Transcriptome of Arabidopsis thaliana Plants Exposed to Human Parasites Cryptosporidium parvum and Giardia lamblia
<p>(<b>A</b>). Heatmap showing Euclidean distances between samples calculated with variance. transformed data. Samples were clustered with hclust() function with default settings. (<b>B</b>). Heatmap of top 1,000 DEGs obtained using DESeq.</p> "> Figure 2
<p>Volcano plot visualization of DEGs using DESeq and NOISeq methods. Y axis shows log2 fold difference between treatment and control. X axis shows the mean expression level of genes. Red dots show significantly differentially expressed genes.</p> "> Figure 3
<p>Overlap between DEGs. (<b>A</b>). Overlap between DEGs found by DESeq and NOISeq methods for Cryptosporidia. (<b>B</b>). Overlap between DEGs found by DESeq and NOISeq methods for Giardia. (<b>C</b>). Overlap between DEGs in Cryptosporidia and Giardia found using DESeq method. (<b>D</b>). Overlap between DEGs in Cryptosporidia and Giardia found using NOISeq method.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Set Up
2.2. Total RNA Purification
2.3. mRNA Deep Sequencing, Demultiplexing and Sequence Assembly
2.4. Obtaining the List of Differentially Expressed Genes
2.4.1. Quality Control, Sample Clustering and Detection of Differentially Expressed Genes with DESeq2
2.4.2. Detection of Differentially Expressed Genes and Transcripts with NOISeq
2.5. Gene Ontology and Pathway Analysis
2.6. Selecting Candidate Genes
2.7. Real Time RT-PCR for Confirmation of Gene Expression
2.8. Software Versions Used
2.9. Statistical Treatment of the Data
3. Results and Discussion
3.1. Clustering and DEGs Analysis Using DESeq and NOISeq
3.2. GO Term Analysis of DEGs
3.2.1. Commonly Upregulated GO Terms
3.2.2. Commonly Downregulated GO Terms
3.2.3. GO Terms Uniquely Altered in Giardia
3.2.4. GO Terms Uniquely Altered in Cryptosporidia
3.3. RT-PCR Confirmation of Selected Gene Sets
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
PRR | pattern recognition receptors |
PAMPs | pathogen-associated molecular patterns |
TLR | Toll-like receptors |
LPS | lipopolysaccharides |
NLRs | nucleotide-binding and oligomerization domain (NOD)-like receptors |
PTI | pattern-triggered immunity |
DAMPs | damage-associated molecular patterns |
DEGs | Differentially expressed genes |
MAMPs | microbe-associated molecular patterns |
References
- Robertson, L.J. Parasites in Food: From a Neglected Position to an Emerging Issue. Adv. Food Nutr. Res. 2018, 86, 71–113. [Google Scholar] [CrossRef] [PubMed]
- Lim, J.-A.; Lee, D.H.; Heu, S. The interaction of human enteric pathogens with plants. Plant Pathol. J. 2014, 30, 109–116. [Google Scholar] [CrossRef] [PubMed]
- Serradell, M.C.; Rupil, L.L.; Martino, R.A.; Prucca, C.G.; Carranza, P.G.; Saura, A.; Fernández, E.A.; Gargantini, P.R.; Tenaglia, A.H.; Petiti, J.P.; et al. Efficient oral vaccination by bioengineering virus-like particles with protozoan surface proteins. Nat. Commun. 2019, 10, 361. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Wu, M. Pattern recognition receptors in health and diseases. Signal Transduct. Target. Ther. 2021, 6, 291. [Google Scholar] [CrossRef]
