Optimization of Lutein Recovery from Tetraselmis suecica by Response Surface Methodology
<p>The effect of various solvents on lutein recovery from <span class="html-italic">Tetraselmis suecica</span>.</p> "> Figure 2
<p>The effect of various concentrations of solvent on lutein recovery from <span class="html-italic">Tetraselmis suecica</span>.</p> "> Figure 3
<p>The three-dimensional response surface plots representing the effects of each factor on the lutein contents. Effects of temperature and time (<b>a</b>), temperature and S/L ratio (<b>b</b>) and time and S/L ratio (<b>c</b>).</p> "> Figure 3 Cont.
<p>The three-dimensional response surface plots representing the effects of each factor on the lutein contents. Effects of temperature and time (<b>a</b>), temperature and S/L ratio (<b>b</b>) and time and S/L ratio (<b>c</b>).</p> "> Figure 4
<p>The three-dimensional response surface plots representing the effects of each factor on ABTS radical scavenging activity. Effects of temperature and time (<b>a</b>), temperature and S/L ratio (<b>b</b>) and time and S/L ratio (<b>c</b>).</p> "> Figure 4 Cont.
<p>The three-dimensional response surface plots representing the effects of each factor on ABTS radical scavenging activity. Effects of temperature and time (<b>a</b>), temperature and S/L ratio (<b>b</b>) and time and S/L ratio (<b>c</b>).</p> "> Figure 5
<p>Material balance of microalgae to lutein based on 1000 g <span class="html-italic">Tetraselmis suecica</span>.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Liquid Recovery Procedure and Solvent Selection
2.3. Experimental Design Using Response Surface Mothodology
2.4. Analytical Methods
2.4.1. Determination of Lutein Contents Using High Performance Liquid Chromatography
2.4.2. ABTS Radical Scavenging Activity
2.4.3. FRAP Assay
3. Results and Discussion
3.1. Selection of Extract Solvent
3.2. Determination of Lutein Recovery Conditions Using RSM
3.3. Evaluation of the Overall Process and Material Balance
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Rhie, M.N.; Kim, H.T.; Jo, S.Y.; Chu, L.L.; Baritugo, K.; Baylon, M.G.; Lee, J.; Na, J.; Kim, L.H.; Kim, T.W.; et al. Recent advances in the Metabolic Engineering of Klebsiella pneumoniae: A Potential Platform Microorganism for Biorefineries. Biotechnol. Bioprocess Eng. 2019, 24, 48–64. [Google Scholar] [CrossRef]
- Hwang, K.S.; Kwon, H.J.; Lee, J. Physicochemical analysis of linear low-density polyethylene composite films containing chemically treated rice husk. Korean J. Chem. Eng. 2018, 35, 594–601. [Google Scholar] [CrossRef]
- Ibrahim, M.F.; Kim, S.W.; Abd-Aziz, S. Advanced bioprocessing strategies for biobutanol production from biomass. Renew. Sust. Energ. Rev. 2018, 91, 1192–1204. [Google Scholar] [CrossRef]
- Lee, S.C.; Lee, S.H.; Won, K. Wood powder as a new natural sunscreen ingredient. Biotechnol. Bioprocess Eng. 2019, 24, 258–263. [Google Scholar] [CrossRef]
- Chen, M.F.; Zhang, Y.Y.; Di He, M.; Li, C.Y.; Zhou, C.X.; Hong, P.Z.; Qian, Z.J. Antioxidant peptide purified from enzymatic hydrolysates of Isochrysis Zhanjiangensis and its protective effect against ethanol induced oxidative stress of HepG2 cells. Biotechnol. Bioprocess Eng. 2019, 24, 308–317. [Google Scholar] [CrossRef]
