Characterization of the N6-Methyladenosine Gene Family in Peanuts and Its Role in Abiotic Stress
<p>Role of plant m<sup>6</sup>A gene in stress response.</p> "> Figure 2
<p>Chromosomal distribution of the peanut m<sup>6</sup>A gene. Use the left ruler of the image to estimate the location of the m<sup>6</sup>A gene and the size of each chromosome; genes are shown at the right end of each chromosome.</p> "> Figure 3
<p>Phylogenetic tree of the peanut m<sup>6</sup>A gene. The phylogenetic tree of m<sup>6</sup>A genes were constructed using maximum likelihood (ML). (<b>A</b>) Phylogenetic tree was constructed based on the protein sequences of 22 eraser genes; (<b>B</b>) phylogenetic tree was constructed based on the protein sequences of 19 reader genes.</p> "> Figure 4
<p>Gene structure and conserved domains of the peanut m<sup>6</sup>A gene. (<b>A</b>) The distribution of ten conserved motifs in the m<sup>6</sup>A gene was analyzed by MEME. Different colors represent different patterns and positions; (<b>B</b>) analysis of the gene structure of the m<sup>6</sup>A gene. The yellow rectangle represents the exon, the light green rectangle represents the UTR, and the gray line connecting the two exons represents the intron.</p> "> Figure 5
<p>Collinearity analysis of the peanut m<sup>6</sup>A gene. The red lines represent the presence of collinearity between genes.</p> "> Figure 6
<p>Collinearity of the m<sup>6</sup>A gene among peanut, <span class="html-italic">Arabidopsis thaliana</span> and soybean. (<b>A</b>), Collinearity analysis of the writer gene. (<b>B</b>) Collinearity analysis of the eraser gene. (<b>C</b>) Collinearity analysis of the reader gene. The gray line represents the collinearity between all members, and the red line represents the collinearity between members of the m<sup>6</sup>A gene family.</p> "> Figure 7
<p>Promoter element analysis of the peanut m<sup>6</sup>A gene. Different cis-regulatory elements in the promoter are denoted by square bars of different colors.</p> "> Figure 8
<p>The heatmap presented the expression pattern of m<sup>6</sup>A genes in 15 tissues in peanut. The utilizing row-wise normalization with Z-scores based on previously published RNA-seq data. Main leaf, main stem leaf; Root, roots of 10 days postemergence; Flwr, petals, keel, and hypanthium sepals; AerPeg, elongating aerial pegs; Subpeg, elongating subterranean pegs; ExpPod, Pattee 1 pod; GynStlk, Pattee 1 stalk of gynophore; PodPt3, Pattee 3 pod; PerPt5, Pattee 5 pericarp; SdPt5, Pattee 5 seed; PerPt6, Pattee 6 pericarp; SdPt6, Pattee 6 seed; SdPt7, Pattee 7 seed; SdPt8, Pattee 8 seed; SdPt10, Pattee 10 seed [<a href="#B26-ijpb-16-00007" class="html-bibr">26</a>].</p> "> Figure 9
