Exploration of Freshness Identification Method for Refrigerated Vegetables Based on Metabolomics
<p>PCA diagram of cold chain storage for four types of vegetables: (<b>A</b>) chard, (<b>B</b>) lettuce, (<b>C</b>) crown daisy, (<b>D</b>) tomato.</p> "> Figure 2
<p>PLS-DA diagram of cold chain storage for four types of vegetables: (<b>A</b>) chard, (<b>B</b>) lettuce, (<b>C</b>) crown daisy, and (<b>D</b>) tomato.</p> "> Figure 3
<p>PLS-DA model permutation test results: (<b>A</b>) chard; (<b>B</b>) lettuce; (<b>C</b>) crown daisy; (<b>D</b>) tomato.</p> "> Figure 4
<p>Quantity of Differential Metabolites (BV-chard; LS-lettuce; GC-crown daisy; SL-tomato).</p> "> Figure 5
<p>Metabolic pathway diagram of key differentially expressed substances.</p> "> Figure 6
<p>Detection results of key amino acid metabolites. (<b>A</b>) chard; (<b>B</b>) lettuce; (<b>C</b>) crown daisy; (<b>D</b>) tomato. (BV0 = Day 0; BV10 = Stored in the refrigerator for 10 days; BV20 = Stored in the refrigerator for 20 days; the other three are the same. Ala-alanine; Arg-arginine; Orn-ornithine; Cit-citrulline; Glu acid-glutamic acid).</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Information
2.2. Reagents and Instruments
2.3. Metabolite Extraction
2.3.1. GC–MS Extraction Process
2.3.2. LC–MS/MS Extraction Process
2.3.3. Amino Acid Quantitative Detection and Extraction Process
2.4. Instrument Conditions
2.4.1. GC–MS Analysis
2.4.2. LC–MS/MS Analysis
2.4.3. Conditions for Amino Acid Quantitative Detection Instruments
2.5. Statistical Analysis
3. Results
3.1. Principal Component Analysis (PCA)
3.2. Partial Least Squares Discriminant Analysis (PLS-DA)
3.3. Screening of Differential Metabolites and Enrichment Analysis of Metabolic Pathways
3.4. Screening and Quantitative Detection of Key Differential Metabolites Affecting Metabolism
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bai, L.; Liu, M.; Sun, Y. Overview of Food Preservation and Traceability Technology in the Smart Cold Chain System. Foods 2023, 12, 2881. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.; Lu, H.; Lü, E.; Guo, J.; Xu, J. Strategies on fruits and vegetables cold chain logistics in China. In Proceedings of the World Automation Congress 2012, Puerto Vallarta, Mexico, 24–28 June 2012; pp. 1–4. Available online: https://ieeexplore.ieee.org/abstract/document/6321760 (accessed on 28 October 2024).