- Lee, J.H.; Lee, H.U.; Lee, J.H.; Lee, S.K.; Yoo, H.Y.; Park, C.; Kim, S.W. Continuous production of bioethanol using microalgal sugars extracted from Nannochloropsis gaditana. Korean J. Chem. Eng. 2019, 36, 71–76. [Google Scholar] [CrossRef]
- Choi, Y.Y.; Hong, M.E.; Chang, W.S.; Sim, S.J. Autotrophic biodiesel production from the thermotolerant microalga Chlorella sorokiniana by enhancing the carbon availability with temperature adjustment. Biotechnol. Bioprocess Eng. 2019, 24, 223–231. [Google Scholar] [CrossRef]
- Kim, H.; Yoo, H.Y.; Kim, Y.H.; Kim, I.K.; Byun, E.H.; Yang, Y.H.; Park, S.J.; Na, J.G.; Shon, H.; Lee, T.; et al. Improved reutilization of industrial crude lysine to 1,5-diaminopentane by enzymatic decarboxylation using various detergents and organic solvents. Korean J. Chem. Eng. 2018, 35, 1854–1859. [Google Scholar] [CrossRef]
- Di Lena, G.; Casini, I.; Lucarini, M.; Lombardi-Boccia, G. Carotenoid Profiling of Five Microalgae Species from Large-Scale Production. Food Res. Int. 2019, 120, 810–818. [Google Scholar] [CrossRef]
- Pereira, H.; Silva, J.; Santos, T.; Gangadhar, K.N.; Raposo, A.; Nunes, C.; Coimbra, M.A.; Gouveia, L.; Barreira, L.; Varela, J. Nutritional Potential and Toxicological Evaluation of Tetraselmis sp. CTP4 Microalgal Biomass Produced in Industrial Photobioreactors. Molecules 2019, 24, 3192. [Google Scholar] [CrossRef] [Green Version]
- Ochoa Becerra, M.; Mojica Contreras, L.; Hsieh Lo, M.; Mateos Díaz, J.; Castillo Herrera, G. Lutein as a Functional Food Ingredient: Stability and Bioavailability. J. Funct. Foods 2020, 66, 103771. [Google Scholar] [CrossRef]
- McWilliams, A. The Global Market for Carotenoids, BCC Research: Market Research Reports. 2018. FOD025F. Available online: https://www.bccresearch.com (accessed on 20 July 2020).
- Ahmad, T.; Cawood, M.; Iqbal, Q.; Ariño, A.; Batool, A.; Tariq, R.M.S.; Azam, M.; Akhtar, S. Phytochemicals in Daucus carota and Their Health Benefits—Review Article. Foods 2019, 8, 424. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Altemimi, A.; Lightfoot, D.A.; Kinsel, M.; Watson, D.G. Employing Response Surface Methodology for the Optimization of Ultrasound Assisted Extraction of Lutein and β-Carotene from Spinach. Molecules 2015, 20, 6611–6625. [Google Scholar] [CrossRef] [PubMed]
- Buscemi, S.; Corleo, D.; Di Pace, F.; Petroni, M.L.; Satriano, A.; Marchesini, G. The Effect of Lutein on Eye and Extra-Eye Health. Nutrients 2018, 10, 1321. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schüler, L.M.; Santos, T.; Pereira, H.G.; Duarte, P.; Varela, J.C.S. Improved Production of Lutein and β-Carotene by Thermal and Light Intensity Upshifts in the Marine Microalga Tetraselmis sp. CTP4. Algal Res. 2019, 45, 101732. [Google Scholar] [CrossRef]
- Deenu, A.; Naruenartwongsakul, S.; Kim, S.M. Optimization and Economic Evaluation of Ultrasound Extraction of Lutein from Chlorella vulgaris. Biotechnol. Bioprocess Eng. 2013, 18, 1151–1162. [Google Scholar] [CrossRef]
- Novoveská, L.; Ross, M.E.; Stanley, M.S.; Pradelles, R.; Wasiolek, V.; Sassi, J.-F. Microalgal Carotenoids: A Review of Production, Current Markets, Regulations, and Future Direction. Mar. Drugs 2019, 17, 640. [Google Scholar] [CrossRef] [Green Version]
