Backstepping-Based Nonsingular Terminal Sliding Mode Control for Finite-Time Trajectory Tracking of a Skid-Steer Mobile Robot
<p>SSMR with an ICR of <math display="inline"><semantics> <msub> <mi>X</mi> <mi>ICR</mi> </msub> </semantics></math>; kinematic parameters of <span class="html-italic">a</span>, <span class="html-italic">b</span>, and <span class="html-italic">c</span>; a robot heading angle of <math display="inline"><semantics> <mi>θ</mi> </semantics></math>; velocities at the center of mass (COM) of <math display="inline"><semantics> <mi>υ</mi> </semantics></math>, <math display="inline"><semantics> <msub> <mi>υ</mi> <mi>y</mi> </msub> </semantics></math>, and <math display="inline"><semantics> <mi>ω</mi> </semantics></math>; and velocity components of <math display="inline"><semantics> <msub> <mi>υ</mi> <mrow> <mi>i</mi> <mi>x</mi> </mrow> </msub> </semantics></math> and <math display="inline"><semantics> <msub> <mi>υ</mi> <mrow> <mi>i</mi> <mi>y</mi> </mrow> </msub> </semantics></math> with a velocity vector of <math display="inline"><semantics> <msub> <mi>υ</mi> <mi mathvariant="bold-italic">i</mi> </msub> </semantics></math> for the <math display="inline"><semantics> <mrow> <mi>i</mi> <mi>th</mi> </mrow> </semantics></math> wheel for <math display="inline"><semantics> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mo>…</mo> <mo>,</mo> <mn>4</mn> </mrow> </semantics></math>.</p> "> Figure 2
<p>The complete proposed control with reference velocities (<math display="inline"><semantics> <msub> <mi mathvariant="bold-italic">q</mi> <mi mathvariant="bold-italic">ref</mi> </msub> </semantics></math>) of <math display="inline"><semantics> <msub> <mi>υ</mi> <mrow> <mi>r</mi> <mi>e</mi> <mi>f</mi> </mrow> </msub> </semantics></math> and <math display="inline"><semantics> <msub> <mi>ω</mi> <mrow> <mi>r</mi> <mi>e</mi> <mi>f</mi> </mrow> </msub> </semantics></math>, an actual robot pose of <math display="inline"><semantics> <mi mathvariant="bold-italic">q</mi> </semantics></math>, a transformation matrix of <math display="inline"><semantics> <mrow> <mi mathvariant="bold-italic">T</mi> <mo>(</mo> <mi>θ</mi> <mo>)</mo> </mrow> </semantics></math>, an outer-loop position error of <math display="inline"><semantics> <mi mathvariant="bold-italic">e</mi> </semantics></math> with a backstepping control of <math display="inline"><semantics> <msub> <mover accent="true"> <mi mathvariant="bold-italic">z</mi> <mo>˙</mo> </mover> <mi mathvariant="bold-italic">c</mi> </msub> </semantics></math>, an inner-loop velocity error of <math display="inline"><semantics> <msub> <mover accent="true"> <mi mathvariant="bold-italic">e</mi> <mo>˙</mo> </mover> <mi>z</mi> </msub> </semantics></math> with a NTSMC of <math display="inline"><semantics> <mi mathvariant="bold-italic">τ</mi> </semantics></math>, and a torque disturbance of <math display="inline"><semantics> <msub> <mi mathvariant="bold-italic">τ</mi> <mi mathvariant="bold-italic">d</mi> </msub> </semantics></math>.</p> "> Figure 3
<p>The time histories of the command velocity (<math display="inline"><semantics> <msub> <mi>υ</mi> <mi>c</mi> </msub> </semantics></math>) and the true velocity (<math display="inline"><semantics> <mi>υ</mi> </semantics></math>) during simulation.</p> "> Figure 4
<p>The time histories of the angular velocity command (<math display="inline"><semantics> <msub> <mi>ω</mi> <mi>c</mi> </msub> </semantics></math>) and the true angular velocity (<math display="inline"><semantics> <mi>ω</mi> </semantics></math>) during simulation.</p> "> Figure 5
<p>A comparison between the desired robot pose (<math display="inline"><semantics> <msub> <mi mathvariant="bold-italic">q</mi> <mi mathvariant="bold-italic">ref</mi> </msub> </semantics></math>) and the actual pose (<math display="inline"><semantics> <mi mathvariant="bold-italic">q</mi> </semantics></math>) in the simulation.</p> "> Figure 6
