Research on Waveform Adaptability Based on Lunar Channels
<p>Propagation path of lunar electromagnetic waves.</p> "> Figure 2
<p>BER performance versus the length of CP. (<b>a</b>) Uplink BER performance versus the length of CP in 20 MHz bandwidth. (<b>b</b>) Downlink BER performance versus the length of CP in 20 MHz bandwidth. (<b>c</b>) Uplink BER performance versus the length of CP in 10 MHz bandwidth. (<b>d</b>) Downlink BER performance versus the length of CP in 10 MHz bandwidth.</p> "> Figure 3
<p>Performance comparison of different modulation methods. (<b>a</b>) Performance comparison of different modulation methods for 20 M bandwidth. (<b>b</b>) Performance comparison of different modulation methods for 10 M bandwidth.</p> "> Figure 4
<p>Comparison of PAPR for different modulation schemes and orders. (<b>a</b>) Comparison of PAPR for different modulation schemes under 20 MHz bandwidth. (<b>b</b>) Comparison of PAPR for different modulation orders of QAM under 20 MHz bandwidth. (<b>c</b>) Comparison of PAPR for different modulation orders of APSK under 20 MHz bandwidth. (<b>d</b>) Comparison of PAPR for different modulation orders of PSK under 20 MHz bandwidth.</p> "> Figure 5
<p>Comparison of PAPR for different modulation schemes and orders. (<b>a</b>) Comparison of PAPR for different modulation schemes under 10MHz bandwidth. (<b>b</b>) Comparison of PAPR for different modulation orders of QAM under 10MHz bandwidth. (<b>c</b>) Comparison of PAPR for different modulation orders of APSK under 10MHz bandwidth. (<b>d</b>) Comparison of PAPR for different modulation orders of PSK under 10MHz bandwidth.</p> "> Figure 5 Cont.
<p>Comparison of PAPR for different modulation schemes and orders. (<b>a</b>) Comparison of PAPR for different modulation schemes under 10MHz bandwidth. (<b>b</b>) Comparison of PAPR for different modulation orders of QAM under 10MHz bandwidth. (<b>c</b>) Comparison of PAPR for different modulation orders of APSK under 10MHz bandwidth. (<b>d</b>) Comparison of PAPR for different modulation orders of PSK under 10MHz bandwidth.</p> "> Figure 6
<p>Comparison of BER performance for different modulation schemes. (<b>a</b>) Comparison of QAM and PSK modulation BER performance in 20 MHz bandwidth. (<b>b</b>) Comparison of BER performance for different modulation schemes in 20 MHz bandwidth. (<b>c</b>) Comparison of QAM and PSK modulation BER performance in 10 MHz bandwidth. (<b>d</b>) Comparison of QAM and PSK modulation BER performance in 10 MHz bandwidth.</p> "> Figure 6 Cont.
<p>Comparison of BER performance for different modulation schemes. (<b>a</b>) Comparison of QAM and PSK modulation BER performance in 20 MHz bandwidth. (<b>b</b>) Comparison of BER performance for different modulation schemes in 20 MHz bandwidth. (<b>c</b>) Comparison of QAM and PSK modulation BER performance in 10 MHz bandwidth. (<b>d</b>) Comparison of QAM and PSK modulation BER performance in 10 MHz bandwidth.</p> ">
Abstract
:1. Introduction
2. Lunar Communication Environment
3. Analysis of Lunar Communication Requirements
4. Numerical Results
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Li, C.; Wang, C.; Wei, Y.; Lin, Y. China’s present and future lunar exploration program. Science 2019, 365, 238–239. [Google Scholar] [CrossRef] [PubMed]