- Han, J.W.; Zuo, M.; Zhu, W.Y.; Zuo, J.H.; Lü, E.L.; Yang, X.T. A comprehensive review of cold chain logistics for fresh agricultural products: Current status, challenges, and future trends. Trends Food Sci. Technol. 2021, 109, 536–551. [Google Scholar] [CrossRef]
- Pace, B.; Cefola, M. Innovative Preservation Technology for the Fresh Fruit and Vegetables. Foods 2021, 10, 719. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Zhang, X.; Xu, X. Application and research progress of cold storage technology in cold chain transportation and distribution. J. Therm. Anal. Calorim. 2020, 139, 1419–1434. [Google Scholar] [CrossRef]
- Manickam, S.; Rajagopalan, V.R.; Kambale, R.; Rajasekaran, R.; Kanagarajan, S.; Muthurajan, R. Plant Metabolomics: Current Initiatives and Future Prospects. Curr. Issues Mol. Biol. 2023, 45, 8894–8906. [Google Scholar] [CrossRef]
- Yan, S.; Bhawal, R.; Yin, Z.; Thannhauser, T.W.; Zhang, S. Recent advances in proteomics and metabolomics in plants. Mol. Hortic. 2022, 2, 17. [Google Scholar] [CrossRef]
- Khan, W.A.; Hu, H.; Ann Cuin, T.; Hao, Y.; Ji, X.; Wang, J.; Hu, C. Untargeted metabolomics and comparative flavonoid analysis reveal the nutritional aspects of pak choi. Food Chem. 2022, 383, 132375. [Google Scholar] [CrossRef]
- Liu, P.; Gao, R.; Gao, L.; Bi, J.; Jiang, Y.; Zhang, X.; Wang, Y. Distinct Quality Changes of Asparagus during Growth by Widely Targeted Metabolomics Analysis. J. Agric. Food Chem. 2022, 70, 15999–16009. [Google Scholar] [CrossRef]
- Li, J.; Yan, G.; Duan, X.; Zhang, K.; Zhang, X. Research Progress and Trends in Metabolomics of Fruit Trees. Front. Plant Sci. 2022, 13, 881856. [Google Scholar] [CrossRef]
- Lyu, W.; Yuan, B.; Liu, S.; Simon, J.E.; Wu, Q. Assessment of lemon juice adulteration by targeted screening using LC-UV-MS and untargeted screening using UHPLC-QTOF/MS with machine learning. Food Chem. 2022, 373, 131424. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, A.; Shang, J.; Zhu, Z.; Li, Y.; Wu, X.; Zha, D. Study on browning mechanism of fresh-cut eggplant (Solanum melongena L.) based on metabolomics, enzymatic assays and gene expression. Sci. Rep. 2021, 11, 6937. [Google Scholar] [CrossRef] [PubMed]
- Guo, S.; Ji, Y.; Zheng, Y.; Watkins, C.; Ma, L. Transcriptomic, metabolomic, and ATAC-seq analysis reveal the regulatory mechanism of senescence of post-harvest tomato fruit. Front. Plant Sci. 2023, 14, 1142913. [Google Scholar] [CrossRef]
- Baky, M.H.; Shamma, S.N.; Xiao, J.; Farag, M.A. Comparative aroma and nutrients profiling in six edible versus nonedible cruciferous vegetables using MS based metabolomics. Food Chem. 2022, 383, 132374. [Google Scholar] [CrossRef]
- Beer, F.; Weinert, C.H.; Wellmann, J.; Hillebrand, S.; Ley, J.P.; Soukup, S.T.; Kulling, S.T. Comprehensive metabolome characterization of leaves, internodes, and aerial roots of Vanilla planifolia by untargeted LC-MS and GC × GC-MS. Phytochem. Anal. 2024; online ahead of print. [Google Scholar] [CrossRef] [PubMed]
- Tsugawa, H.; Cajka, T.; Kind, T.; Ma, Y.; Higgins, B.; Ikeda, K.; Kanazawa, M.; VanderGheynst, J.; Fiehn, O.; Arita, M. MS-DIAL: Data-independent MS/MS deconvolution for comprehensive metabolome analysis. Nat. Methods 2015, 12, 523–526. [Google Scholar] [CrossRef] [PubMed]
- Pang, Z.; Lu, Y.; Zhou, G.; Hui, F.; Xu, L.; Viau, C.; Spigelman, A.F.; MacDonald, P.E.; Wishart, D.S.; Li, S.; et al. MetaboAnalyst 6.0: Towards a unified platform for metabolomics data processing, analysis and interpretation. Nucleic Acids Res. 2024, 52, W398–W406. [Google Scholar] [CrossRef] [PubMed]
- Harder, U.; Koletzko, B.; Peissner, W. Quantification of 22 plasma amino acids combining derivatization and ion-pair LC-MS/MS. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2011, 879, 495–504. [Google Scholar] [CrossRef]
- Slocum, R.D. Genes, enzymes and regulation of arginine biosynthesis in plants. Plant Physiol. Biochem. 2005, 43, 729–745. [Google Scholar] [CrossRef]
- Majumdar, R.; Barchi, B.; Turlapati, S.A.; Gagne, M.; Minocha, R.; Long, S.; Minocha, S.C. Glutamate, Ornithine, Arginine, Proline, and Polyamine Metabolic Interactions: The Pathway Is Regulated at the Post-Transcriptional Level. Front. Plant Sci. 2016, 7, 78. [Google Scholar] [CrossRef]
- Yang, H.Q.; Gao, H.J. Physiological function of arginine and its metabolites in plants. J. Plant Physiol. Mol. Biol. 2007, 33, 1–8. Available online: https://pubmed.ncbi.nlm.nih.gov/17287563/ (accessed on 28 October 2024).