- Kumar, H.; Yadav, A.N.; Kumar, V.; Vyas, P.; Dhaliwal, H.S. Food waste: A Potential Bioresource for Extraction of Nutraceuticals and Bioactive Compounds. Bioresour. Bioprocess 2017, 4, 18. [Google Scholar] [CrossRef] [Green Version]
- Khaw, K.-Y.; Parat, M.-O.; Shaw, P.N.; Falconer, J.R. Solvent Supercritical Fluid Technologies to Extract Bioactive Compounds from Natural Sources: A Review. Molecules 2017, 22, 1186. [Google Scholar] [CrossRef]
- Trinh, L.T.P.; Lee, Y.-J.; Lee, J.-W.; Lee, W.-H. Optimization of ionic liquid pretreatment of mixed softwood by response surface methodology and reutilization of ionic liquid from hydrolysate. Biotechnol. Bioprocess Eng. 2018, 23, 228–237. [Google Scholar] [CrossRef]
- Lee, N.K. Statistical optimization of medium and fermentation conditions of recombinant Pichia pastoris for the production of xylanase. Biotechnol. Bioprocess Eng. 2018, 23, 55–63. [Google Scholar] [CrossRef]
- Yoo, H.Y.; Lee, J.H.; Kim, D.S.; Lee, J.H.; Lee, S.K.; Lee, S.J.; Park, C.; Kim, S.W. Enhancement of Glucose Yield from Canola Agricultural Residue by Alkali Pretreatment Based on Multi-Regression Models. J. Ind. Eng. Chem. 2017, 51, 303–311. [Google Scholar] [CrossRef]
- Kim, H.; Yoo, H.Y.; Park, N.; Kim, H.; Lee, J.; Baek, Y.; Lee, T.; Oh, J.-M.; Cho, J.; Park, C. Enhanced l-Lysine into 1,5-Diaminopentane Conversion via Statistical Optimization of Whole-Cell Decarboxylation System. Polymers 2019, 11, 1372. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, K.H.; Chun, Y.; Jang, Y.W.; Lee, S.K.; Kim, H.R.; Lee, J.H.; Kim, S.W.; Park, C.; Yoo, H.Y. Fabrication of Functional Bioelastomer for Food Packaging from Aronia (Aronia melanocarpa) Juice Processing By-Products. Foods 2020, 9, 1565. [Google Scholar] [CrossRef]
- Safafar, H.; Van Wagenen, J.; Møller, P.; Jacobsen, C. Carotenoids, Phenolic Compounds and Tocopherols Contribute to the Antioxidative Properties of Some Microalgae Species Grown on Industrial Wastewater. Mar. Drugs 2015, 13, 7339–7356. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schüler, L.M.; Gangadhar, K.N.; Duarte, P.; Placines, C.; Molina-Márquez, A.M.; Léon-Bañares, R.; Sousa, V.S.; Varela, J.; Barreira, L. Improvement of Carotenoid Extraction from a Recently Isolated, Robust Microalga, Tetraselmis sp. CTP4 (Chlorophyta). Bioprocess. Biosyst. Eng. 2020, 43, 785–796. [Google Scholar] [CrossRef] [PubMed]
- Miękus, N.; Iqbal, A.; Marszałek, K.; Puchalski, C.; Świergiel, A. Green Chemistry Extractions of Carotenoids from Daucus carota L.—Supercritical Carbon Dioxide and Enzyme-Assisted Methods. Molecules 2019, 24, 4339. [Google Scholar] [CrossRef] [Green Version]
- Focsan, A.L.; Polyakov, N.E.; Kispert, L.D. Supramolecular Carotenoid Complexes of Enhanced Solubility and Stability—The Way of Bioavailability Improvement. Molecules 2019, 24, 3947. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Lu, W.; Li, J.; Hu, J.; Ding, R.; Lv, M.; Wang, Q. Optimization of Ultrasonic-Assisted Extraction and Purification of Zeaxanthin and Lutein in Corn Gluten Meal. Molecules 2019, 24, 2994. [Google Scholar] [CrossRef] [Green Version]