- Amarante-Mendes, G.P.; Adjemian, S.; Branco, L.M.; Zanetti, L.C.; Weinlich, R.; Bortoluci, K.R. Pattern Recognition Receptors and the Host Cell Death Molecular Machinery. Front. Immunol. 2018, 9, 2379. [Google Scholar] [CrossRef]
- Jo, E.-K. Interplay between host and pathogen: Immune defense and beyond. Exp. Mol. Med. 2019, 51, 1–3. [Google Scholar] [CrossRef]
- Klimczak, S.; Packi, K.; Rudek, A.; Wenclewska, S.; Kurowski, M.; Kurczabińska, D.; Śliwińska, A. The Influence of the Protozoan Giardia lamblia on the Modulation of the Immune System and Alterations in Host Glucose and Lipid Metabolism. Int. J. Mol. Sci. 2024, 25, 8627. [Google Scholar] [CrossRef] [PubMed]
- Espinosa-Riquer, Z.P.; Segura-Villalobos, D.; Ramírez-Moreno, I.G.; Pérez Rodríguez, M.J.; Lamas, M.; Gonzalez-Espinosa, C. Signal Transduction Pathways Activated by Innate Immunity in Mast Cells: Translating Sensing of Changes into Specific Responses. Cells 2020, 9, 2411. [Google Scholar] [CrossRef] [PubMed]
- Shirron, N.; Yaron, S. Active suppression of early immune response in tobacco by the human pathogen Salmonella Typhimurium. PLoS ONE 2011, 6, e18855. [Google Scholar] [CrossRef]
- Garcia, A.V.; Charrier, A.; Schikora, A.; Bigeard, J.; Pateyron, S.; de Tauzia-Moreau, M.-L.; Evrard, A.; Mithöfer, A.; Martin-Magniette, M.L.; Virlogeux-Payant, I.; et al. Salmonella enterica flagellin is recognized via FLS2 and activates PAMP-triggered immunity in Arabidopsis thaliana. Mol. Plant 2014, 7, 657–674. [Google Scholar] [CrossRef]
- Segonzac, C.; Zipfel, C. Activation of plant pattern-recognition receptors by bacteria. Curr. Opin. Microbiol. 2011, 14, 54–61. [Google Scholar] [CrossRef] [PubMed]
- Hegenauer, V.; Fürst, U.; Kaiser, B.; Smoker, M.; Zipfel, C.; Felix, G.; Stahl, M.; Albert, M. Detection of the plant parasite Cuscuta reflexa by a tomato cell surface receptor. Science 2016, 353, 478–481. [Google Scholar] [CrossRef]
- Wang, Y.; Dang, F.; Liu, Z.; Wang, X.; Eulgem, T.; Lai, Y.; Yu, L.; She, J.; Shi, Y.; Lin, J.; et al. CaWRKY 58, encoding a group I WRKY transcription factor of Capsicum annuum, negatively regulates resistance to Ralstonia solanacearum infection. Mol. Plant Pathol. 2012, 14, 131–144. [Google Scholar] [CrossRef] [PubMed]
- Golubov, A.; Byeon, B.; Woycicki, R.; Laing, C.; Gannon, V.; Kovalchuk, I. Transcriptomic profiling of Arabidopsis thaliana plants exposed to the human pathogen Escherichia coli O157-H7. Biocatal. Agric. Biotechnol. 2016, 8, 86–96. [Google Scholar] [CrossRef]
- Golubov, A.; Byeon, B.; Woycicki, R.; Inglis, G.D.; Kovalchuk, I. Transcriptome of Arabidopsis thaliana plants treated with the human pathogen Campylobacter jejuni. Biocatal. Agric. Biotechnol. 2017, 11, 259–267. [Google Scholar] [CrossRef]
- Martínez-Ocaña, J.; Maravilla, P.; Olivo-Díaz, A. Interaction between human mucins and parasite glycoproteins: The role of lectins and glycosidases in colonization by intestinal protozoa. Rev. Inst. Med. Trop. Sao Paulo 2020, 62, e64. [Google Scholar] [CrossRef] [PubMed]