- Siddappa, S.; Marathe, G.K. What we know about plant arginases? Plant Physiol. Biochem. 2020, 156, 600–610. [Google Scholar] [CrossRef] [PubMed]
- Liao, H.S.; Chung, Y.H.; Hsieh, M.H. Glutamate: A multifunctional amino acid in plants. Plant Sci. 2022, 318, 111238. [Google Scholar] [CrossRef] [PubMed]
- Walker, H.J.; Steels, C.; Bendell, L.; Clench, M.R.; Read, D.J.; Cameron, D.D.; Burrell, M.M. Understanding metabolism of arginine in biological systems via MALDI imaging. Proteomics 2016, 16, 1690–1694. [Google Scholar] [CrossRef] [PubMed]
- Forde, B.G.; Lea, P.J. Glutamate in plants: Metabolism, regulation, and signalling. J. Exp. Bot. 2007, 58, 2339–2358. [Google Scholar] [CrossRef] [PubMed]
- Schriek, S.; Rückert, C.; Staiger, D.; Pistorius, E.K.; Michel, K.P. Bioinformatic evaluation of L-arginine catabolic pathways in 24 cyanobacteria and transcriptional analysis of genes encoding enzymes of L-arginine catabolism in the cyanobacterium Synechocystis sp. PCC 6803. BMC Genom. 2007, 8, 437. [Google Scholar] [CrossRef]
- Dubos, C.; Huggins, D.; Grant, G.H.; Knight, M.R.; Campbell, M.M. A role for glycine in the gating of plant NMDA-like receptors. Plant J. 2003, 35, 800–810. [Google Scholar] [CrossRef]
- Qiu, X.M.; Sun, Y.Y.; Ye, X.Y.; Li, Z.G. Signaling Role of Glutamate in Plants. Front. Plant Sci. 2019, 10, 1743. [Google Scholar] [CrossRef]
- Akashi, K.; Miyake, C.; Yokota, A. Citrulline, a novel compatible solute in drought-tolerant wild watermelon leaves, is an efficient hydroxyl radical scavenger. FEBS Lett. 2001, 508, 438–442. [Google Scholar] [CrossRef]
- Takahara, K.; Yoshino, A.; Akashi, K.; Yokota, A. Regulation of metabolic pathways for the massive accumulation of citrulline during drought/strong light stress in wild watermelon. Plant Cell Physiol. Suppl. 2006, 2006, 311. [Google Scholar] [CrossRef]
- Akashi, K.; Mifune, Y.; Morita, K.; Ishitsuka, S.; Tsujimoto, H.; Ishihara, T. Spatial accumulation pattern of citrulline and other nutrients in immature and mature watermelon fruits. J. Sci. Food Agric. 2017, 97, 479–487. [Google Scholar] [CrossRef]
- Ludwig, R.A. Arabidopsis chloroplasts dissimilate L-arginine and L-citrulline for use as N source. Plant Physiol. 1993, 101, 429–434. [Google Scholar] [CrossRef] [PubMed]
- Yokota, A.; Kawasaki, S.; Iwano, M.; Nakamura, C.; Miyake, C.; Akashi, K. Citrulline and DRIP-1 protein (ArgE homologue) in drought tolerance of wild watermelon. Ann. Bot. 2002, 89, 825–832. [Google Scholar] [CrossRef] [PubMed]