<p>The qRT-PCR showing the expression levels of 9 m<sup>6</sup>A genes.</p> "> Figure 10
<p>Expression of members of the peanut m<sup>6</sup>A gene under light and mechanical stress. The utilizing row-wise normalization with Z-scores based on previously published RNA-seq data. Peanut pods were immediately wrapped in air-permeable black paper bags to simulate the loss of mechanical stress alone, and D samples collected after 58 h of treatment (day 3) were designated D3. The pods were exposed to air for 58 h (day 3) to simulate darkness and loss of mechanical stress and were designated as sample L3. Two biological replicates were performed for each sample.</p> "> Figure 11
<p>m<sup>6</sup>A protein–protein interaction network.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Materials
2.2. Identification of m6A Gene Family Members in Peanut
2.3. Molecular Characterization and Chromosomal Localization
2.4. Phylogenetic Analysis and Gene Structure Analysis
2.5. Predictive Analysis of Promoter Elements
2.6. RNA-Seq and Bioinformatics Analysis
3. Results
3.1. Physicochemical Properties and Chromosomal Localization of m6A Gene
3.2. Phylogenetic Analysis of the m6A Gene in Peanut
3.3. Analysis of the Gene Structure of Peanut m6A Gene
3.4. Collinearity Analysis of the m6A Gene Family in Peanut
3.5. Analysis of Cis Elements in the Promoter of Peanut m6A Gene
3.6. Expression of the m6A Gene in Different Tissues in Peanut
3.7. Expression of the m6A Gene Under Light and Mechanical Pressure
3.8. Interaction Network of Peanut m6A Protein
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhao, K.; Wang, L.; Qiu, D.; Cao, Z.; Wang, K.; Li, Z.; Wang, X.; Wang, J.; Ma, Q.; Cao, D.; et al. PSW1, an LRR receptor kinase, regulates pod size in peanut. Plant Biotechnol. J. 2023, 21, 2113–2124. [Google Scholar] [CrossRef]
- Cui, Y.; Bian, J.; Guan, Y.; Xu, F.; Han, X.; Deng, X.; Liu, X. Genome-Wide Analysis and Expression Profiles of Ethylene Signal Genes and Apetala2/Ethylene-Responsive Factors in Peanut (Arachis hypogaea L.). Front. Plant Sci. 2022, 13, 828482. [Google Scholar] [CrossRef]
- Smith, B.W. Arachis hypogaea, Aerial Flower and Subterranean Fruit. Am. J. Bot. 1950, 37, 802–815. [Google Scholar] [CrossRef]
- Zhou, L.; Gao, G.; Tang, R.; Wang, W.; Wang, Y.; Tian, S.; Qin, G. m6A-mediated regulation of crop development and stress responses. Plant Biotechnol. J. 2022, 20, 1447–1455. [Google Scholar] [CrossRef]
- Shen, L.; Liang, Z.; Gu, X.; Chen, Y.; Teo, Z.W.; Hou, X.; Cai, W.M.; Dedon, P.C.; Liu, L.; Yu, H. N(6)-Methyladenosine RNA Modification Regulates Shoot Stem Cell Fate in Arabidopsis. Dev. Cell 2016, 38, 186–200. [Google Scholar] [CrossRef]