- Sateriale, A.; Gullicksrud, J.A.; Engiles, J.B.; McLeod, B.I.; Kugler, E.M.; Henao-Mejia, J.; Zhou, T.; Ring, A.M.; Brodsky, I.E.; Hunter, C.A.; et al. The intestinal parasite Cryptosporidium is controlled by an enterocyte intrinsic inflammasome that depends on NLRP6. Proc. Natl. Acad. Sci. USA 2020, 118, e2007807118. [Google Scholar] [CrossRef] [PubMed]
- Trapnell, C.; Pachter, L.; Salzberg, S.L. TopHat: Discovering splice junctions with RNA-Seq. Bioinformatics 2009, 25, 1105–1111. [Google Scholar] [CrossRef] [PubMed]
- Trapnell, C.; Williams, B.A.; Pertea, G.; Mortazavi, A.; Kwan, G.; Van Baren, M.J.; Salzberg, S.L.; Wold, B.J.; Pachter, L. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat. Biotechnol. 2010, 28, 511–515. [Google Scholar] [CrossRef] [PubMed]
- Trapnell, C.; Roberts, A.; Goff, L.; Pertea, G.; Kim, D.; Kelley, D.R.; Pimentel, H.; Salzberg, S.L.; Rinn, J.L.; Pachter, L. Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat. Protoc. 2012, 7, 562–578. [Google Scholar] [CrossRef]
- Durbin, B.; Hardin, J.; Hawkins, D.; Rocke, D. A variance-stabilizing transformation for gene-expression microarray data. Bioinformatics 2002, 18 (Suppl. S1), S105–S110. [Google Scholar] [CrossRef] [PubMed]
- Robinson, M.D.; Oshlack, A. A scaling normalization method for differential expression analysis of RNA-seq data. Genome Biol. 2010, 11, R25. [Google Scholar] [CrossRef] [PubMed]
- Falcon, S.; Gentleman, R. Using GOstats to test gene lists for GO term association. Bioinformatics 2006, 23, 257–258. [Google Scholar] [CrossRef]
- Luo, W.; Brouwer, C. Pathview: An R/Bioconductor package for pathway-based data integration and visualization. Bioinformatics 2013, 29, 1830–1831. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.; Li, J.; Xie, F.; Wu, S.; Shao, T.; Li, X.; Li, J.; Jian, F.; Zhang, S.; Ning, C.; et al. Whole transcriptome analysis of HCT-8 cells infected by Cryptosporidium parvum. Parasites Vectors 2022, 15, 441. [Google Scholar] [CrossRef]
- Tako, E.A.; Hassimi, M.F.; Li, E.; Singer, S.M. Transcriptomic analysis of the host response to Giardia duodenalis infection reveals redundant mechanisms for parasite control. MBio 2013, 4, 10–1128. [Google Scholar] [CrossRef] [PubMed]
- Yang, D.; Liu, Y.; Ren, Y.; Hao, L.; Zhang, X.; Chen, H.; Liu, J. Giardia intestinalis extracellular vesicles induce changes in gene expression in human intestinal epithelial cells in vitro. Exp. Parasitol. 2024, 262, 108788. [Google Scholar] [CrossRef] [PubMed]
- Samuelson, J.; Bushkin, G.G.; Chatterjee, A.; Robbins, P.W. Strategies to discover the structural components of cyst and oocyst walls. Eukaryot. Cell 2013, 12, 1578–1587. [Google Scholar] [CrossRef] [PubMed]
- Pusztahelyi, T. Chitin and chitin-related compounds in plant-fungal interactions. Mycology 2018, 9, 189–201. [Google Scholar] [CrossRef]