- Khan, M.M.; Kim, Y.K.; Cho, S.S.; Jin, Y.-Y.; Suh, J.-W.; Lee, D.Y.; Yoo, J.C. Response Surface Optimization of Culture Conditions for Cyclic Lipopeptide MS07 from Bacillus siamensis Reveals Diverse Insights Targeting Antimicrobial and Antibiofilm Activity. Processes 2020, 8, 744. [Google Scholar] [CrossRef]
- Chen, J.; Thilakarathna, W.P.D.W.; Astatkie, T.; Rupasinghe, H.P.V. Optimization of Catechin and Proanthocyanidin Recovery from Grape Seeds Using Microwave-Assisted Extraction. Biomolecules 2020, 10, 243. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, M.R.; Kim, S.G.; Jeong, G.T. Biosugar Production from Gracilaria verrucosa with Sulfamic Acid Pretreatment and Subsequent Enzymatic Hydrolysis. Biotechnol. Bioprocess. Eng. 2018, 23, 302–310. [Google Scholar] [CrossRef]
- Nagarajan, J.; Pui Kay, H.; Krishnamurthy, N.P.; Ramakrishnan, N.R.; Aldawoud, T.M.S.; Galanakis, C.M.; Wei, O.C. Extraction of Carotenoids from Tomato Pomace via Water-Induced Hydrocolloidal Complexation. Biomolecules 2020, 10, 1019. [Google Scholar] [CrossRef] [PubMed]
- Dudoit, A.; Benbouguerra, N.; Richard, T.; Hornedo-Ortega, R.; Valls-Fonayet, J.; Coussot, G.; Saucier, C. α-Glucosidase Inhibitory Activity of Tannat Grape Phenolic Extracts in Relation to Their Ripening Stages. Biomolecules 2020, 10, 1088. [Google Scholar] [CrossRef]
- Vepsäläinen, M.; Ghiasvand, M.; Selin, J.; Pienimaa, J.; Repo, E.; Pulliainen, M.; Sillanpää, M. Investigations of the Effects of Temperature and Initial Sample pH on Natural Organic Matter (NOM) Removal with Electrocoagulation using Response Surface Method (RSM). Sep. Purif. Technol. 2009, 69, 255–261. [Google Scholar] [CrossRef]
- López, R.; Fernández, C.; Pereira, F.J.; Díez, A.; Cara, J.; Martínez, O.; Sánchez, M.E. A Comparison between Several Response Surface Methodology Designs and a Neural Network Model to Optimise the Oxidation Conditions of a Lignocellulosic Blend. Biomolecules 2020, 10, 787. [Google Scholar] [CrossRef]
- Le, X.T.; Lan Vi, V.L.; Toan, T.Q.; Bach, L.G.; Truc, T.T.; Hai Ha, P.T. Extraction Process of Polyphenols from Soybean (Glycine max L.) Sprouts: Optimization and Evaluation of Antioxidant Activity. Processes 2019, 7, 489. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Wang, R.; Sheng, Z.; Wu, Z.; Chen, C.; Ishfaq, M. Optimization of Baicalin, Wogonoside, and Chlorogenic Acid Water Extraction Process from the Roots of Scutellariae Radix and Lonicerae japonicae Flos Using Response Surface Methodology (RSM). Processes 2019, 7, 854. [Google Scholar] [CrossRef] [Green Version]
- Lu, K.; Zhao, X.; Ho, S.-H.; Ma, R.; Xie, Y.; Chen, J. Biorefining and the Functional Properties of Proteins from Lipid and Pigment Extract Residue of Chlorella pyrenoidosa. Mar. Drugs 2019, 17, 454. [Google Scholar] [CrossRef] [Green Version]
- Sathasivam, R.; Ki, J.-S. A Review of the Biological Activities of Microalgal Carotenoids and Their Potential Use in Healthcare and Cosmetic Industries. Mar. Drugs 2018, 16, 26. [Google Scholar] [CrossRef] [Green Version]
- Xiao, Y.; He, X.; Ma, Q.; Lu, Y.; Bai, F.; Dai, J.; Wu, Q. Photosynthetic Accumulation of Lutein in Auxenochlorella protothecoides after Heterotrophic Growth. Mar. Drugs 2018, 16, 283. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, C.Y.; Jesisca; Hsieh, C.; Lee, D.J.; Chang, C.H.; Chang, J.S. Production, Extraction and Stabilization of Lutein from Microalga Chlorella sorokiniana MB-1. Bioresour. Technol. 2016, 200, 500–505. [Google Scholar] [CrossRef] [PubMed]