- Gong, P.; Zhang, J.; Li, H.; Yang, C.; Zhang, C. Transcriptional profiles of drought-responsive genes in modulating transcription signal transduction, and biochemical pathways in tomato. J. Exp. Bot. 2010, 61, 3563–3575. [Google Scholar] [CrossRef] [PubMed]
- Ungureanu, C.; Tihan, G.; Zgârian, R.; Pandelea, G. Bio-Coatings for Preservation of Fresh Fruits and Vegetables. Coatings 2023, 13, 1420. [Google Scholar] [CrossRef]
- Jin, P. Latest Advances in Preservation Technology for Fresh Fruit and Vegetables. Foods 2022, 11, 3236. [Google Scholar] [CrossRef]
- French, D. Amylases: Enzymatic mechanisms. Basic Life Sci. 1981, 18, 151–182. [Google Scholar] [CrossRef]
- Dabeek, W.M.; Marra, M.V. Dietary Quercetin and Kaempferol: Bioavailability and Potential Cardiovascular-Related Bioactivity in Humans. Nutrients 2019, 11, 2288. [Google Scholar] [CrossRef]
- Miean, K.H.; Mohamed, S. Flavonoid (myricetin, quercetin, kaempferol, luteolin, and apigenin) content of edible tropical plants. J. Agric. Food Chem. 2001, 49, 3106–3112. [Google Scholar] [CrossRef]
- Deepika; Maurya, P.K. Health Benefits of Quercetin in Age-Related Diseases. Molecules 2022, 27, 2498. [Google Scholar] [CrossRef]
- Bodbodak, S.; Moshfeghifar, M. 2—Advances in controlled atmosphere storage of fruits and vegetables. In Eco-Friendly Technology for Postharvest Produce Quality; Siddiqui, M.W., Ed.; Academic Press: Cambridge, MA, USA, 2016; pp. 39–76. [Google Scholar] [CrossRef]
- Dong, J.; Gruda, N.; Lam, S.K.; Li, X.; Duan, Z. Effects of Elevated CO2 on Nutritional Quality of Vegetables: A Review. Front. Plant Sci. 2018, 9, 924. [Google Scholar] [CrossRef]
- Blankenship, S.M.; Dole, J.M. 1-Methylcyclopropene: A review. Postharvest Biol. Technol. 2003, 28, 1–25. [Google Scholar] [CrossRef]
- Li, L.; Lichter, A.; Chalupowicz, D.; Gamrasni, D.; Goldberg, T. Effects of the ethylene-action inhibitor 1-methylcyclopropene on postharvest quality of non-climacteric fruit crops. Postharvest Biol. Technol. 2016, 111, 322–329. [Google Scholar] [CrossRef]
- Álvarez-Hernández, M.H.; Martínez-Hernández, G.B.; Avalos-Belmontes, F.; Castillo-Campohermoso, M.A.; Contreras-Esquivel, J.C.; Artés-Hernández, F. Potassium Permanganate-Based Ethylene Scavengers for Fresh Horticultural Produce as an Active Packaging. Food Eng. Rev. 2019, 11, 159–183. [Google Scholar] [CrossRef]
- Miller, F.A.; Silva, C.L.M.; Brandão, T.R.S. A Review on Ozone-Based Treatments for Fruit and Vegetables Preservation. Food Eng. Rev. 2013, 5, 77–106. [Google Scholar] [CrossRef]
- Hasan, M.U.; Riaz, R.; Malik, A.U.; Khan, A.S.; Anwar, R.; Rehman, R.N.U.; Ali, S. Potential of Aloe vera gel coating for storage life extension and quality conservation of fruits and vegetables: An overview. J. Food Biochem. 2021, 45, e13640. [Google Scholar] [CrossRef]