- Albert, M. Peptides as triggers of plant defence. J. Exp. Bot. 2013, 64, 5269–5279. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Xu, Y.; Xie, J.; Zhuang, H.; Liu, H.; Shen, G.; Wu, J. Parasite dodder enables transfer of bidirectional systemic nitrogen signals between host plants. Plant Physiol. 2020, 185, 1395–1410. [Google Scholar] [CrossRef] [PubMed]
- Hager, M.S.; Hofland, M.L.; Varella, A.C.; Bothner, B.; Budak, H.; Weaver, D.K. Untargeted metabolomics profiling of oat (Avena sativa L.) and wheat (Triticum aestivum L.) infested with wheat stem sawfly (Cephus cinctus Norton) reveals differences associated with plant defense and insect nutrition. Front. Plant Sci. 2024, 15, 1327390. [Google Scholar] [CrossRef]
- Wu, X.-M.; Yang, X.; Fan, X.-C.; Chen, X.; Wang, Y.-X.; Zhang, L.-X.; Song, J.-K.; Zhao, G.-H. Serum metabolomics in chickens infected with Cryptosporidium baileyi. Parasites Vectors 2021, 14, 336. [Google Scholar] [CrossRef]
- Peirasmaki, D.; Ma’ayeh, S.Y.; Xu, F.; Ferella, M.; Campos, S.; Liu, J.; Svärd, S.G. High Cysteine Membrane Proteins (HCMPs) Are Upregulated During Giardia-Host Cell Interactions. Front. Genet. 2020, 11, 913. [Google Scholar] [CrossRef] [PubMed]
- Basit, F.; Khalid, M.; El-Keblawy, A.; Sheteiwy, M.S.; Sulieman, S.; Josko, I.; Zulfiqar, F. Hypoxia stress: Plant’s sensing, responses, and tolerance mechanisms. Environ. Sci. Pollut. Res. 2024, 31, 63458–63472. [Google Scholar] [CrossRef]
- Vojtovič, D.; Luhová, L.; Petřivalský, M. Something smells bad to plant pathogens: Production of hydrogen sulfide in plants and its role in plant defence responses. J. Adv. Res. 2020, 27, 199–209. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.-G.; Min, X.; Zhou, Z.-H. Hydrogen Sulfide: A Signal Molecule in Plant Cross-Adaptation. Front. Plant Sci. 2016, 7, 1621. [Google Scholar] [CrossRef] [PubMed]
- Ren, J.; Tang, W.; Barton, C.D.; Price, O.M.; Mortensen, M.W.; Phillips, A.; Wald, B.; Hulme, S.E.; Stanley, L.P.; Hevel, J.; et al. A highly versatile fungal glucosyltransferase for specific production of quercetin-7-O-beta-D-glucoside and quercetin-3-O-beta-D-glucoside in different hosts. Appl. Microbiol. Biotechnol. 2021, 106, 227–245. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.-H.; Yun, H.S.; Kwon, C. Molecular communications between plant heat shock responses and disease resistance. Mol. Cells 2012, 34, 109–116. [Google Scholar] [CrossRef]
- Verma, V.; Ravindran, P.; Kumar, P.P. Plant hormone-mediated regulation of stress responses. BMC Plant Biol. 2016, 16, 86. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Zhao, X.; Bürger, M.; Chory, J.; Wang, X. The role of ethylene in plant temperature stress response. Trends Plant Sci. 2023, 28, 808–824. [Google Scholar] [CrossRef] [PubMed]
- Hou, S.; Tsuda, K. Salicylic acid and jasmonic acid crosstalk in plant immunity. Essays Biochem. 2022, 66, 647–656. [Google Scholar] [CrossRef] [PubMed]
- Jiang, C.-J.; Liu, X.-L.; Liu, X.-Q.; Zhang, H.; Yu, Y.-J.; Liang, Z.-W. Stunted Growth Caused by Blast Disease in Rice Seedlings Is Associated with Changes in Phytohormone Signaling Pathways. Front. Plant Sci. 2017, 8, 1558. [Google Scholar] [CrossRef]
