. Parasitic Flowering Plants; Brill: Boston, MA, USA, 2008. [Google Scholar] [CrossRef]
- Nickrent, D.L. Parasitic angiosperms: How often and how many? Taxon 2020, 69, 5–27. [Google Scholar] [CrossRef]
- Bouwmeester, H.; Sinha, N.; Scholes, J. Parasitic plants: Physiology, development, signaling, and ecosystem interactions. Plant Physiol. 2021, 185, 1267–1269. [Google Scholar] [CrossRef] [PubMed]
- Teixeira-Costa, L. A living bridge between two enemies: Haustorium structure and evolution across parasitic flowering plants. Braz. J. Bot. 2021, 44, 165–178. [Google Scholar] [CrossRef]
- Teixeira-Costa, L.; Davis, C.C. Life history, diversity, and distribution in parasitic flowering plants. Plant Physiol. 2021, 187, 32–51. [Google Scholar] [CrossRef]
- Teixeira-Costa, L.; Davis, C.C.; Ceccantini, G. Striking developmental convergence in angiosperm endoparasites. Am. J. Bot. 2021, 108, 756–768. [Google Scholar] [CrossRef]
- Teixeira-Costa, L. Leveraging micro-CT scanning to analyze parasitic plant-host interactions. JoVE 2022, 179, e63423. [Google Scholar] [CrossRef]
- Thorogood, C.J.; Teixeira-Costa, L.; Ceccantini, G.; Davis, C.; Hiscock, S.J. Endoparasitic plants and fungi show evolutionary convergence across phylogenetic divisions. New Phytol. 2021, 232, 1159–1167. [Google Scholar] [CrossRef]
- Dor, E.; Goldwasser, Y. Parasitic Weeds: Biology and Control; MDPI-Multidisciplinary Digital Publishing Institute: Basel, Switzerland, 2022; p. 152. [Google Scholar]
- Gonzalez, A.M.; Sato, H. (Eds.) Parasitic Plant; IntechOpen: London, UK, 2022; 108p. [Google Scholar] [CrossRef]
- Scalon, M.C.; Heilmeier, H.; Rossatto, D.R. Plant-plant parasitism: Trends in the last 50 years and a call for papers for a special issue in Flora. Flora 2024, 310, 152438. [Google Scholar] [CrossRef]
- Shaw, D.C.; Teixeira-Costa, L.; Watson, D.M.; Shamoun, S.F. Introduction to the Special Issue on Parasitic Flowering Plants in Forests. Botany 2024, 102, 56–57. [Google Scholar] [CrossRef]
- Těšitel, J. Functional biology of parasitic plants: A review. Plant Ecol. Evol. 2016, 149, 5–20. [Google Scholar] [CrossRef]
- Kuijt, J. The Biology of Parasitic Flowering Plants; University of California Press: Berkeley, CA, USA, 1969. [Google Scholar]
- Mauseth, J.D. Morphogenesis in a highly reduced plant: The endophyte of Tristerix aphyllus (Loranthaceae). Bot. Gaz. 1990, 151, 348–353. [Google Scholar] [CrossRef]
- Nikolov, L.A.; Tomlinson, P.B.; Manickam, S.; Endress, P.K.; Kramer, E.M.; Davis, C.C. Holoparasitic Rafflesiaceae possess the most reduced endophytes and yet give rise to the world’s largest flowers. Ann. Bot. 2014, 114, 233–242. [Google Scholar] [CrossRef] [PubMed]
- Bellot, S.; Renner, S.S. The systematics of the worldwide endoparasite family Apodanthaceae (Cucurbitales), with a key, a map, and color photos of most species. PhytoKeys 2014, 36, 41–57. [Google Scholar] [CrossRef] [PubMed]
- Filipowicz, N.; Renner, S.S. The worldwide holoparasitic Apodanthaceae confidently placed in the Cucurbitales by nuclear and mitochondrial gene trees. BMC Evol. Biol. 2010, 10, 219–227. [Google Scholar] [CrossRef]
- González, F.; Pabón-Mora, N. First reports and generic descriptions of the achlorophyllous holoparasites Apodanthaceae (Cucurbitales) of Colombia. Actual. Biol. 2014, 36, 123–135. [Google Scholar] [CrossRef]