- Israel, D.J.; Mauldin, K.D.; Roberts, C.J.; Mitchell, J.W.; Pulkkinen, A.A.; Cooper, L.V.D.; Johnson, M.A.; Christe, S.D.; Gramling, C.J. LunaNet: A Flexible and Extensible Lunar Exploration Communications and Navigation Infrastructure. In Proceedings of the 2020 IEEE Aerospace Conference, Big Sky, MT, USA, 7–14 March 2020; pp. 1–14. [Google Scholar] [CrossRef]
- teja Nallapu, R.; Vance, L.D.; Xu, Y.; Thangavelatham, J. Automated design architecture for lunar constellations. In Proceedings of the 2020 IEEE Aerospace Conference, Big Sky, MT, USA, 7–14 March 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 1–11. [Google Scholar]
- Wang, S. Terahertz Emission Modeling of Lunar Regolith. Remote Sens. 2024, 16, 4037. [Google Scholar] [CrossRef]
- Khattak, S.B.A.; Nasralla, M.M.; Farman, H.; Choudhury, N. Performance Evaluation of an IEEE 802.15.4-Based Thread Network for Efficient Internet of Things Communications in Smart Cities. Appl. Sci. 2023, 13, 7745. [Google Scholar] [CrossRef]
- Bhamidipati, S.; Iiyama, K.; Mina, T.; Gao, G. Time-transfer from terrestrial gps for distributed lunar surface communication networks. In Proceedings of the 2022 IEEE Aerospace Conference (Aero), Big Sky, MT, USA, 5–12 March 2022; IEEE: Piscataway, NJ, USA, 2022; pp. 1–15. [Google Scholar]
- Simons, R.N. Cognitive Tapered Slot Circular Array Antenna for Lunar Surface Communications. In Proceedings of the 2021 IEEE Cognitive Communications for Aerospace Applications Workshop (CCAAW), Cleveland, OH, USA, 21–23 June 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 1–6. [Google Scholar]
- Ochiai, H.; Morikawa, Y.; Mizutani, K.; Harada, H. An Enhanced Channel Estimation for IEEE 802.15. 4 OFDM Receiver in High-speed Mobile IoT Communication Systems. IEEE Internet Things J. 2023, 10, 11910–11921. [Google Scholar] [CrossRef]
- Chae, J.; Choi, J.; Kim, J.; Cho, J.H. A Low-Complexity Widely-Linear MMSE Equalizer for DFT-Spread OFDM with Frequency-Domain Spectrum Shaping. IEEE Trans. Wirel. Commun. 2023, 23, 3465–3479. [Google Scholar] [CrossRef]
- Tugtekin, O.F.; Dogukan, A.T.; Arslan, E.; Basar, E. Coordinate Interleaved OFDM with Repeated In-Phase/Quadrature Index Modulation. IEEE Trans. Wirel. Commun. 2023, 23, 117–127. [Google Scholar] [CrossRef]
- Ge, Y.; Tan, X.; Ji, Z.; Zeng, Y.; Zhang, Z.; You, X.; Zhang, C. Approximate Message Passing MIMO Detector with Frequency Domain Initialization for SC-FDMA. IEEE Trans. Veh. Technol. 2023, 73, 4801–4813. [Google Scholar] [CrossRef]
- Marey, M.; Mostafa, H. STBC identification for multi-user uplink SC-FDMA asynchronous transmissions exploiting iterative soft information feedback of error correcting codes. IEEE Access 2022, 10, 21336–21346. [Google Scholar] [CrossRef]
- Kumar, S.; Majhi, S. Design and Testbed Implementation of Multiuser CFOs Estimation for MIMO SC-FDMA System. IEEE Trans. Signal Process. 2022, 70, 1880–1889. [Google Scholar] [CrossRef]
- Divsalar, D.; Net, M.S.; Cheung, K.M. Acquisition and tracking for communications between Lunar South Pole and Earth. In Proceedings of the 2019 IEEE Aerospace Conference, Big Sky, MT, USA, 2–9 March 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 1–14. [Google Scholar]
- Divsalar, D.; Net, M.S.; Cheung, K.M. Comparing Performance of Coded Communications over fading channels between the Lunar South Pole & Earth. In Proceedings of the 2022 IEEE Aerospace Conference (AERO), Big Sky, MT, USA, 5–12 March 2022; IEEE: Piscataway, NJ, USA, 2022; pp. 1–11. [Google Scholar]