- Tang, J.; Chen, S.; Jia, G. Detection, regulation, and functions of RNA N(6)-methyladenosine modification in plants. Plant Commun. 2023, 4, 100546. [Google Scholar] [CrossRef]
- Zhao, Y.; Guo, Q.; Cao, S.; Tian, Y.; Han, K.; Sun, Y.; Li, J.; Yang, Q.; Ji, Q.; Sederoff, R.; et al. Genome-wide identification of the AlkB homologs gene family, PagALKBH9B and PagALKBH10B regulated salt stress response in Populus. Front. Plant Sci. 2022, 13, 994154. [Google Scholar] [CrossRef] [PubMed]
- Cai, Z.; Tang, Q.; Song, P.; Tian, E.; Yang, J.; Jia, G. The m6A reader ECT8 is an abiotic stress sensor that accelerates mRNA decay in Arabidopsis. Plant Cell 2024, 36, 2908–2926. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Su, T.; Zhang, S.; Zhang, Y.; Wong, C.E.; Ma, J.; Shao, Y.; Hua, C.; Shen, L.; Yu, H. N(6)-methyladenosine-mediated feedback regulation of abscisic acid perception via phase-separated ECT8 condensates in Arabidopsis. Nat. Plants 2024, 10, 469–482. [Google Scholar] [CrossRef] [PubMed]
- Hou, N.; Li, C.; He, J.; Liu, Y.; Yu, S.; Malnoy, M.; Tahir, M.M.; Xu, L.; Ma, F.; Guan, Q. MdMTA-mediated m6A modification enhances drought tolerance by promoting mRNA stability and translation efficiency of genes involved in lignin deposition and oxidative stress. New Phytol. 2022, 234, 1294–1314. [Google Scholar] [CrossRef]
- Zhao, Y.; Han, K.J.; Tian, Y.T.; Jia, K.H.; El-Kassaby, Y.A.; Wu, Y.; Liu, J.; Si, H.Y.; Sun, Y.H.; Li, Y. N(6)-methyladenosine mRNA methylation positively regulated the response of poplar to salt stress. Plant Cell Environ. 2024, 47, 1797–1812. [Google Scholar] [CrossRef]
- Hu, J.; Cai, J.; Park, S.J.; Lee, K.; Li, Y.; Chen, Y.; Yun, J.Y.; Xu, T.; Kang, H. N(6)-Methyladenosine mRNA methylation is important for salt stress tolerance in Arabidopsis. Plant J. 2021, 106, 1759–1775. [Google Scholar] [CrossRef] [PubMed]
- Zheng, H.; Dang, Y.; Gao, Y.; Li, S.; Wu, F.; Zhang, F.; Wang, X.; Du, X.; Wang, L.; Song, J.; et al. An mRNA methylase and demethylase regulate sorghum salt tolerance by mediating N6-methyladenosine modification. Plant Physiol. 2024, 196, 3048–3070. [Google Scholar] [CrossRef]
- Zhao, K.; Li, Z.; Ke, Y.; Ren, R.; Cao, Z.; Li, Z.; Wang, K.; Wang, X.; Wang, J.; Ma, Q.; et al. Dynamic N(6)-methyladenosine RNA modification regulates peanut resistance to bacterial wilt. New Phytol. 2024, 242, 231–246. [Google Scholar] [CrossRef] [PubMed]
- Guo, T.; Liu, C.; Meng, F.; Hu, L.; Fu, X.; Yang, Z.; Wang, N.; Jiang, Q.; Zhang, X.; Ma, F. The m6A reader MhYTP2 regulates MdMLO19 mRNA stability and antioxidant genes translation efficiency conferring powdery mildew resistance in apple. Plant Biotechnol. J. 2022, 20, 511–525. [Google Scholar] [CrossRef] [PubMed]