- González, F.; Pabón-Mora, N. Pilostyles boyacensis, a new species of Apodanthaceae from Colombia. Phytotaxa 2014, 178, 138–145. [Google Scholar] [CrossRef]
- González, F.; Pabón-Mora, N. Floral development and morphoanatomy in the holoparasitic Pilostyles boyacensis (Apodanthaceae, Cucurbitales) reveal chimeric half-staminate and half-carpellate flowers. Int. J. Plant Sci. 2017, 178, 522–536. [Google Scholar] [CrossRef]
- Ortega-González, P.F.; Rios-Carrasco, S.; Gonzalez-Martínez, C.A.; Bonilla-Cruz, N.; Vazquez-Santana, S. Pilostyles maya, a novel species from Mexico and the first cleistogamous species in Apodanthaceae (Cucurbitales). Phytotaxa 2020, 440, 255–267. [Google Scholar] [CrossRef]
- Milanello do Amaral, M.; Ceccantini, G. The endoparasite Pilostyles ulei (Apodanthaceae–Cucurbitales) influences wood structure in three host species of Mimosa. IAWA J. 2011, 32, 1–13. [Google Scholar] [CrossRef]
- Guillemin, M. Memoire sur le Pilostyles, nouveau genre de la famille des Raffiesiacees. Ann. Sci. Nat. 1834, 2, 19–25. [Google Scholar]
- Solms-Laubach, H. Ueber den Thallus von Pilostyles haussknechtii. Bot. Zeitung. 1874, 32, 65–74. [Google Scholar]
- Solms-Laubach, H. Das haustorium der Loranthaceen und der thallus der Rafflesiaceen und Balanophoreen. Abh. Naturf. Ges. Halle 1875, 13, 238–276. [Google Scholar]
- Endriss, W. Monographie von Pilostyles ingae Karst. (Pilostyles ulei Solms Laub.). Flora 1902, 91, 209–236. [Google Scholar]
- Kummerow, J. Pilostyles berterii Guill., eine wenig bekannte Rafflesiaceae in Mittelchile. Z. Bot. 1962, 50, 321–337. [Google Scholar]
- Rutherford, R.J. The anatomy and cytology of Pilostyles thurberii Gray (Rafflesiaceae). Aliso J. Syst. Florist. Bot. 1970, 7, 263–288. [Google Scholar] [CrossRef]
- Kuijt, J.; Bray, D.; Olson, L.R. Anatomy and ultrastructure of the endophitic system of Pilostyles thurberii (Rafflesiaceae). Can. J. Bot. 1985, 63, 1231–1240. [Google Scholar] [CrossRef]
- Dell, B.; Kuo, J.; Burbidge, A.H. Anatomy of Pilostyles hamiltonii CA Gardner (Rafflesiaceae) in stems of Daviesia. Aust. J. Bot. 1982, 30, 1–9. [Google Scholar] [CrossRef]
- Groppo, M.; Milanello Amaral, M.; Ceccantini, G.C.T. Flora da Serra do Cipó, Minas Gerais: Apodanthaceae (Rafflesiaceae s.l.), e notas sobre a anatomia de Pilostyles. Bol. Bot. Univ. São Paulo 2007, 25, 81–86. [Google Scholar] [CrossRef]
- de Vattimo, I. Notice sur la tribu Apodantheae R. Br (Rafflesiaceae). Taxon 1955, 4, 211–212. [Google Scholar] [CrossRef]
- de Vattimo, I. Notes on Apodanthes caseariae Poit. and Pilostyles calliandrae (Gardn.) R. Br. (Rafflesiaceae-Apodantheae). Notul. Syst. 1956, 15, 225–229. [Google Scholar]
- de Vattimo, I. Contribução ao conhecimento da tribu Apodantheae R. Br. Parte I. Conspecto das espécies (Rafflesiaceae). Rodriguesia 1971, 26, 37–62. [Google Scholar]
- Blarer, A.; Nickrent, D.L.; Endress, P.K. Comparative floral structure and systematics in Apodanthaceae (Rafflesiales). Plant Syst. Evol. 2004, 245, 119–142. [Google Scholar] [CrossRef]
- Brasil, B.D.A. Ciclo de Vida, Fenologia e Anatomia Floral de Pilostyles (Apodanthaceae-Rafflesiaceae s.l.): Subsídios para um Posicionamento Filogenético da Família Apodanthaceae. São Paulo. 2010. Available online: http://www.teses.usp.br/teses/disponiveis/41/41132/tde-10122010-105707 (accessed on 29 July 2024).
