Clonality Analysis of Streptococcus pneumoniae in Clinical Specimens
<p>PCR result targeting the <span class="html-italic">cpsB</span> gene using control strains. 1, 2: <span class="html-italic">Streptococcus pneumoniae</span> RIMD3122004 (ATCC 33400); 3, 4: <span class="html-italic">S. pneumoniae</span> RIMD3122033 (serotype 14); 5, 6: <span class="html-italic">S. pneumoniae</span> RIMD3122093 (serotype 7F); 7, 8: <span class="html-italic">S. pneumoniae</span> RIMD3122027 (serotype 6A).</p> "> Figure 2
<p>Examples of clonality analysis using Sanger sequencing. Single clone (<b>A</b>) C5078; (<b>B</b>) D5017; (<b>C</b>) D5008; Multiple clones (<b>D</b>) C5014; (<b>E</b>) C5109; (<b>F</b>) C5137. Multiple alignments were displayed using Genetyx 8. The black box implies different clones.</p> "> Figure 3
<p>Clonality tendency by underlying factors. The axis is the percentage of each factor. PSI: pneumonia severity index; COPD: chronic obstructive pulmonary disease.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples
2.2. Sample Pretreatment and Nucleic Acid Extraction
2.3. Real-Time PCR
2.4. Clonality Analysis by Sanger Sequencing
2.4.1. Control Strains
2.4.2. PCR of cpsB Gene
2.4.3. Nucleotide Sequencing
2.4.4. Clonality Identification
2.5. Statistical Analysis
3. Results
3.1. Detection of Pneumococcus from Clinical Specimens Using Real-Time PCR
3.2. Clonality Analysis Using Sanger Sequencing
3.3. Clonality Tendencies by Underlying Factors
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chang, B.; Morita, M.; Lee, K.; Ohnishi, M. Whole-genome sequence analysis of Streptococcus pneumoniae strains that cause hospital-acquired pneumonia infections. J. Clin. Microbiol. 2018, 56, e01822-17. [Google Scholar] [CrossRef] [PubMed]
- Weiser, J.N.; Ferreira, D.M.; Paton, J.C. Streptococcus pneumoniae: Transmission, colonization and invasion. Nat. Rev. Microbiol. 2018, 16, 355–367. [Google Scholar] [CrossRef] [PubMed]
- Richter, S.S.; Heilmann, K.P.; Dohrn, C.L.; Riahi, F.; Diekema, D.J.; Doern, G.V. Evaluation of pneumococcal serotyping by multiplex PCR and Quellung reactions. J. Clin. Microbiol. 2013, 51, 4193–4195. [Google Scholar] [CrossRef] [PubMed]
- Zhou, M.L.; Wang, Z.R.; Li, Y.B.; Kudinha, T.; Wang, J.; Wang, Y.; Xiao, M.; Xu, Y.C.; Liu, Z.Y.; Hsueh, P.R. Rapid identification of Streptococcus pneumoniae serotypes by cpsB gene-based sequetyping combined with multiplex PCR. J. Microbiol. Immunol. Infect. 2022, 55, 870–879. [Google Scholar] [CrossRef] [PubMed]
- Leung, M.H.; Bryson, K.; Freystatter, K.; Pichon, B.; Edwards, G.; Charalambous, B.M.; Gillespie, S.H. Sequetyping: Serotyping Streptococcus pneumoniae by a single PCR sequencing strategy. J. Clin. Microbiol. 2012, 50, 2419–2427. [Google Scholar] [CrossRef] [PubMed]
- Brito, D.A.; Ramirez, M.; De Lencastre, H. Serotyping Streptococcus pneumoniae by multiplex PCR. J. Clin. Microbiol. 2003, 41, 2378–2384. [Google Scholar] [CrossRef] [PubMed]
- Salvadori, G.; Junges, R.; Morrison, D.A.; Petersen, F.C. Competence in Streptococcus pneumoniae and close commensal relatives: Mechanisms and implications. Front. Cell Infect. Microbiol. 2019, 9, 94. [Google Scholar] [CrossRef] [PubMed]