- Reitz, M.U.; Gifford, M.L.; Schäfer, P. Hormone activities and the cell cycle machinery in immunity-triggered growth inhibition. J. Exp. Bot. 2015, 66, 2187–2197. [Google Scholar] [CrossRef] [PubMed]
- Nolan, T.M.; Vukašinović, N.; Liu, D.; Russinova, E.; Yin, Y. Brassinosteroids: Multidimensional Regulators of Plant Growth, Development, and Stress Responses. Plant Cell 2019, 32, 295–318. [Google Scholar] [CrossRef] [PubMed]
- Hedden, P. The Current Status of Research on Gibberellin Biosynthesis. Plant Cell Physiol. 2020, 61, 1832–1849. [Google Scholar] [CrossRef]
- Matuszkiewicz, M.; Sobczak, M.; Cabrera, J.; Escobar, C.; Karpiński, S.; Filipecki, M. The Role of Programmed Cell Death Regulator LSD1 in Nematode-Induced Syncytium Formation. Front. Plant Sci. 2018, 9, 314. [Google Scholar] [CrossRef]
- Andrade, A.d.S.; Campos, S.O.; Dias, J.; Campos, M.A.; Kroon, E.G. Dengue virus 3 genotype I (GI) lineage 1 (L1) isolates elicit differential cytopathic effect with syncytium formation in human glioblastoma cells (U251). Virol. J. 2023, 20, 204. [Google Scholar] [CrossRef]
- Kunst, L.; Samuels, A.L. Biosynthesis and secretion of plant cuticular wax. Prog. Lipid Res. 2003, 42, 51–80. [Google Scholar] [CrossRef] [PubMed]
- Lewandowska, M.; Keyl, A.; Feussner, I. Wax biosynthesis in response to danger: Its regulation upon abiotic and biotic stress. New Phytol. 2020, 227, 698–713. [Google Scholar] [CrossRef] [PubMed]
- Stewart, G.R.; Young, D.B. Heat-shock proteins and the host-pathogen interaction during bacterial infection. Curr. Opin. Immunol. 2004, 16, 506–510. [Google Scholar] [CrossRef]
- Huang, L.; Wang, J.; Lilley, D.M. Structure and ligand binding of the ADP-binding domain of the NAD(+) riboswitch. RNA 2020, 26, 878–887. [Google Scholar] [CrossRef] [PubMed]
- Entsie, P.; Kang, Y.; Amoafo, E.B.; Schöneberg, T.; Liverani, E. The Signaling Pathway of the ADP Receptor P2Y(12) in the Immune System: Recent Discoveries and New Challenges. Int. J. Mol. Sci. 2023, 24, 6709. [Google Scholar] [CrossRef] [PubMed]
- Carvalhais, L.C.; Dennis, P.G.; Badri, D.V.; Tyson, G.W.; Vivanco, J.M.; Schenk, P.M. Activation of the jasmonic acid plant defence pathway alters the composition of rhizosphere bacterial communities. PLoS ONE 2013, 8, e56457. [Google Scholar] [CrossRef] [PubMed]
- Simmi, F.; Dallagnol, L.; Ferreira, A.; Pereira, D.; Souza, G. Electrome alterations in a plant-pathogen system: Toward early diagnosis. Bioelectrochemistry 2020, 133, 107493. [Google Scholar] [CrossRef] [PubMed]
- Koster, P.; De Falco, T.A.; Zipfel, C. Ca2+ signals in plant immunity. EMBO J. 2022, 41, e110741. [Google Scholar] [CrossRef] [PubMed]
- Troeger, H.; Epple, H.J.; Schneider, T.; Wahnschaffe, U.; Ullrich, R.; Burchard, G.D.; Jelinek, T.; Zeitz, M.; Fromm, M.; Schulzke, J.D. Effect of chronic Giardia lamblia infection on epithelial transport and barrier function in human duodenum. Gut 2007, 56, 328–335. [Google Scholar] [CrossRef]
- Mur, L.A.J.; Simpson, C.; Kumari, A.; Gupta, A.K.; Gupta, K.J. Moving nitrogen to the centre of plant defence against pathogens. Ann. Bot. 2017, 119, 703–709. [Google Scholar] [CrossRef] [PubMed]