- Gayathri, S.; Radhika, S.R.R.; Suman, T.Y.; Aranganathan, L. Ultrasound-Assisted Microextraction of β,ε-carotene-3,3′-diol (Lutein) from Marine Microalgae Chlorella salina: Effect of Different Extraction Parameters. Biomass Convers. Biorefinery 2018, 8, 791–797. [Google Scholar] [CrossRef]
- Araya, B.; Gouveia, L.; Nobre, B.; Reis, A.; Chamy, R.; Poirrier, P. Evaluation of the Simultaneous Production of Lutein and Lipids Using a Vertical Alveolar Panel Bioreactor for Three Chlorella species. Algal Res. 2014, 6, 218–222. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, N.R.; Manirafasha, E.; Pan, X.; Chen, B.-Y.; Lu, Y.; Jing, K. Exploring biostimulation of plant hormones and nitrate supplement to effectively enhance biomass growth and lutein production with thermo-tolerant Desmodesmus sp. F51. Bioresour. Technol. 2019, 291, 121883. [Google Scholar] [CrossRef]
- Tsai, H.P.; Chuang, L.T.; Chen, C.N.N. Production of Long Chain Omega-3 Fatty Acids and Carotenoids in Tropical Areas by a New Heat-Tolerant Microalga Tetraselmis sp. DS3. Food Chem. 2016, 192, 682–690. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, F.; Fanning, K.; Netzel, M.; Schenk, P.M. Induced Carotenoid Accumulation in Dunaliella salina and Tetraselmis suecica by Plant Hormones and UV-C Radiation. Appl. Microbiol. Biotechnol. 2015, 99, 9407–9416. [Google Scholar] [CrossRef]
Factors | Unit | Symbol | Coded Factor Levels | ||||
---|---|---|---|---|---|---|---|
−2 | −1 | 0 | 1 | 2 | |||
Temperature | °C | X1 | 0 | 15 | 30 | 45 | 60 |
Time | h | X2 | 1 | 2 | 3 | 4 | 5 |
S/L ratio | g/L | X3 | 50 | 75 | 100 | 125 | 150 |
Std | Coded Factor Levels | Response | ||||
---|---|---|---|---|---|---|
X1 | X2 | X3 | Lutein Contents (mg/mL) | ABTS IC50 (mg/mL) | ||
1 | −1 | −1 | −1 | 1.08 | 5.56 | |
2 | 1 | −1 | −1 | 0.90 | 5.40 | |
3 | −1 | 1 | −1 | 1.20 | 6.22 | |
4 | 1 | 1 | −1 | 1.17 | 4.71 | |
5 | −1 | −1 | 1 | 1.86 | 4.97 | |
6 | 1 | −1 | 1 | 1.58 | 4.02 | |
7 | −1 | 1 | 1 | 1.61 | 5.02 | |
8 | 1 | 1 | 1 | 1.87 | 3.39 | |
9 | −2 | 0 | 0 | 1.25 | 4.96 | |
10 | 2 | 0 | 0 | 1.27 | 3.90 | |
11 | 0 | −2 | 0 | 1.35 | 4.66 | |
12 | 0 | 2 | 0 | 1.58 | 4.30 | |
13 | 0 | 0 | −2 | 0.66 | 7.60 | |
14 | 0 | 0 | 2 | 2.45 | 4.23 | |
15 | 0 | 0 | 0 | 1.51 | 4.65 | |
16 | 0 | 0 | 0 | 1.56 | 4.70 | |
17 | 0 | 0 | 0 | 1.81 | 4.46 | |
18 | 0 | 0 | 0 | 1.70 | 4.35 | |
19 | 0 | 0 | 0 | 1.71 | 4.55 | |
20 | 0 | 0 | 0 | 1.78 | 4.22 |
Source | Sum of Squares | Degree of Freedom | Mean Squares | F-Value | p-Value | Remarks |
---|---|---|---|---|---|---|
Model | 2.85 | 9 | 0.32 | 17.17 | <0.0001 | significant |
X1 | 0.002238 | 1 | 0.002238 | 0.13 | 0.7293 | |
X2 | 0.048 | 1 | 0.048 | 2.62 | 0.1365 | |
X3 | 2.36 | 1 | 2.36 | 128.06 | <0.0001 | significant |
X1X2 | 0.062 | 1 | 0.062 | 3.34 | 0.0976 | |
X1X3 | 0.005529 | 1 | 0.005529 | 0.30 | 0.5962 | |
X2X3 | 0.016 | 1 | 0.016 | 0.85 | 0.3774 | |
X12 | 0.32 | 1 | 0.32 | 17.18 | 0.0020 | significant |
X22 | 0.094 | 1 | 0.094 | 5.08 | 0.0479 | significant |
X32 | 0.038 | 1 | 0.038 | 2.04 | 0.1840 | |
Residual | 0.18 | 10 | 0.018 | |||
Lack of fit | 0.12 | 5 | 0.023 | 1.68 | 0.2923 | not significant |