<p>Robot’s trajectory following a desired circular path.</p> "> Figure 7
<p>Input torque produced by the left side of the wheel (<math display="inline"><semantics> <msub> <mi>τ</mi> <mi>L</mi> </msub> </semantics></math>) and the right side of the wheel (<math display="inline"><semantics> <msub> <mi>τ</mi> <mi>R</mi> </msub> </semantics></math>).</p> "> Figure 8
<p>The time history of sliding surfaces <math display="inline"><semantics> <msub> <mi>S</mi> <mn>1</mn> </msub> </semantics></math> and <math display="inline"><semantics> <msub> <mi>S</mi> <mn>2</mn> </msub> </semantics></math>.</p> ">
Abstract
:1. Introduction
2. Kinematic Model
3. Dynamic Model
4. Control Problem Formulation
5. Numerical Results
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Emmi, L.; Fernández, R.; Gonzalez-de Santos, P. An efficient guiding manager for ground mobile robots in agriculture. Robotics 2023, 13, 6. [Google Scholar] [CrossRef]
- Jun, J.Y.; Hua, M.D.; Benamar, F. A trajectory tracking control design for a skid-steering mobile robot by adapting its desired instantaneous center of rotation. In Proceedings of the 53rd IEEE Conference on Decision and Control, Los Angeles, CA, USA, 15–17 December 2014; pp. 4554–4559. [Google Scholar]
- Ostafew, C.J.; Schoellig, A.P.; Barfoot, T.D. Learning-based nonlinear model predictive control to improve vision-based mobile robot path-tracking in challenging outdoor environments. In Proceedings of the 2014 IEEE International Conference on Robotics and Automation (ICRA), Hong Kong, China, 31 May–7 June 2014; pp. 4029–4036. [Google Scholar]
- Srikonda, S.; Norris, W.R.; Nottage, D.; Soylemezoglu, A. Deep Reinforcement Learning for Autonomous Dynamic Skid Steer Vehicle Trajectory Tracking. Robotics 2022, 11, 95. [Google Scholar] [CrossRef]
- Juman, M.A.; Wong, Y.W.; Rajkumar, R.K.; Kow, K.W.; Yap, Z.W. An incremental unsupervised learning based trajectory controller for a 4 wheeled skid steer mobile robot. Eng. Appl. Artif. Intell. 2019, 85, 385–392. [Google Scholar] [CrossRef]
- Zhu, C.W.; Hill, E.; Biglarbegian, M.; Gadsden, S.A.; Cline, J.A. Smart agriculture: Development of a skid-steer autonomous robot with advanced model predictive controllers. Robot. Auton. Syst. 2023, 162, 104364. [Google Scholar]
- Yi, J.; Song, D.; Zhang, J.; Goodwin, Z. Adaptive trajectory tracking control of skid-steered mobile robots. In Proceedings of the 2007 IEEE International Conference on Robotics and Automation, Rome, Italy, 10–14 April 2007; pp. 2605–2610. [Google Scholar]
- Kozłowski, K.; Pazderski, D. Modeling and control of a 4-wheel skid-steering mobile robot. Int. J. Appl. Math. Comput. Sci. 2004, 14, 477–496. [Google Scholar]
- Prado, A.J.; Torres-Torriti, M.; Cheein, F.A. Distributed tube-based nonlinear MPC for motion control of skid-steer robots with terra-mechanical constraints. IEEE Robot. Autom. Lett. 2021, 6, 8045–8052. [Google Scholar] [CrossRef]
- Prado, Á.J.; Torres-Torriti, M.; Yuz, J.; Cheein, F.A. Tube-based nonlinear model predictive control for autonomous skid-steer mobile robots with tire–terrain interactions. Control Eng. Pract. 2020, 101, 104451. [Google Scholar] [CrossRef]
- Yue, X.; Chen, J.; Li, Y.; Zou, R.; Sun, Z.; Cao, X.; Zhang, S. Path tracking control of skid-steered mobile robot on the slope based on fuzzy system and model predictive Control. Int. J. Control. Autom. Syst. 2022, 20, 1365–1376. [Google Scholar] [CrossRef]
- Zhu, Y.; Liu, Z.; Jiang, B.; Zhu, Q. Adaptive fixed-time fuzzy fault-tolerant control for robotic manipulator with unknown friction and composite actuator faults. J. Frankl. Inst. 2024, 361, 107025. [Google Scholar] [CrossRef]