- Romero, M.F.; Sato, H.; Gonzalez, A.M. Morphoanatomy and embryology in the holoparasitic Pilostyles berteroi (Apodanthaceae). Flora 2024. submitted. [Google Scholar]
- Ulibarri, E.A. Especies de Adesmia de la serie Microphyllae (Leguminosae: Papilionoideae). Darwiniana 1986, 27, 315–388. [Google Scholar]
- Ulibarri, E.A.; Novara, L. Fabaceae-Tribu 10. Adesmieae. Aportes Bot. Salta-Serie Flora 1996, 4, 1–12. [Google Scholar]
- Ulibarri, E.A.; Burkart, A. Sinopsis de las especies de Adesmia de la Argentina. Darwiniana Nueva Ser. 2000, 38, 59–126. [Google Scholar] [CrossRef]
- Caro, M.; Ruiz, A.; Páez, V.; Albornoz, P. Morfología, parámetros micrográficos vegetativos, histoquímica y citogenética de Adesmia trijuga (Leguminosae, Papilionoideae) en el noroeste argentino. Lilloa 2020, 57, 110–124. [Google Scholar] [CrossRef]
- Fortuna-Perez, A.P.; Marinho, C.R.; Vatanparast, M.; de Vargas, W.; Iganci, J.R.V.; Lewis, G.P.; Teixeira, S.P. Secretory structures of the Adesmia clade (Leguminosae): Implications for evolutionary adaptation in dry environments. Perspect Plant Ecol. Evol. Syst. 2021, 48, 125588. [Google Scholar] [CrossRef]
- Guerra, P.E.; González, S.B.; Kirner, H.J.; Retta, D.S.; Di Leo Lira, P.M.D.R.; Gómez, M.F. Aspectos anatómicos del leño y composición de los aceites esenciales de especies arbustivo-leñosas del ecotono y la estepa del noroeste de la Provincia del Chubut. Dominguezia 2012, 28, 13–44. [Google Scholar]
- Schweingruber, F.H.; Dvorský, M.; Börner, A.; Doležal, J. Fabaceae. In Atlas of Stem Anatomy of Arctic and Alpine Plants Around the Globe; Springer: Cham, Switzerland, 2020. [Google Scholar] [CrossRef]
- Thoday, D.; Johnson, E.T. On Arceuthobium pusillum, Peck: I. The Endophytic System. Ann. Bot. 1930, 44, 393–413. [Google Scholar] [CrossRef]
- Meijer, W.; Veldkamp, J.F. A revision of Mitrastema (Rafflesiaceae). Blumea 1993, 38, 221–229. [Google Scholar]
- Kuijt, J. Morphological aspects of parasitism in the dwarf mistletoes (Arceuthobium). Univ. Calif. Publ. Bot. 1960, 30, 337–436. [Google Scholar] [CrossRef]
- Roig, J.F.A. The wood of Adesmia horrida and its modifications by climatic conditions. IAWA J. 1986, 7, 129–135. [Google Scholar] [CrossRef]
- Fernandes, G.W.; Paschoal, A.M.O.; Da Rocha, W.D.; Pires, L.R.; Mello, N.A.; Anastacio, A.C.A.; Avendaño, M.Q.; Arroyo, J.; Montserrat, A.; Massara, R.L.; et al. Contrasting architectural and reproductive parameters in Mimosa maguirei in response to holoparasitism by Pilostyles blanchetii. Folia Geobot. 2023, 58, 21–29. [Google Scholar] [CrossRef]
- Gomes, A.L.; Fernandes, G.W. Influence of parasitism by Pilostyles ingae (Rafflesiaceae) on its host plant, Mimosa naguirei (Leguminosae). Ann. Bot. 1994, 74, 205–208. [Google Scholar] [CrossRef]
- Evert, R.F. Esau’s Plant Anatomy: Meristems, Cells, and Tissues of the Plant Body: Their Structure, Function, and Development; John Wiley & Sons: Hoboken, NJ, USA, 2006. [Google Scholar]
- Fahn, A. Secretory tissues in vascular plants. New Phytol. 1988, 108, 229–257. [Google Scholar] [CrossRef]
- Irving, L.J.; Cameron, D.D. You are what you eat: Interactions between root parasitic plants and their hosts. Adv. Bot. Res. 2009, 50, 87–138. [Google Scholar]
- Teixeira-Costa, L.; Ceccantini, G. Haustório, haustor, apressório, extensor: Glossário ilustrado sobre plantas parasitas e problemática das homologias das estruturas de conexão parasita-hospedeira. Bol. Bot. 2018, 36, 103–120. [Google Scholar] [CrossRef]