- Toonen, R.C.; Booth, S.L.; Welch, B.W.; Zemba, M.J. Optimizing Lunar Map Partitioning for Multipath Fade Loss Analyses. IEEE J. Radio Freq. Identif. 2022, 6, 284–291. [Google Scholar] [CrossRef]
- Raza, W.; Abele, E.; O’Hara, J.; Sadr, B.; LoPresti, P.; Imran, A.; Choi, W.; Song, I.; Altunc, S.; Kegege, O.; et al. Toward a Hybrid RF/Optical Lunar Communication System (LunarComm). IEEE Netw. 2022, 36, 76–83. [Google Scholar] [CrossRef]
- Dudukovich, R.; Gormley, D.; Kancharla, S.; Wagner, K.; Short, R.; Brooks, D.; Fantl, J.; Janardhanan, S.; Fung, A. Toward the development of a multi-agent cognitive networking system for the lunar environment. IEEE J. Radio Freq. Identif. 2022, 6, 269–283. [Google Scholar] [CrossRef]
- Lu, F.; Yamaguchi, A.; Takeuchi, K.; Shinbo, H. Experimental Investigation of the Reflection Characteristics of a Flat Lunar Surface. In Proceedings of the 2022 IEEE International Conference on Wireless for Space and Extreme Environments (WiSEE), Winnipeg, MB, Canada, 12–14 October 2022; IEEE: Piscataway, NJ, USA, 2022; pp. 23–28. [Google Scholar]
- Ware, J.; Davarian, F. Lunar Communications Services with Emphasis on Commercialization. In Proceedings of the 2022 IEEE Aerospace Conference (AERO), Big Sky, MT, USA, 5–12 March 2022; IEEE: Piscataway, NJ, USA, 2022; pp. 1–10. [Google Scholar]
- Jiao, J.; He, Y.; Wang, Y.; Wu, S. Design and analysis of novel Ka band NOMA uplink relay system for Lunar farside exploration. China Commun. 2020, 17, 1–14. [Google Scholar] [CrossRef]
- Schonfeldt, M.; Grenier, A.; Delépaut, A.; Giordano, P.; Swinden, R.; Ventura-Traveset, J.; Blonski, D.; Hahn, J. A system study about a lunar navigation satellite transmitter system. In Proceedings of the 2020 European Navigation Conference (ENC), Dresden, Germany, 23–24 November 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 1–10. [Google Scholar]
Communication Requirements | Lunar Lander | Lunar Exploration Rover |
---|---|---|
Type of data | Voice communication, image transfer | Voice communication, image transfer |
Data rate | High | Middle |
Real-time requirements | High | Middle |
Scope of activities | None | 6 km |
Transmit power | High | Middle |
carrying capacity | High | Middle |
Mobility | None | High |
Parameter | Value |
---|---|
Frequency | 2.5 GHz |
Number of Subcarriers | 1333 |
FFT Length | 2048 |
Number of OFDM Symbols per Frame | 7 |
Pilot Interval | 12 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jia, M.; Li, J.; Wang, Z.; Zhao, C.; Yan, D.; Wang, H.; Li, D.; Sun, W. Research on Waveform Adaptability Based on Lunar Channels. Electronics 2024, 13, 5047. https://doi.org/10.3390/electronics13245047
Jia M, Li J, Wang Z, Zhao C, Yan D, Wang H, Li D, Sun W. Research on Waveform Adaptability Based on Lunar Channels. Electronics. 2024; 13(24):5047. https://doi.org/10.3390/electronics13245047
Chicago/Turabian StyleJia, Min, Jonghui Li, Zijie Wang, Chao Zhao, Daifu Yan, Hui Wang, Dongmei Li, and Weiran Sun. 2024. "Research on Waveform Adaptability Based on Lunar Channels" Electronics 13, no. 24: 5047. https://doi.org/10.3390/electronics13245047
APA StyleJia, M., Li, J., Wang, Z., Zhao, C., Yan, D., Wang, H., Li, D., & Sun, W. (2024). Research on Waveform Adaptability Based on Lunar Channels. Electronics, 13(24), 5047. https://doi.org/10.3390/electronics13245047