- Darwish, E.S. Facile synthesis and antimicrobial evaluation of some new heterocyclic compounds incorporating a biologically active sulfamoyl moiety. Sci. World J. 2014, 2014, 165495. [Google Scholar] [CrossRef] [PubMed]
- Ramirez, N.E.; Ward, L.A.; Sreevatsan, S. A review of the biology and epidemiology of cryptosporidiosis in humans and animals. Microbes Infect. 2004, 6, 773–785. [Google Scholar] [CrossRef] [PubMed]
- Kong, F.; Yang, L. Pathogen-triggered changes in plant development: Virulence strategies or host defense mechanism? Front. Microbiol. 2023, 14, 1122947. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, V.P.T.; Stewart, J.; Lopez, M.; Ioannou, I.; Allais, F. Glucosinolates: Natural Occurrence, Biosynthesis, Accessibility, Isolation, Structures, and Biological Activities. Molecules 2020, 25, 4537. [Google Scholar] [CrossRef] [PubMed]
- Howe, G.A. Cyclopentenone signals for plant defense: Remodeling the jasmonic acid response. Proc. Natl. Acad. Sci. USA 2001, 98, 12317–12319. [Google Scholar] [CrossRef] [PubMed]
- Lee, B.R.; Paing, M.H.; Sharma-Walia, N. Cyclopentenone Prostaglandins: Biologically Active Lipid Mediators Targeting Inflammation. Front. Physiol. 2021, 12, 640374. [Google Scholar] [CrossRef]
- Berr, A.; Ménard, R.; Heitz, T.; Shen, W.-H. Chromatin modification and remodelling: A regulatory landscape for the control of Arabidopsis defence responses upon pathogen attack. Cell. Microbiol. 2012, 14, 829–839. [Google Scholar] [CrossRef] [PubMed]
- Liao, J.; Ho, J.; Burns, M.; Dykhuizen, E.C.; Hargreaves, D.C. Collaboration between distinct SWI/SNF chromatin remodeling complexes directs enhancer selection and activation of macrophage inflammatory genes. Immunity 2024, 57, 1780–1795.e6. [Google Scholar] [CrossRef] [PubMed]
- Anatskaya, O.V.; Sidorenko, N.V.; Vinogradov, A.E.; Beyer, T.V. Impact of neonatal cryptosporidial gastroenteritis on epigenetic programming of rat hepatocytes. Cell Biol. Int. 2007, 31, 420–427. [Google Scholar] [CrossRef]
Gene_id | log2 | RT-PCR, Fold | Symbol: Description | Primers |
---|---|---|---|---|
Common | ||||
AT5G12030 | 11.14 | 9.83 | AT-HSP17.6A: Encodes a cytosolic small heat shock protein with chaperone activity that is induced by heat and osmotic stress. | Forward: 5′ AGTTTGGAAG GTTTCCAATA 3′ Reverse: 5′ GTCCCTCTGT CTTTTGCCAC 3′ |
AT1G07160 | 9.93 | 5.78 | NA: Protein phosphatase 2C family protein | Forward: 5′ TCCGCCGCG TCTCCCACATC 3′ Reverse: 5′ ACAAGTTCTT AGCCGCAAAC 3′ |
AT1G22810 | 9.25 | 12.51 | NA: DREB subfamily A-5 of ERF/AP2 transcription factor family | Forward: 5′ GGATTACAGA GAATCCACC 3′ Reverse: 5′ GCGTAATGG CCATGCCGGC 3′ |
AT5G64750 | 8.80 | 29.43 | ABR1: A member of the ERF (ethylene response factor) subfamily B-4 of ERF/AP2 transcription factor family. Expressed in response to ABA, osmotic stress, sugar stress and drought. | Forward: 5′ CGCAGCAGC CGCCTCCATC 3′ Reverse: 5′ ATACTCGTAT GTTGGGCCC 3′ |
Unique Giardia | ||||
AT1G53540 | 10.83 | 27.24 | NA: HSP20-like chaperones superfamily protein | Forward: 5′ ATTCCAAGC ATCTTCGGAGG 3′ Reverse: 5′ TCTCTTCATT CTCATTGCTC 3′ |