- Bertioli, D.J.; Jenkins, J.; Clevenger, J.; Dudchenko, O.; Gao, D.; Seijo, G.; Leal-Bertioli, S.C.M.; Ren, L.; Farmer, A.D.; Pandey, M.K.; et al. The genome sequence of segmental allotetraploid peanut Arachis hypogaea. Nat. Genet. 2019, 51, 877–884. [Google Scholar] [CrossRef] [PubMed]
- Gasteiger, E.; Hoogland, C.; Gattiker, A.; Duvaud, S.E.; Wilkins, M.R.; Appel, R.D.; Bairoch, A. Protein Identification and Analysis Tools on the ExPASy Server. In The Proteomics Protocols Handbook; Human Press Inc.: Totowa, NJ, USA, 2005; pp. 571–607. [Google Scholar]
- Chou, K.C.; Shen, H.B. Plant-mPLoc: A top-down strategy to augment the power for predicting plant protein subcellular localization. PLoS ONE 2010, 5, e11335. [Google Scholar] [CrossRef]
- Chou, K.C.; Shen, H.B. Cell-PLoc: A package of Web servers for predicting subcellular localization of proteins in various organisms. Nat Protoc. 2008, 3, 153–162. [Google Scholar] [CrossRef]
- Chou, K.C.; Shen, H.B. Large-scale plant protein subcellular location prediction. J. Cell. Biochem. 2007, 100, 665–678. [Google Scholar] [CrossRef]
- Chou, K.C. Using amphiphilic pseudo amino acid composition to predict enzyme subfamily classes. Bioinformatics 2005, 21, 10–19. [Google Scholar] [CrossRef] [PubMed]
- Shen, H.B.; Chou, K.C. Ensemble classifier for protein fold pattern recognition. Bioinformatics 2006, 22, 1717–1722. [Google Scholar] [CrossRef]
- Kumar, S.; Stecher, G.; Li, M.; Knyaz, C.; Tamura, K. MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. Mol. Biol. Evol. 2018, 35, 1547–1549. [Google Scholar] [CrossRef] [PubMed]
- Stecher, G.; Tamura, K.; Kumar, S. Molecular Evolutionary Genetics Analysis (MEGA) for macOS. Mol. Biol. Evol. 2020, 37, 1237–1239. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Chen, H.; Zhang, Y.; Thomas, H.R.; Frank, M.H.; He, Y.; Xia, R. TBtools: An Integrative Toolkit Developed for Interactive Analyses of Big Biological Data. Mol. Plant 2020, 13, 1194–1202. [Google Scholar] [CrossRef] [PubMed]
- Clevenger, J.; Chu, Y.; Scheffler, B.; Ozias-Akins, P. A Developmental Transcriptome Map for Allotetraploid Arachis hypogaea. Front. Plant Sci. 2016, 7, 1446. [Google Scholar] [CrossRef]
- Cui, Y.; Bian, J.; Lv, Y.; Li, J.; Deng, X.W.; Liu, X. Analysis of the Transcriptional Dynamics of Regulatory Genes During Peanut Pod Development Caused by Darkness and Mechanical Stress. Front. Plant Sci. 2022, 13, 904162. [Google Scholar] [CrossRef]
- Pattee, H.E.; Johns, E.B.; Singleton, J.A.; Sanders, T.H. Composition changes of peanut fruit parts during maturation. Peanut Sci. 1974, 1, 57–62. [Google Scholar] [CrossRef]
- Shen, H.; Luo, B.; Wang, Y.; Li, J.; Hu, Z.; Xie, Q.; Wu, T.; Chen, G. Genome-Wide Identification, Classification and Expression Analysis of m6A Gene Family in Solanum lycopersicum. Int. J. Mol. Sci. 2022, 23, 4522. [Google Scholar] [CrossRef] [PubMed]