- Wu, J.; Zhang, L.; Fan, K. Recent advances in polysaccharide-based edible coatings for preservation of fruits and vegetables: A review. Crit. Rev. Food Sci. Nutr. 2024, 64, 3823–3838. [Google Scholar] [CrossRef]
- Jiang, Q.; Zhang, M.; Xu, B. Application of ultrasonic technology in postharvested fruits and vegetables storage: A review. Ultrason. Sonochemistry 2020, 69, 105261. [Google Scholar] [CrossRef]
- Tchonkouang, R.D.; Lima, A.R.; Quintino, A.C.; Cristofoli, N.L.; Vieira, M.C. UV-C Light: A Promising Preservation Technology for Vegetable-Based Nonsolid Food Products. Foods 2023, 12, 3227. [Google Scholar] [CrossRef]
Storage Time/d | Sample Number | |
---|---|---|
Chard | 0 | BV-0 |
10 | BV-10 | |
20 | BV-20 | |
Lettuce | 0 | LS-0 |
10 | LS-10 | |
20 | LS-20 | |
Crown daisy | 0 | GC-0 |
10 | GC-10 | |
20 | GC-20 | |
Tomato | 0 | SL-0 |
10 | SL-10 | |
20 | SL-20 |
Pathway Name | Total | Hits | p-Value | Impact | |
---|---|---|---|---|---|
Chard | Arginine biosynthesis | 18 | 4 | 0.00 | 0.22 |
Alanine, aspartate and glutamate metabolism | 22 | 4 | 0.00 | 0.18 | |
Indole alkaloid biosynthesis | 4 | 2 | 0.00 | 0.50 | |
Lettuce | Arginine biosynthesis | 18 | 6 | 0.00 | 0.37 |
Alanine, aspartate and glutamate metabolism | 22 | 6 | 0.00 | 0.66 | |
Glyoxylate and dicarboxylate metabolism | 29 | 5 | 0.00 | 0.22 | |
Arginine and proline metabolism | 32 | 5 | 0.00 | 0.22 | |
Crown daisy | Arginine biosynthesis | 18 | 6 | 0.00 | 0.37 |
Valine, leucine, and isoleucine biosynthesis | 22 | 6 | 0.00 | 0.15 | |
Arginine and proline metabolism | 32 | 6 | 0.00 | 0.24 | |
Alanine, aspartate and glutamate metabolism | 22 | 5 | 0.00 | 0.54 | |
Galactose metabolism | 27 | 5 | 0.00 | 0.14 | |
Citrate cycle (TCA cycle) | 20 | 4 | 0.01 | 0.21 | |
Starch and sucrose metabolism | 22 | 4 | 0.01 | 0.43 | |
C5-Branched dibasic acid metabolism | 6 | 2 | 0.02 | 0.50 | |
Glyoxylate and dicarboxylate metabolism | 29 | 4 | 0.02 | 0.16 | |
Cysteine and methionine metabolism | 47 | 5 | 0.03 | 0.31 | |
Ascorbate and aldarate metabolism | 20 | 3 | 0.04 | 0.16 | |
Carbon fixation in photosynthetic organisms | 21 | 3 | 0.04 | 0.10 | |
Tomato | Alanine, aspartate and glutamate metabolism | 22 | 6 | 0.00 | 0.22 |
Arginine biosynthesis | 18 | 5 | 0.00 | 0.29 | |
Cysteine and methionine metabolism | 47 | 7 | 0.00 | 0.44 | |
Pyruvate metabolism | 23 | 5 | 0.00 | 0.29 | |
Pantothenate and CoA biosynthesis | 25 | 5 | 0.00 | 0.16 | |
Sulfur metabolism | 15 | 4 | 0.00 | 0.38 | |
Glyoxylate and dicarboxylate metabolism | 29 | 5 | 0.00 | 0.18 | |