Pure error | 0.069 | 5 | 0.014 | |||
Total | 3.04 | 19 |
Source | Sum of Squares | Degree of Freedom | Mean Squares | F-Value | p-Value | Remarks |
---|---|---|---|---|---|---|
Model | 14.75 | 9 | 1.64 | 19.13 | <0.0001 | significant |
X1 | 2.52 | 1 | 2.52 | 29.46 | 0.0003 | significant |
X2 | 0.11 | 1 | 0.11 | 1.27 | 0.2863 | |
X3 | 7.85 | 1 | 7.85 | 91.67 | <0.0001 | significant |
X1X2 | 0.51 | 1 | 0.51 | 6.00 | 0.0343 | significant |
X1X3 | 0.10 | 1 | 0.10 | 1.21 | 0.2980 | |
X2X3 | 0.039 | 1 | 0.039 | 0.45 | 0.5178 | |
X12 | 0.001325 | 1 | 0.001325 | 0.016 | 0.9025 | |
X22 | 0.0007254 | 1 | 0.0007254 | 0.008467 | 0.9285 | |
X32 | 3.33 | 1 | 3.33 | 38.83 | <0.0001 | significant |
Residual | 0.86 | 10 | 0.086 | |||
Lack of fit | 0.69 | 5 | 0.14 | 4.02 | 0.0764 | not significant |
Pure error | 0.17 | 5 | 0.034 | |||
Total | 15.61 | 19 |
Parameters | Coded Factor Levels | Actual Factor Levels |
Temperature | 0.8 | 42.4 °C |
Time | 1.0 | 4.0 h |
S/L ratio | 1.0 | 125.0 g/L |
Response | Predicted | Experimental |
Lutein contents (mg/mL) | 1.97 | 2.79 |
ABTS IC50 (mg/mL) | 3.39 | 3.36 |
Lutein Standard | Lutein Extract | |
---|---|---|
ABTS IC50 (mg/mL) | 3.44 | 3.36 |
FRAP value (μmol/L) | 320.5 | 561.9 |
Feedstock | Biomass Type | Extraction Method | Lutein Contents (mg/g biomass) | Ref. |
---|---|---|---|---|
Auxenochlorella protothecoides | dried | Solvent: Ace:MeOH (8:2, v/v) | 3.32 | [42] |
Chlorella sorokiniana MB-1 | freeze-dried | Solvent: THF, Temperature: 25 °C, Time: 0.67 h, and S/L ratio: 1 g/L | 5.21 | [43] |
Chlorella salina | - | Solvent: MeOH:10 M KOH (2:1, v/v), Temperature: 40 °C, Time: 0.5 h, and S/L ratio: 66.7 g/L | 2.92 | [44] |
Chlorella zofingiensis B32 | freeze-dried | Solvent: Ethyl ether:MeOH (8:3, v/v) | 4.38 | [45] |
Desmodesmus sp. F51 | freeze-dried | Solvent: Diethyl ether, and S/L ratio: 5 g/L | 7.50 | [46] |
Tetraselmis sp. CTP4 | wet | Solvent: THF, and S/L ratio: 1 g/L | 0.60 | [27] |
Tetraselmis sp. CTP4 | wet | Solvent: Ace, and S/L ratio: 0.67 g/L | 3.17 | [16] |
Tetraselmis sp. DS3 | - | Solvent: 80% Ace | 4.80 | [47] |
Tetraselmis suecica CS-187 | freeze-dried | Solvent: Ace, S/L raio: 10 g/L | 3.81 | [48] |
Tetraselmis suecica | freeze-dried | Solvent: MeOH, Temperature: 42.4 °C, Time: 4 h, and S/L ratio: 125 g/L | 22.3 | This study |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, K.H.; Jang, Y.W.; Kim, H.; Ki, J.-S.; Yoo, H.Y. Optimization of Lutein Recovery from Tetraselmis suecica by Response Surface Methodology. Biomolecules 2021, 11, 182. https://doi.org/10.3390/biom11020182
Lee KH, Jang YW, Kim H, Ki J-S, Yoo HY. Optimization of Lutein Recovery from Tetraselmis suecica by Response Surface Methodology. Biomolecules. 2021; 11(2):182. https://doi.org/10.3390/biom11020182
Chicago/Turabian StyleLee, Kang Hyun, Ye Won Jang, Hansol Kim, Jang-Seu Ki, and Hah Young Yoo. 2021. "Optimization of Lutein Recovery from Tetraselmis suecica by Response Surface Methodology" Biomolecules 11, no. 2: 182. https://doi.org/10.3390/biom11020182
APA StyleLee, K. H., Jang, Y. W., Kim, H., Ki, J.-S., & Yoo, H. Y. (2021). Optimization of Lutein Recovery from Tetraselmis suecica by Response Surface Methodology. Biomolecules, 11(2), 182. https://doi.org/10.3390/biom11020182