- Cao, J.; Huang, C.; Liu, J.; Li, C.; Liu, X.; Zheng, Z.; Hou, L.; Huang, J.; Wang, L.; Zhang, Y.; et al. Comparative Genomics and Functional Studies of Putative m6A Methyltransferase (METTL) Genes in Cotton. Int. J. Mol. Sci. 2022, 23, 14111. [Google Scholar] [CrossRef] [PubMed]
- Zheng, H.; Gao, Y.; Dang, Y.; Wu, F.; Wang, X.; Zhang, F.; Sui, N. Characterization of the m6A gene family in sorghum and its function in growth, development and stress resistance. Ind. Crops Prod. 2023, 198, 116625. [Google Scholar] [CrossRef]
- Lv, Z.; Zhou, D.; Shi, X.; Ren, J.; Zhang, H.; Zhong, C.; Kang, S.; Zhao, X.; Yu, H.; Wang, C. The determination of peanut (Arachis hypogaea L.) pod-sizes during the rapid-growth stage by phytohormones. BMC Plant Biol. 2023, 23, 371. [Google Scholar] [CrossRef]
- Ziv, M.; Zamski, E. Geotropic Responses and Pod Development in Gynophore Explants of Peanut (Arachis hypogaea L.) Cultured In Vitro. Ann. Bot. 1975, 39, 579–583. [Google Scholar] [CrossRef]
- Li, Z.; Wang, R.; Gao, Y.; Wang, C.; Zhao, L.; Xu, N.; Chen, K.E.; Qi, S.; Zhang, M.; Tsay, Y.F.; et al. The Arabidopsis CPSF30-L gene plays an essential role in nitrate signaling and regulates the nitrate transceptor gene NRT1.1. New Phytol. 2017, 216, 1205–1222. [Google Scholar] [CrossRef]
- Cai, L.; Cui, S.; Jin, T.; Huang, X.; Hou, H.; Hao, B.; Xu, Z.; Cai, L.; Hu, Y.; Yang, X.; et al. The N(6)-methyladenosine binding proteins YTH03/05/10 coordinately regulate rice plant height. Plant Sci. 2023, 329, 111546. [Google Scholar] [CrossRef] [PubMed]
- Duan, H.C.; Wei, L.H.; Zhang, C.; Wang, Y.; Chen, L.; Lu, Z.; Chen, P.R.; He, C.; Jia, G. ALKBH10B Is an RNA N(6)-Methyladenosine Demethylase Affecting Arabidopsis Floral Transition. Plant Cell 2017, 29, 2995–3011. [Google Scholar] [CrossRef] [PubMed]
- Tang, J.; Yang, J.; Lu, Q.; Tang, Q.; Chen, S.; Jia, G. The RNA N(6)-methyladenosine demethylase ALKBH9B modulates ABA responses in Arabidopsis. J. Integr. Plant Biol. 2022, 64, 2361–2373. [Google Scholar] [CrossRef]
- Li, J.; Wang, J.; Pang, Q.; Yan, X. Analysis of N(6)-methyladenosine reveals a new important mechanism regulating the salt tolerance of sugar beet (Beta vulgaris). Plant Sci. 2023, 335, 111794. [Google Scholar] [CrossRef] [PubMed]
- Su, D.; Shu, P.; Hu, N.; Chen, Y.; Wu, Y.; Deng, H.; Du, X.; Zhang, X.; Wang, R.; Li, H.; et al. Dynamic m6A mRNA methylation reveals the involvement of AcALKBH10 in ripening-related quality regulation in kiwifruit. New Phytol. 2024, 243, 2265–2278. [Google Scholar] [CrossRef]
- Li, B.; Zhang, M.; Sun, W.; Yue, D.; Ma, Y.; Zhang, B.; Duan, L.; Wang, M.; Lindsey, K.; Nie, X.; et al. N6-methyladenosine RNA modification regulates cotton drought response in a Ca2+ and ABA-dependent manner. Plant Biotechnol. J. 2023, 21, 1270–1285. [Google Scholar] [CrossRef] [PubMed]