- Kong, F.; Gilbert, G.L. Using cpsA–cpsB sequence polymorphisms and serotype-/group-specific PCR to predict 51 Streptococcus pneumoniae capsular serotypes. J. Med. Microbiol. 2003, 52, 1047–1058. [Google Scholar] [CrossRef] [PubMed]
- Tootla, H.D.; Bamford, C.; Centner, C.M.; Moodley, C. The BinaxNOW pneumococcal antigen test: An adjunct for diagnosis of pneumococcal bacteraemia. S. Afr. J. Infect. Dis. 2021, 36, 244. [Google Scholar] [CrossRef]
- Ndlangisa, K.; du Plessis, M.; Allam, M.; Wolter, N.; de Gouveia, L.; Klugman, K.P.; Cohen, C.; Gladstone, R.A.; von Gottberg, A. Invasive disease caused simultaneously by dual serotypes of Streptococcus pneumoniae. J. Clin. Microbiol. 2018, 56, e01149-17. [Google Scholar] [CrossRef]
- Dhoubhadel, B.G.; Suzuki, M.; Ishifuji, T.; Yaegashi, M.; Asoh, N.; Ishida, M.; Hamaguchi, S.; Aoshima, M.; Yasunami, M.; Ariyoshi, K.; et al. High prevalence of multiple serotypes of pneumococci in patients with pneumonia and their associated risk factors. Thorax 2022, 77, 1121–1130. [Google Scholar] [CrossRef] [PubMed]
- Fujiki, R.; Kawayama, T.; Ueyama, T.; Ichiki, M.; Aizawa, H. The risk factors for mortality of community-acquired pneumonia in Japan. J. Infect. Chemother. 2007, 13, 157–165. [Google Scholar] [CrossRef] [PubMed]
- Rivero-Calle, I.; Pardo-Seco, J.; Aldaz, P.; Vargas, D.A.; Mascarós, E.; Redondo, E.; Díaz-Maroto, J.L.; Linares-Rufo, M.; Fierro-Alacio, M.J.; Gil, A.; et al. Incidence and risk factor prevalence of community-acquired pneumonia in adults in primary care in Spain (NEUMO-ES-RISK project). BMC Infect. Dis. 2016, 16, 645. [Google Scholar] [CrossRef] [PubMed]
- Muthumbi, E.; Lowe, B.S.; Muyodi, C.; Getambu, E.; Gleeson, F.; Scott, J.A.G. Risk factors for community-acquired pneumonia among adults in Kenya: A case-control study. Pneumonia 2017, 9, 17. [Google Scholar] [CrossRef] [PubMed]
- Aston, S.J.; Ho, A.; Jary, H.; Huwa, J.; Mitchell, T.; Ibitoye, S.; Greenwood, S.; Joekes, E.; Daire, A.; Mallewa, J.; et al. Etiology and risk factors for mortality in an adult community-acquired pneumonia cohort in Malawi. Am. J. Respir. Crit. Care Med. 2019, 200, 359–369. [Google Scholar] [CrossRef] [PubMed]
- Zilberberg, M.D.; Exuzides, A.; Spalding, J.; Foreman, A.; Jones, A.G.; Colby, C.; Shorr, A.F. Hyponatremia and hospital outcomes among patients with pneumonia: A retrospective cohort study. BMC Pulm. Med. 2008, 8, 16. [Google Scholar] [CrossRef] [PubMed]
- Park, S.W.; Shin, S.M.; Jeong, M.; Cho, D.H.; Lee, K.H.; Eisenhut, M.; Kronbichler, A.; Moritz, M.; Shin, J.I. Hyponatremia in children with respiratory infections: A cross-sectional analysis of a cohort of 3938 patients. Sci. Rep. 2018, 8, 16494. [Google Scholar] [CrossRef] [PubMed]
- Królicka, A.L.; Kruczkowska, A.; Krajewska, M.; Kusztal, M.A. Hyponatremia in infectious diseases-A literature review. Int. J. Environ. Res. Public Health 2020, 17, 5320. [Google Scholar] [CrossRef] [PubMed]
- Joseph, C.; Togawa, Y.; Shindo, N. Bacterial and viral infections associated with influenza. Influenza Other Respir. Viruses 2013, 7 (Suppl. 2), 105–113. [Google Scholar] [CrossRef]