Citrate cycle (TCA cycle) | 20 | 4 | 0.00 | 0.11 | |
Valine, leucine, and isoleucine biosynthesis | 22 | 4 | 0.00 | 0.13 | |
Nitrogen metabolism | 12 | 3 | 0.01 | 0.24 | |
Tyrosine metabolism | 17 | 3 | 0.02 | 0.20 | |
Arginine and proline metabolism | 32 | 4 | 0.02 | 0.11 | |
Glycine, serine and threonine metabolism | 33 | 4 | 0.02 | 0.25 | |
Starch and sucrose metabolism | 22 | 3 | 0.03 | 0.42 |
Name | p-Value | FC | VIP | RT | MASS | Formula | |
---|---|---|---|---|---|---|---|
Chard | L-Arginine | 0.01 | 19.38 | 1.43 | 1.921 | 175.119 | C6H14N4O2 |
L-Ornithine | 0.01 | 9.14 | 1.02 | 1.389 | 116.071 | C5H12N2O2 | |
L-Asparagine | 0.03 | 4.84 | 1.19 | 1.564 | 133.061 | C4H8N2O3 | |
L-Alanine | 0.03 | −1.75 | 1.48 | 6.801 | 141.070 | C3H7NO2 | |
Lettuce | L-Ornithine | 0.00 | 4.29 | 1.39 | 1.389 | 116.071 | C5H12N2O2 |
L-Glutamate | 0.01 | 38.48 | 1.53 | 7.807 | 261.144 | C11H20N2O5 | |
L-Asparagine | 0.03 | 2.09 | 1.02 | 1.564 | 133.061 | C4H8N2O3 | |
L-Arginine | 0.02 | 9.19 | 1.18 | 1.921 | 175.119 | C6H14N4O2 | |
L-Alanine | 0.04 | 2.08 | 1.27 | 5.812 | 141.070 | C3H7NO2 | |
Crown daisy | L-Ornithine | 0.00 | 2.85 | 1.24 | 1.389 | 116.071 | C5H12N2O2 |
L-Glutamate | 0.00 | 0.09 | 1.30 | 7.807 | 261.144 | C11H20N2O5 | |
L-Arginine | 0.00 | 0.19 | 1.03 | 1.921 | 175.119 | C6H14N4O2 | |
Tomato | L-Asparagine | 0.00 | 4.43 | 1.13 | 1.564 | 133.061 | C4H8N2O3 |
L-Alanine | 0.00 | 3.40 | 1.27 | 5.812 | 43.13 | C3H7NO2 | |
L-Glutamine | 0.00 | 21.74 | 1.52 | 7.807 | 261.144 | C11H20N2O5 | |
L-Citrulline | 0.01 | 5.02 | 1.19 | 1.403 | 159.076 | C6H13N3O3 | |
L-Ornithine | 0.01 | 4.02 | 1.12 | 1.389 | 116.071 | C5H12N2O2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Meng, Z.; Zhang, H.; Wang, J.; Ai, L.; Kang, W. Exploration of Freshness Identification Method for Refrigerated Vegetables Based on Metabolomics. Metabolites 2024, 14, 665. https://doi.org/10.3390/metabo14120665
Meng Z, Zhang H, Wang J, Ai L, Kang W. Exploration of Freshness Identification Method for Refrigerated Vegetables Based on Metabolomics. Metabolites. 2024; 14(12):665. https://doi.org/10.3390/metabo14120665
Chicago/Turabian StyleMeng, Zixuan, Haichao Zhang, Jing Wang, Lianfeng Ai, and Weijun Kang. 2024. "Exploration of Freshness Identification Method for Refrigerated Vegetables Based on Metabolomics" Metabolites 14, no. 12: 665. https://doi.org/10.3390/metabo14120665
APA StyleMeng, Z., Zhang, H., Wang, J., Ai, L., & Kang, W. (2024). Exploration of Freshness Identification Method for Refrigerated Vegetables Based on Metabolomics. Metabolites, 14(12), 665. https://doi.org/10.3390/metabo14120665