- Luo, W.; Tang, Y.; Li, S.; Zhang, L.; Liu, Y.; Zhang, R.; Diao, X.; Yu, J. The m6A reader SiYTH1 enhances drought tolerance by affecting the messenger RNA stability of genes related to stomatal closure and reactive oxygen species scavenging in Setaria italica. J. Integr. Plant Biol. 2023, 65, 2569–2586. [Google Scholar] [CrossRef]
- Sun, J.; Bie, X.M.; Wang, N.; Zhang, X.S.; Gao, X.Q. Genome-wide identification and expression analysis of YTH domain-containing RNA-binding protein family in common wheat. BMC Plant Biol. 2020, 20, 351. [Google Scholar] [CrossRef] [PubMed]
- Wei, L.H.; Song, P.; Wang, Y.; Lu, Z.; Tang, Q.; Yu, Q.; Xiao, Y.; Zhang, X.; Duan, H.C.; Jia, G. The m6A Reader ECT2 Controls Trichome Morphology by Affecting mRNA Stability in Arabidopsis. Plant Cell 2018, 30, 968–985. [Google Scholar] [CrossRef] [PubMed]
m6A Member | Gene ID (arahy.Tifrunner. gnm2.ann1.) | Chr. | Start | End | Strand | Number of Amino Acids | Molecular Weight/Da | PI | Subcellular Location |
---|---|---|---|---|---|---|---|---|---|
AhFIONA1a | MR7L4V.1 | Chr03 | 140,142,325 | 140,145,261 | + | 494 | 54,987.67 | 7.62 | Chloroplast. |
AhFIONA1c | UN7M5W.1 | Chr13 | 142,229,486 | 142,236,603 | + | 707 | 79,057.30 | 8.91 | Chloroplast. |
AhFIONA1b | DZ4B2B.1 | Chr11 | 13,681,615 | 13,686,002 | + | 252 | 27,829.10 | 9.18 | Chloroplast. Nucleus. |
AhMTAb | YTN4Z3.1 | Chr12 | 2,671,521 | 2,676,437 | + | 754 | 83,846.57 | 6.08 | Nucleus. |
AhMTAa | 3PG13R.1 | Chr02 | 2,448,326 | 2,453,309 | + | 721 | 80,119.13 | 5.97 | Nucleus. |
AhMETTL4b | K9WZZ6.1 | Chr16 | 150,599,745 | 150,604,141 | + | 425 | 48,927.60 | 8.32 | Cell membrane. |
AhMETTL4a | 4B2PQ4.1 | Chr06 | 118,332,786 | 118,337,182 | + | 425 | 48,927.60 | 8.32 | Cell membrane. |
AhMTBb | JBBQ4L.1 | Chr19 | 159,149,773 | 159,155,400 | − | 1144 | 126,171.02 | 7.90 | Nucleus. |
AhMTBa | IW4QJC.1 | Chr09 | 108,973,001 | 108,976,901 | + | 575 | 62,961.28 | 7.21 | Nucleus. |
AhFIP37b | NDZJ5A.1 | Chr03 | 45,795,005 | 45,801,158 | − | 339 | 38,426.21 | 5.01 | Nucleus. |
AhFIP37h | T862AX.1 | Chr18 | 116,828,851 | 116,835,273 | + | 341 | 38,435.45 | 5.60 | Nucleus. |
AhFIP37g | GAE861.1 | Chr13 | 49,069,392 | 49,075,239 | − | 367 | 41,742.21 | 5.24 | Nucleus. |
AhFIP37e | P2M8BS.1 | Chr08 | 41,769,454 | 41,774,119 | − | 351 | 39,706.92 | 5.60 | Nucleus. |
AhFIP37a | BAEJ4E.1 | Chr01 | 91,586,581 | 91,594,025 | + | 408 | 45,316.65 | 4.81 | Nucleus. |
AhFIP37d | V3MNVK.2 | Chr07 | 152,527 | 159,830 | + | 343 | 38,973.86 | 8.08 | Nucleus. |
AhFIP37f | 9FBM9V.1 | Chr11 | 101,115,539 | 101,121,935 | − | 342 | 39,265.54 | 6.25 | Nucleus. |