- Caracciolo, L.; De Luca, A.; Iannitti, S. Trajectory tracking control of a four-wheel differentially driven mobile robot. In Proceedings of the 1999 IEEE international conference on robotics and automation (Cat. No. 99CH36288C), Detroit, MI, USA, 10–15 May 1999; Volume 4, pp. 2632–2638. [Google Scholar]
- Slotine, J.J.E.; Li, W. Applied Nonlinear Control; Prentice Hall: Englewood Cliffs, NJ, USA, 1991. [Google Scholar]
- Edwards, C.; Spurgeon, S. Sliding Mode Control: Theory and Applications; CRC Press: Boca Raton, FL, USA, 1998. [Google Scholar]
- Wang, X.; van Kampen, E.J.; Chu, Q. Quadrotor fault-tolerant incremental nonsingular terminal sliding mode control. Aerosp. Sci. Technol. 2019, 95, 105514. [Google Scholar] [CrossRef]
- Yu, X.; Feng, Y.; Man, Z. Terminal sliding mode control—An overview. IEEE Open J. Ind. Electron. Soc. 2020, 2, 36–52. [Google Scholar] [CrossRef]
- Feng, Y.; Yu, X.; Man, Z. Non-singular terminal sliding mode control of rigid manipulators. Automatica 2002, 38, 2159–2167. [Google Scholar] [CrossRef]
- Wu, Y.; Yu, X.; Man, Z. Terminal sliding mode control design for uncertain dynamic systems. Syst. Control Lett. 1998, 34, 281–287. [Google Scholar] [CrossRef]
- Sun, Z.; Zheng, J.; Wang, H.; Man, Z. Adaptive fast non-singular terminal sliding mode control for a vehicle steer-by-wire system. IET Control Theory Appl. 2017, 11, 1245–1254. [Google Scholar] [CrossRef]
- Lian, S.; Meng, W.; Lin, Z.; Shao, K.; Zheng, J.; Li, H.; Lu, R. Adaptive attitude control of a quadrotor using fast nonsingular terminal sliding mode. IEEE Trans. Ind. Electron. 2021, 69, 1597–1607. [Google Scholar] [CrossRef]
- Li, X.; Sun, G.; Han, S.; Shao, X. Fractional-order nonsingular terminal sliding mode tension control for the deployment of space tethered satellite. IEEE Trans. Aerosp. Electron. Syst. 2021, 57, 2759–2770. [Google Scholar] [CrossRef]
- Ding, H.; Li, X.; Guo, X.; Li, S.; Zhang, Y.; Ma, K.; Guerrero, J.M. Passivity-Based Nonsingular Terminal Sliding-Mode Control for LC-Filtered Current Source Converter. IEEE Trans. Power Electron. 2024, 39, 9367–9381. [Google Scholar] [CrossRef]
- Liang, X.; Wang, H.; Zhang, Y. Adaptive nonsingular terminal sliding mode control for rehabilitation robots. Comput. Electr. Eng. 2022, 99, 107718. [Google Scholar] [CrossRef]
- Xiong, R.; Li, L.; Zhang, C.; Ma, K.; Yi, X.; Zeng, H. Path tracking of a four-wheel independently driven skid steer robotic vehicle through a cascaded ntsm-pid control method. IEEE Trans. Instrum. Meas. 2022, 71, 1–11. [Google Scholar] [CrossRef]
- Yi, S.; Zhai, J. Adaptive second-order fast nonsingular terminal sliding mode control for robotic manipulators. ISA Trans. 2019, 90, 41–51. [Google Scholar] [CrossRef]
- Zhai, J.; Xu, G. A novel non-singular terminal sliding mode trajectory tracking control for robotic manipulators. IEEE Trans. Circuits Syst. II Express Briefs 2020, 68, 391–395. [Google Scholar] [CrossRef]
- Choi, J.; Baek, J.; Lee, W.; Lee, Y.S.; Han, S. Adaptive model-free control with nonsingular terminal sliding-mode for application to robot manipulators. IEEE Access 2020, 8, 169897–169907. [Google Scholar] [CrossRef]
- Huskić, G.; Buck, S.; Herrb, M.; Lacroix, S.; Zell, A. High-speed path following control of skid-steered vehicles. Int. J. Robot. Res. 2019, 38, 1124–1148. [Google Scholar] [CrossRef]
- Flögel, D.; Bhatt, N.P.; Hashemi, E. Infrastructure-aided localization and state estimation for autonomous mobile robots. Robotics 2022, 11, 82. [Google Scholar] [CrossRef]
- Hacioglu, Y.; Yagiz, N. Fuzzy robust backstepping with estimation for the control of a robot manipulator. Trans. Inst. Meas. Control 2019, 41, 2816–2825. [Google Scholar] [CrossRef]
- Krstic, M.; Kokotovic, P.V.; Kanellakopoulos, I. Nonlinear and Adaptive Control Design; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 1995. [Google Scholar]