- Sender, V.; Hentrich, K.; Henriques-Normark, B. Virus-induced changes of the respiratory tract environment promote secondary infections with Streptococcus pneumoniae. Front. Cell Infect. Microbiol. 2021, 11, 643326. [Google Scholar] [CrossRef]
- van Bladel, D.A.; van den Brand, M.; Rijntjes, J.; Naga, S.P.; Haacke, D.L.; Luijks, J.A.; Hebeda, K.M.; van Krieken, J.H.; Groenen, P.J.; Scheijen, B. Clonality assessment and detection of clonal diversity in classic Hodgkin lymphoma by next-generation sequencing of immunoglobulin gene rearrangements. Mod. Pathol. 2022, 35, 757–766. [Google Scholar] [CrossRef] [PubMed]
- Ho, C.; Rothberg, P.G. Next-generation sequencing-based antigen-receptor gene clonality assays: Will they become the clinical standard? J. Mol. Diagn. 2021, 23, 1043–1046. [Google Scholar] [CrossRef] [PubMed]
No | Sample Code | Real-Time PCR (Ct) | Sanger Sequencing Results * | |
---|---|---|---|---|
Clone(s) Number | Interpretation ** | |||
1 | C5136 | 11.9 | 1 | Single |
2 | A5001 | 12.08 | 5 | Multiple |
3 | C5119 | 13.05 | 1 | Single |
4 | C5004 | 14.31 | 1 | Single |
5 | C5071 | 15.94 | 1 | Single |
6 | C5003 | 15.98 | 4 | Multiple |
7 | A5019 | 16.74 | 1 | Single |
8 | C5134 | 17.83 | 1 | Single |
9 | C5124 | 18.09 | 5 | Multiple |
10 | C5014 | 18.56 | 4 | Multiple |
11 | C5078 | 18.8 | 1 | Single |
12 | D5017 | 19.47 | 1 | Single |
13 | D5008 | 21.8 | 1 | Single |
14 | A5004 | 23.53 | 3 | Multiple |
15 | C5133 | 24.44 | 4 | Multiple |
16 | C5108 | 24.67 | 4 | Multiple |
17 | C5069 | 26.79 | 4 | Multiple |
18 | C5109 | 28.8 | 4 | Multiple |
19 | D5007 | 29.8 | 6 | Multiple |
20 | A5014 | 30.17 | 4 | Multiple |
21 | C5019 | 30.38 | 4 | Multiple |
22 | C5075 | 30.38 | 3 | Multiple |
23 | C5095 | 31.16 | 3 | Multiple |
24 | C5005 | 31.65 | 4 | Multiple |
25 | A5018 | 32.0 | 1 | Single |
26 | C5017 | 32.17 | 3 | Multiple |
27 | C5110 | 32.22 | 4 | Multiple |
28 | C5107 | 32.71 | 1 | Single |
29 | C5074 | 33.01 | 4 | Multiple |
30 | C5024 | 33.21 | 4 | Multiple |
31 | A5016 | 33.92 | 3 | Multiple |
32 | C5104 | 34.17 | 4 | Multiple |
33 | C5137 | 34.7 | 5 | Multiple |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lestari, D.C.; Somboonthum, P.; Motooka, D.; Ishii, E.; Matsuda, S.; Karuniawati, A.; Iida, T. Clonality Analysis of Streptococcus pneumoniae in Clinical Specimens. Microbiol. Res. 2024, 15, 1110-1118. https://doi.org/10.3390/microbiolres15030074
Lestari DC, Somboonthum P, Motooka D, Ishii E, Matsuda S, Karuniawati A, Iida T. Clonality Analysis of Streptococcus pneumoniae in Clinical Specimens. Microbiology Research. 2024; 15(3):1110-1118. https://doi.org/10.3390/microbiolres15030074
Chicago/Turabian StyleLestari, Delly Chipta, Pranee Somboonthum, Daisuke Motooka, Eiji Ishii, Shigeaki Matsuda, Anis Karuniawati, and Tetsuya Iida. 2024. "Clonality Analysis of Streptococcus pneumoniae in Clinical Specimens" Microbiology Research 15, no. 3: 1110-1118. https://doi.org/10.3390/microbiolres15030074
APA StyleLestari, D. C., Somboonthum, P., Motooka, D., Ishii, E., Matsuda, S., Karuniawati, A., & Iida, T. (2024). Clonality Analysis of Streptococcus pneumoniae in Clinical Specimens. Microbiology Research, 15(3), 1110-1118. https://doi.org/10.3390/microbiolres15030074