- Kuijt, J. Haustoria of phanerogamic parasites. Annu. Rev. Phytopathol. 1977, 17, 91–118. [Google Scholar] [CrossRef]
- Foster, A.S. Plant idioblasts: Remarkable examples of cell specialization. Protoplasma 1956, 46, 184–193. [Google Scholar] [CrossRef]
- Rao, T.A.; Mody, K.J. On Terminal Sclereids and Tracheoid idioblasts. Proc. Indian Acad. Sci. 1961, 53, 257–262. [Google Scholar] [CrossRef]
- Dickison, W.C. Nodal and leaf anatomy of Xanthophyllum (Polygalaceae). Bot. J. Linn. Soc. 1973, 67, 103–115. [Google Scholar] [CrossRef]
- Gonzalez, A.M.; Ocantos, M.N. Nectarios extraflorales en Piriqueta y Turnera (Turneraceae). Bol. Soc. Argent. Bot. 2006, 41, 269–284. [Google Scholar]
- Mauseth, J.D. Many cacti have clusters of terminal tracheids on their cortical bundles. Haseltonia 2018, 24, 64–74. [Google Scholar] [CrossRef]
- Endress, P.K.; Matthews, M.L. Elaborate petals and staminodes in eudicots: Diversity, function, and evolution. Org. Divers. Evol. 2006, 6, 257–293. [Google Scholar] [CrossRef]
- Lersten, N.R. Tracheid bar and vestured pits in legume seeds (Leguminosae: Papilionoideae). Am. J. Bot. 1982, 69, 98–107. [Google Scholar] [CrossRef]
- Gonzalez, A.M.; López, M.G. Development and morphology of the gynoecium and nutlet in two South-American Bulbostylis (Cyperaceae) species. Flora Morphol. Distrib. Funct. Ecol. 2010, 205, 211–220. [Google Scholar] [CrossRef]
- Zotz, G. Plants on Plants—The Biology of Vascular Epiphytes ii Functional Anatomy and Morphology; Springer: Cham, Switzerland, 2016; Chapter 4; pp. 67–93. [Google Scholar] [CrossRef]
- Leroux, O.; Bagniewska-Zadworna, A.; Rambe, S.K.; Knox, J.P.; Marcus, S.E.; Bellefroid, E.; Stubbe, D.; Chabbert, B.; Habrant, A.; Claeys, M.; et al. Non-lignified helical cell wall thickenings in root cortical cells of Aspleniaceae (Polypodiales): Histology and taxonomical significance. Ann. Bot. 2011, 107, 195–207. [Google Scholar] [CrossRef]
- Olatunji, O.A.; Nengim, R.O. Occurrence and distribution of tracheoidal elements in the Orchidaceae. Bot. J. Linn. Soc. 1980, 80, 357–370. [Google Scholar] [CrossRef]
- Ohtani, J.; Meylan, B.A.; Butterfield, B.G. Vestures or warts. Proposed terminology. IAWA J. 1984, 5, 3–8. [Google Scholar] [CrossRef]
- Jansen, S.; Smets, E.; Baas, P. Vestures in woody plants: A review. IAWA J. 1998, 19, 347–382. [Google Scholar] [CrossRef]
- Frank, M.H.; Chitwood, D.H. Plant Chimeras: The Good, the Bad, and the ‘Bizzaria’. Dev. Biol. 2016, 419, 41–53. [Google Scholar] [CrossRef] [PubMed]
- Holzapfel, S. Studies of the New Zealand root-parasite Dactylanthus taylorii (Balanophoraceae). Englera 2001, 22, 1–176. [Google Scholar] [CrossRef]
- Gonzalez, A.M.; Mauseth, J.D. Morphogenesis is highly aberrant in the vegetative body of the holoparasite Lophophytum leandrii (Balanophoraceae): All typical vegetative organs are absent and many tissues are highly modified. Int. J. Plant Sci. 2010, 171, 499–508. [Google Scholar] [CrossRef]
- Hsiao, S.C.; Mauseth, J.D.; Gomez, L.D. Growth and anatomy of the vegetative body of the parasitic angiosperm Helosis cayennensis (Balanophoraceae). Bull. Torrey Bot. Club 1993, 120, 295–309. [Google Scholar] [CrossRef]
- Shivamurthy, G.R.; Arekal, G.D.; Swamy, B.G.L. Establishment, structure and morphology of the tuber of Balanophora. Ann. Bot. 1981, 47, 735–745. [Google Scholar] [CrossRef]
- Gedalovich-Shedletzky, E.; Kuijt, J. An ultrastructural study of the tuber strands of Balanophora (Balanophoraceae). Can. J. Bot. 1990, 68, 1271–1279. [Google Scholar] [CrossRef]