- Luo, Y.; Zhao, S.; Yang, D.; Zhang, H. A new robust adaptive neural network backstepping control for single machine infinite power system with TCSC. IEEE/CAA J. Autom. Sin. 2019, 7, 48–56. [Google Scholar] [CrossRef]
- Caiazzo, B.; Lui, D.G.; Petrillo, A.; Santini, S. Resilient adaptive finite-time fault-tolerant control for heterogeneous uncertain and nonlinear autonomous connected vehicles platoons. IEEE Open J. Intell. Transp. Syst. 2023, 4, 481–492. [Google Scholar] [CrossRef]
- Lin, Y.C.; Nguyen, H.L.T.; Yang, J.F.; Chiou, H.J. A reinforcement learning backstepping-based control design for a full vehicle active Macpherson suspension system. IET Control Theory Appl. 2022, 16, 1417–1430. [Google Scholar] [CrossRef]
- Alipour, M.; Zarei, J.; Razavi-Far, R.; Saif, M.; Mijatovic, N.; Dragičević, T. Observer-based backstepping sliding mode control design for microgrids feeding a constant power load. IEEE Trans. Ind. Electron. 2022, 70, 465–473. [Google Scholar] [CrossRef]
- Wu, X.; Jin, P.; Zou, T.; Qi, Z.; Xiao, H.; Lou, P. Backstepping trajectory tracking based on fuzzy sliding mode control for differential mobile robots. J. Intell. Robot. Syst. 2019, 96, 109–121. [Google Scholar] [CrossRef]
- Kanayama, Y.; Kimura, Y.; Miyazaki, F.; Noguchi, T. A stable tracking control method for an autonomous mobile robot. In Proceedings of the IEEE International Conference on Robotics and Automation, Cincinnati, OH, USA, 13–18 May 1990; pp. 384–389. [Google Scholar]
- Zou, T.; Angeles, J.; Hassani, F. Dynamic modeling and trajectory tracking control of unmanned tracked vehicles. Robot. Auton. Syst. 2018, 110, 102–111. [Google Scholar] [CrossRef]
- Xie, H.; Zheng, J.; Sun, Z.; Wang, H.; Chai, R. Finite-time tracking control for nonholonomic wheeled mobile robot using adaptive fast nonsingular terminal sliding mode. Nonlinear Dyn. 2022, 110, 1437–1453. [Google Scholar] [CrossRef]
- Zhou, Z.; Tang, G.; Xu, R.; Han, L.; Cheng, M. A novel continuous nonsingular finite–time control for underwater robot manipulators. J. Mar. Sci. Eng. 2021, 9, 269. [Google Scholar] [CrossRef]
- Hong, Y.; Huang, J.; Xu, Y. On an output feedback finite-time stabilization problem. IEEE Trans. Autom. Control 2001, 46, 305–309. [Google Scholar] [CrossRef]
- Yu, S.; Yu, X.; Shirinzadeh, B.; Man, Z. Continuous finite-time control for robotic manipulators with terminal sliding mode. Automatica 2005, 41, 1957–1964. [Google Scholar] [CrossRef]
Parameter | Value |
---|---|
a | 0.55 m |
b | 0.37 m |
0.63 m | |
r | 0.2 m |
m | 116 kg |
I | 20 kgm2 |
m | |
Constant | Value |
---|---|
22 | |
= | |
= | |
= | |
= | 20 |
= |
RMS Error in X-Direction | RMS Error in Y-Direction | RMS Error in |
---|---|---|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Teji, M.D.; Zou, T.; Zeleke, D.S. Backstepping-Based Nonsingular Terminal Sliding Mode Control for Finite-Time Trajectory Tracking of a Skid-Steer Mobile Robot. Robotics 2024, 13, 180. https://doi.org/10.3390/robotics13120180
Teji MD, Zou T, Zeleke DS. Backstepping-Based Nonsingular Terminal Sliding Mode Control for Finite-Time Trajectory Tracking of a Skid-Steer Mobile Robot. Robotics. 2024; 13(12):180. https://doi.org/10.3390/robotics13120180
Chicago/Turabian StyleTeji, Mulugeta Debebe, Ting Zou, and Dinku Seyoum Zeleke. 2024. "Backstepping-Based Nonsingular Terminal Sliding Mode Control for Finite-Time Trajectory Tracking of a Skid-Steer Mobile Robot" Robotics 13, no. 12: 180. https://doi.org/10.3390/robotics13120180
APA StyleTeji, M. D., Zou, T., & Zeleke, D. S. (2024). Backstepping-Based Nonsingular Terminal Sliding Mode Control for Finite-Time Trajectory Tracking of a Skid-Steer Mobile Robot. Robotics, 13(12), 180. https://doi.org/10.3390/robotics13120180