AhFIP37c | N3JE1D.2 | Chr03 | 43,475,948 | 43,485,452 | − | 472 | 54,023.92 | 8.29 | Nucleus. |
AhVIRILIZERa | C5PQVK.1 | Chr02 | 100,930,256 | 100,943,875 | + | 2192 | 240,668.03 | 5.37 | Nucleus. |
AhVIRILIZERb | S879XT.1 | Chr12 | 118,183,955 | 118,197,565 | + | 2175 | 238,626.51 | 5.36 | Nucleus. |
AhHIZ1a | U0SE7F.1 | Chr05 | 1,096,704 | 1,099,157 | − | 376 | 39,536.13 | 7.12 | Nucleus. |
AhHIZ1b | BDLH6M.1 | Chr15 | 1,096,704 | 1,099,157 | − | 376 | 39,536.13 | 7.12 | Nucleus. |
AhALKBH1Ab | DXN1WG.1 | Chr20 | 12,622,087 | 12,625,338 | + | 357 | 40,591.22 | 6.53 | Cytoplasm. |
AhALKBH1Aa | P16M7J.1 | Chr10 | 7,114,478 | 7,117,721 | + | 357 | 40,465.11 | 6.53 | Cytoplasm. |
AhALKBH1Ca | 8PX6PB.1 | Chr06 | 1,508,842 | 1,510,917 | − | 321 | 35,350.02 | 9.10 | Nucleus. |
AhALKBH1Cb | 4SYW8G.1 | Chr16 | 25,729,585 | 25,730,741 | + | 336 | 37,113.22 | 9.07 | Nucleus. |
AhALKBH1Db | R859Y3.1 | Chr12 | 107,793,516 | 107,796,063 | − | 311 | 35,182.66 | 9.45 | Chloroplast. Cytoplasm. |
AhALKBH1Da | X2XVT6.1 | Chr02 | 93,082,448 | 93,084,961 | − | 311 | 35,092.63 | 9.55 | Chloroplast. |
AhALKBH2a | TFI8LM.1 | Chr04 | 7,135,007 | 7,137,625 | − | 237 | 27,164.84 | 9.23 | Chloroplast. |
AhALKBH2b | HFV92P.1 | Chr14 | 8,575,461 | 8,578,100 | − | 237 | 27,204.95 | 9.23 | Chloroplast. |
AhALKBH6a | F1EX5J.3 | Chr05 | 88,338,776 | 88,348,515 | − | 557 | 62,843.11 | 6.82 | Nucleus. |
AhALKBH6b | 75P5EB.1 | Chr15 | 155,411,315 | 155,425,900 | + | 554 | 62,883.85 | 6.35 | Nucleus. |
AhALKBH8Aa | E4PV4B.1 | Chr05 | 2,700,040 | 2,701,844 | − | 346 | 38,499.91 | 6.53 | Chloroplast. |
AhALKBH8Ab | C0VXQN.1 | Chr15 | 2,700,040 | 2,701,844 | − | 346 | 38,499.91 | 6.53 | Chloroplast. |
AhALKBH8Ba | 68R93N.1 | Chr07 | 3,332,105 | 3,332,764 | + | 219 | 25,091.48 | 5.47 | Nucleus. |
AhALKBH8Bb | IELT58.1 | Chr17 | 3,951,784 | 3,952,461 | + | 225 | 25,758.07 | 5.13 | Nucleus. |
AhALKBH9Ba | ZUG4EU.1 | Chr06 | 113,352,347 | 113,356,457 | − | 500 | 56,400.10 | 6.95 | Nucleus. |
AhALKBH9Bb | 2M720R.1 | Chr16 | 146,329,818 | 146,334,126 | − | 565 | 63,620.86 | 5.52 | Nucleus. |
AhALKBH9Aa | U5HZVG.1 | Chr10 | 6,308,187 | 6,311,328 | − | 391 | 44,578.80 | 8.85 | Cytoplasm. |
AhALKBH9Ab | G66ML0.1 | Chr20 | 11,539,277 | 11,542,737 | − | 420 | 48,037.80 | 9.14 | Cytoplasm. |
AhALKBH10Ba | UA6S11.1 | Chr02 | 98,218,386 | 98,227,226 | + | 532 | 58,222.50 | 5.79 | Cytoplasm. |
AhALKBH10Bc | SPY99B.1 | Chr12 | 114,482,265 | 114,491,151 | + | 532 | 58,164.42 | 5.78 | Cytoplasm. |
AhALKBH10Bb | 45BME0.1 | Chr06 | 13,886,182 | 13,895,730 | − | 582 | 63,490.53 | 6.04 | Cytoplasm. |
AhALKBH10Bd | IEB1S3.2 | Chr16 | 6,142,122 | 6,149,906 | + | 518 | 56,568.65 | 5.74 | Chloroplast. Cytoplasm. |
AhECT7b | 18BCEG.1 | Chr04 | 11,627,267 | 11,632,571 | + | 661 | 72,758.10 | 7.04 | Cell membrane. Cell wall. Chloroplast. Cytoplasm. Golgi apparatus. Nucleus. |