AT4G25200 | 9.33 | 14.69 | AtHSP23.6-Mito: nuclear gene encoding mitochondrial protein | Forward: 5′ CTCTCGCTCT TAAGAGACTC 3′ Reverse: 5′ ACAGAGGATT CTCCATGAAC 3′ |
AT5G12020 | 8.56 | 7.32 | HSP17.6II: 17.6 kDa class II heat shock protein | Forward: 5′ AATAATCTCA ATCCTCGAAG 3′ Reverse: 5′ ACTGAAACTT CCTCATGAAC 3′ |
Unique Cryptosporidia | ||||
AT1G51820 | 9.58 | 22.90 | NA: Leucine-rich repeat protein kinase family protein | Forward: 5′ TCAGATGCCG ATTTAGTAGC 3′ Reverse: 5′ TGAATTGCT AATATACCCTC 3′ |
AT5G01380 | 9.20 | 32.11 | NA: Homeodomain-like superfamily protein | Forward: 5′ CCAACATCAC CACCACCACC 3′ Reverse: 5′ GGGAACTGC TGCCTAATAGC 3′ |
AT5G52400 | 8.58 | 13.85 | CYP715A1: member of CYP715A | Forward: 5′ AAGAAGCTTA GAGGAAACGG 3′ Reverse: 5′ TGTCGTGT CCAATCATCTCC 3′ |
AT5G55090 | 8.52 | 9.66 | MAPKKK15: member of MEKK subfamily | Forward: 5′ GGACCAATCA TAGGTCGAGG 3′ Reverse: 5′ CTTCGCAAT CTCTCCTCCG 3′ |
AT1G71520 | 8.42 | 15.48 | NA: encodes a member of the DREB subfamily A-5 of ERF/AP2 transcription factor family | Forward: 5′ ATGTCCATAT CTCATAACCC 3′ Reverse: 5′ CTACGGCAG CGCCTTCTGCGGTGG 3′ |
Term/Regulation | Fold Enrichment | Term/Regulation | Fold Enrichment |
---|---|---|---|
COMMON UPREGULATED | Giardia UPREGULATED | ||
cellular response to chitin | 10.90 | response to heat | 8.38 |
oligopeptide binding | 7.85 | ADP binding | 6.38 |
response to organonitrogen compound | 7.25 | response to jasmonic acid | 4.45 |
cellular response to hypoxia | 5.81 | defense response to bacterium | 4.08 |
sulfur compound binding | 5.81 | innate immune response | 3.79 |
jasmonic acid metabolic process | 5.55 | response to bacterium | 3.53 |
calcium ion transmembrane transport | 5.51 | cellular response to stress | 2.46 |
heat acclimation | 4.83 | response to abiotic stimulus | 2.15 |
response to wounding | 4.64 | Giardia DOWNREGULATED | |
defense response to bacterium, incompatible interaction | 4.56 | ion transport | 3.14 |
negative regulation of cell death | 4.51 | intrinsic component of membrane | 1.41 |
response to ozone | 4.49 | Cryptosporidia UPREGULATED | |
secondary metabolite catabolic process | 4.27 | regulation of response to external stimulus | 4.22 |
toxin catabolic process | 4.27 | dephosphorylation | 3.52 |
response to high light intensity | 4.13 | organonitrogen compound catabolic process | 3.39 |
response to oomycetes | 4.00 | heterocycle catabolic process | 3.32 |
defense response to fungus, incompatible interaction | 3.90 | defense response, incompatible interaction | 3.06 |
activation of innate immune response | 3.69 | regulation of response to stress | 2.42 |
calcium ion transmembrane transporter activity | 3.34 | response to ethylene | 2.37 |
quercetin 3-O-glucosyltransferase activity | 3.13 | protein transport | 2.29 |
transmembrane receptor protein serine/threonine kinase activity | 3.13 | cellular macromolecule localization | 2.20 |
plant-type hypersensitive response | 3.11 | intracellular transport | 2.13 |