- Hsiao, S.C.; Mauseth, J.D.; Gomez, L.D. Growth and anatomy of the vegetative body of the parasitic angiosperm Langsdorffia hypogaea (Balanophoraceae). Bull. Torrey Bot. Club 1994, 121, 24–39. [Google Scholar] [CrossRef]
- Hsiao, S.C.; Mauseth, J.D.; Peng, C.I. Composite bundles, the host/parasite interface in the holoparasitic angiosperms Langsdorff and Balanophora (Balanophoraceae). Am. J. Bot. 1995, 82, 81–91. [Google Scholar] [CrossRef]
- Pate, J.S.; Kuo, J.; Davidson, N.J. Morphology and anatomy of the haustorium of the root hemiparasite Olax phyllanthi (Olacaceae), with special reference to the haustorial interface. Ann. Bot. 1990, 65, 425–436. [Google Scholar] [CrossRef]
- Hibberd, J.M.; Dieter Jeschke, W. Solute flux into parasitic plants. J. Exp. Bot. 2001, 52, 2043–2049. [Google Scholar] [CrossRef]
- Gonzalez, A.M.; Cristóbal, C.L. Anatomía y ontogenia de semillas de Helicteres lhostzkyana (Sterculiaceae). Bonplandia 1997, 9, 287–294. [Google Scholar] [CrossRef]
- Johansen, D.A. Plant Microtechnique; Mc Graw-Hill Book Co Inc.: New York, NY, USA, 1940. [Google Scholar]
- Luque, R.H.; Souza, C.; Kraus, J.E. Métodos de coloracão do Roeser (1972) Modoficado–E Kropp (1972), visado a substituicão do Azul de Astra por Azul de Alcião 8GS on 8GX. Acta Bot. Brasil. 1996, 10, 199–212. [Google Scholar] [CrossRef]
- Ruzin, S.E. Plant Microtechnique and Microscopy; Oxford University Press: New York, NY, USA, 1999. [Google Scholar]
- Demarco, D. Histochemical analysis of plant secretory structures. In Histochemistry of Single Molecules Methods and Protocols; Pellicciari, C., Biggiogera, M., Eds.; Humana Press: New York, NY, USA, 2017; pp. 313–330. [Google Scholar] [CrossRef]
- Wheeler, E.A.; Baas, P.; Gasson, P.E. IAWA list of microscopic features for hardwood identification. IAWA Bull. 1989, 10, 219–332. [Google Scholar] [CrossRef]
- Bissing, D.R. Haupt’s gelatin adhesive mixed with formalin for affixing paraffin sections to slides. Biotech. Histochem. 1974, 49, 116–117. [Google Scholar] [CrossRef] [PubMed]
- Chatelet, D.S.; Rost, T.L.; Matthews, M.A.; Shackel, K.A. The peripheral xylem of grapevine (Vitis vinifera) berries. 2. Anatomy and development. J. Exp. Bot. 2008, 59, 1997–2007. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gonzalez, A.M.; Romero, M.F.; Sato, H.A. Exploring Hidden Connections: Endophytic System and Flower Meristem Development of Pilostyles berteroi (Apodanthaceae) and Interaction with Its Host Adesmia trijuga (Fabaceae). Plants 2024, 13, 3010. https://doi.org/10.3390/plants13213010
Gonzalez AM, Romero MF, Sato HA. Exploring Hidden Connections: Endophytic System and Flower Meristem Development of Pilostyles berteroi (Apodanthaceae) and Interaction with Its Host Adesmia trijuga (Fabaceae). Plants. 2024; 13(21):3010. https://doi.org/10.3390/plants13213010
Chicago/Turabian StyleGonzalez, Ana Maria, María Florencia Romero, and Héctor A. Sato. 2024. "Exploring Hidden Connections: Endophytic System and Flower Meristem Development of Pilostyles berteroi (Apodanthaceae) and Interaction with Its Host Adesmia trijuga (Fabaceae)" Plants 13, no. 21: 3010. https://doi.org/10.3390/plants13213010
APA StyleGonzalez, A. M., Romero, M. F., & Sato, H. A. (2024). Exploring Hidden Connections: Endophytic System and Flower Meristem Development of Pilostyles berteroi (Apodanthaceae) and Interaction with Its Host Adesmia trijuga (Fabaceae). Plants, 13(21), 3010. https://doi.org/10.3390/plants13213010