AhECT1b | 1Z1C0T.1 | Chr16 | 125,362,256 | 125,366,581 | + | 656 | 71,736.69 | 8.47 | Cell membrane. Nucleus. |
AhECT7a | 7B7L4H.1 | Chr01 | 99,992,044 | 99,997,188 | + | 646 | 71,727.27 | 6.02 | Cell membrane. Chloroplast. Nucleus. |
AhECT8a | 81NSYN.1 | Chr07 | 45,863,403 | 45,868,545 | − | 589 | 64,907.37 | 6.92 | Nucleus. |
AhECT8b | 8B5AYJ.1 | Chr18 | 103,869,388 | 103,874,516 | − | 589 | 64,834.19 | 6.95 | Nucleus. |
AhECT4b | 8R4GHU.1 | Chr13 | 128,662,389 | 128,666,999 | + | 689 | 75,301.50 | 6.72 | Nucleus. |
AhCPSF30a | 9EB9RH.1 | Chr04 | 8,598,054 | 8,605,707 | + | 696 | 76,273.83 | 6.43 | Nucleus. |
AhECT7d | CFVF1U.1 | Chr14 | 13,427,391 | 13,432,665 | + | 661 | 72,595.87 | 6.84 | Cell wall. Chloroplast. Nucleus. |
AhECT1a | FB9VDL.1 | Chr06 | 94,533,555 | 94,537,885 | + | 656 | 71,762.80 | 8.50 | Nucleus. |
AhECT7c | K8ASES.1 | Chr11 | 144,173,624 | 144,178,221 | − | 822 | 90,990.61 | 6.54 | Chloroplast. Nucleus. |
AhECT4a | L35IVM.1 | Chr03 | 124,995,564 | 125,000,166 | + | 690 | 75,397.66 | 6.72 | Nucleus. |
AhECT11b | MCG1UL.1 | Chr14 | 4,350,689 | 4,355,084 | + | 522 | 57,954.25 | 8.42 | Nucleus. |
AhECT12a | NNP0DQ.1 | Chr05 | 13,002,485 | 13,006,368 | + | 338 | 38,032.85 | 6.63 | Nucleus. |
AhECT5b | QH21S6.1 | Chr14 | 509,475 | 515,570 | + | 654 | 71,352.46 | 5.64 | Nucleus. |
AhECT12b | TXC2DL.1 | Chr15 | 13,648,203 | 13,652,147 | + | 298 | 33,666.50 | 6.41 | Nucleus. |
AhECT5a | U8THEZ.1 | Chr04 | 104,936 | 111,353 | + | 654 | 71,407.53 | 5.66 | Nucleus. |
AhECT11a | WRM861.1 | Chr04 | 3,042,096 | 3,047,064 | + | 501 | 55,792.09 | 8.71 | Nucleus. |
AhCPSF30b | XVC3D4.1 | Chr14 | 10,083,140 | 10,090,746 | + | 696 | 76,235.81 | 6.21 | Nucleus. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, W.; Bian, J.; Liu, X.; Liu, X. Characterization of the N6-Methyladenosine Gene Family in Peanuts and Its Role in Abiotic Stress. Int. J. Plant Biol. 2025, 16, 7. https://doi.org/10.3390/ijpb16010007
Wang W, Bian J, Liu X, Liu X. Characterization of the N6-Methyladenosine Gene Family in Peanuts and Its Role in Abiotic Stress. International Journal of Plant Biology. 2025; 16(1):7. https://doi.org/10.3390/ijpb16010007
Chicago/Turabian StyleWang, Wei, Jianxin Bian, Xiaoyu Liu, and Xiaoqin Liu. 2025. "Characterization of the N6-Methyladenosine Gene Family in Peanuts and Its Role in Abiotic Stress" International Journal of Plant Biology 16, no. 1: 7. https://doi.org/10.3390/ijpb16010007
APA StyleWang, W., Bian, J., Liu, X., & Liu, X. (2025). Characterization of the N6-Methyladenosine Gene Family in Peanuts and Its Role in Abiotic Stress. International Journal of Plant Biology, 16(1), 7. https://doi.org/10.3390/ijpb16010007