host programmed cell death induced by symbiont | 3.08 | chloroplast stroma | 2.06 |
salicylic acid mediated signaling pathway | 3.04 | Cryptosporidia DOWNREGULATED | |
ethylene-activated signaling pathway | 2.69 | specification of symmetry | 19.48 |
COMMON DOWNREGULATED | glucosinolate biosynthetic process | 7.97 | |
positive regulation of development | 15.79 | response to cyclopentenone | 6.88 |
syncytium formation | 13.16 | nucleosome | 4.58 |
cell surface | 10.53 | phloem or xylem histogenesis | 4.25 |
regulation of organ growth | 9.97 | glycosinolate metabolic process | 4.25 |
plant-type cell wall modification involved in multidimensional cell growth | 8.10 | DNA packaging complex | 4.18 |
response to insect | 7.29 | sulfur compound biosynthetic process | 3.93 |
very long-chain fatty acid biosynthetic process | 7.02 | oligopeptide transport | 3.90 |
hormone binding | 7.02 | meristem structural organization | 3.84 |
CCAAT-binding factor complex | 7.02 | anatomical structure arrangement | 3.64 |
3-oxo-lignoceronyl-CoA synthase activity | 7.02 | enzyme linked receptor protein signaling pathway | 3.60 |
wax biosynthetic process | 7.02 | transmembrane receptor protein tyrosine kinase signaling pathway | 3.60 |
regulation of gibberellic acid mediated signaling pathway | 6.65 | response to salicylic acid | 3.36 |
regulation of anion transport | 6.65 | shoot system morphogenesis | 3.19 |
organ growth | 6.53 | cell surface receptor signaling pathway | 3.00 |
asymmetric cell division | 6.02 | flavin adenine dinucleotide binding | 2.98 |
auxin transport | 5.26 | response to organic cyclic compound | 2.71 |
multidimensional cell growth | 4.83 | plant-type cell wall | 2.32 |
positive gravitropism | 4.75 | chemical homeostasis | 2.19 |
systemic acquired resistance | 4.09 | anchored component of membrane | 2.17 |
leaf morphogenesis | 3.92 | apoplast | 2.12 |
response to brassinosteroid | 3.10 | ||
shoot system morphogenesis | 2.87 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ilnytskyy, Y.; Golubov, A.; Byeon, B.; Kovalchuk, I. Transcriptome of Arabidopsis thaliana Plants Exposed to Human Parasites Cryptosporidium parvum and Giardia lamblia. Int. J. Plant Biol. 2025, 16, 13. https://doi.org/10.3390/ijpb16010013
Ilnytskyy Y, Golubov A, Byeon B, Kovalchuk I. Transcriptome of Arabidopsis thaliana Plants Exposed to Human Parasites Cryptosporidium parvum and Giardia lamblia. International Journal of Plant Biology. 2025; 16(1):13. https://doi.org/10.3390/ijpb16010013
Chicago/Turabian StyleIlnytskyy, Yaroslav, Andrey Golubov, Boseon Byeon, and Igor Kovalchuk. 2025. "Transcriptome of Arabidopsis thaliana Plants Exposed to Human Parasites Cryptosporidium parvum and Giardia lamblia" International Journal of Plant Biology 16, no. 1: 13. https://doi.org/10.3390/ijpb16010013
APA StyleIlnytskyy, Y., Golubov, A., Byeon, B., & Kovalchuk, I. (2025). Transcriptome of Arabidopsis thaliana Plants Exposed to Human Parasites Cryptosporidium parvum and Giardia lamblia. International Journal of Plant Biology, 16(1), 13. https://doi.org/10.3390/ijpb16010013