Deep Contrastive Survival Analysis with Dual-View Clustering
<p>The overall architecture of the DVC-Surv model. The Siamese autoencoder consists of two autoencoders without parameter sharing, mapping patient covariates into latent spaces of two views. Subsequently, the dual-view clustering module integrates the representations from dual views to cluster the samples. Lastly, the fused representation of the two views and covariates is fed into the survival backbone to obtain an estimation of the survival distribution.</p> "> Figure 2
<p>Schematic diagram of triple contrastive learning, including (<b>a</b>) inter-view cluster-guided contrastive learning, (<b>b</b>) intra-view instance-wise contrastive learning, and (<b>c</b>) intra-view cluster-wise contrastive learning.</p> "> Figure 3
<p>The visualization of dual-view clustering with tSNE. The t-SNE algorithm can map high-dimensional data to a low-dimensional space (such as two-dimensional space) while preserving the similarity between data points, thereby enabling the visualization of high-dimensional data distributions. Specifically, the clustering results in two views at the end of pre-training and training are shown. In each figure, different clusters are represented by different colors, with censored and uncensored samples indicated by ‘×’ and ‘·’, respectively.</p> "> Figure 4
<p>The feature importance of the model is determined using the SHAP algorithm. Specifically, the SHAP algorithm evaluates the contribution of each feature to the model’s predictions by calculating the marginal effect of each feature on each sample’s prediction. Higher SHAP values indicate that the feature plays a more significant role in the model’s prediction outcomes. Based on this, the average ranking of features’ SHAP values across all samples represents the importance ranking of the features. This can help us identify the features on which the model relies when making predictions, thereby better understanding the model’s decision-making process.</p> ">
Abstract
:1. Introduction
- We propose a novel deep contrastive survival analysis model with dual-view clustering. In this model, we design Siamese autoencoder to construct a dual-view latent space and utilize dual-view clustering to discover potential sub-populations in survival data, achieving comprehensive representations of patient interconnections, thus assisting in survival prediction.
- We design triple contrastive learning, treating the two views as augmentations of each other, and integrating clustering labels with dual-view representations to construct positive and negative sample pairs. This design leverages contrastive learning from different perspectives to enhance the model’s representational ability.
- We employ self-paced learning in dual-view clustering, allowing the model to learn samples from easy to hard, thus avoiding the misleading effect of boundary samples.
- We conduct extensive experiments on three widely used real-world clinical datasets. The experimental results validate the superiority of our proposed model.
2. Related Work
3. Methods
3.1. Problem Definition
3.2. Overall Architecture
3.3. Siamese Autoencoder
3.4. Dual-View Clustering
3.5. Self-Paced Learning
3.6. Triple Contrastive Learning
3.6.1. Intra-View Cluster-Guided Contrastive Learning
3.6.2. Inter-View Instance-Wise Contrastive Learning
3.6.3. Inter-View Cluster-Wise Contrastive Learning
3.7. Survival Backbone
3.8. Loss Functions and Optimization
Algorithm 1 Optimization procedure of DVC-Surv |
|
4. Experiments and Discussion
4.1. Datasets
4.2. Baseline Models
4.3. Evaluation Metrics
4.4. Experimental Setup
4.5. Results and Analysis
4.6. Ablation Study
4.7. Visualization Analysis
4.8. Interpretability Analysis
4.9. Computational Resource Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wiegrebe, S.; Kopper, P.; Sonabend, R.; Bischl, B.; Bender, A. Deep learning for survival analysis: A review. Artif. Intell. Rev. 2024, 57, 65. [Google Scholar] [CrossRef]
- Arroyo, A.; Cartea, A.; Moreno-Pino, F.; Zohren, S. Deep attentive survival analysis in limit order books: Estimating fill probabilities with convolutional-transformers. Quant. Financ. 2024, 24, 35–57. [Google Scholar] [CrossRef]
- Ahmed, J.; Green, R.C., II. Leveraging survival analysis in cost-aware deepnet for efficient hard drive failure prediction. Neural Comput. Appl. 2024, 1–16. [Google Scholar] [CrossRef]
- Li, S.; Yan, Y.; Ji, Y.; Peng, W.; Wan, L.; Zhang, P. Survivability Mapping Strategy for Virtual Wireless Sensor Networks for Link Failures in the Internet of Things. Electronics 2023, 12, 2498. [Google Scholar] [CrossRef]
- Wang, S.; Dong, D.; Li, L.; Li, H.; Bai, Y.; Hu, Y.; Huang, Y.; Yu, X.; Liu, S.; Qiu, X.; et al. A deep learning radiomics model to identify poor outcome in COVID-19 patients with underlying health conditions: A multicenter study. IEEE J. Biomed. Health Inform. 2021, 25, 2353–2362. [Google Scholar] [CrossRef]
- Ai, D.; Cui, C.; Tang, Y.; Wang, Y.; Zhang, N.; Zhang, C.; Zhen, Y.; Li, G.; Huang, K.; Liu, G.; et al. Machine learning model for predicting physical activity related bleeding risk in Chinese boys with haemophilia A. Thromb. Res. 2023, 232, 43–53. [Google Scholar] [CrossRef]
- Cox, D.R. Regression models and life-tables. J. R. Stat. Soc. Ser. (Methodol.) 1972, 34, 187–202. [Google Scholar] [CrossRef]
- Germer, S.; Rudolph, C.; Labohm, L.; Katalinic, A.; Rath, N.; Rausch, K.; Holleczek, B.; Handels, H.; AI-CARE Working Group. Survival analysis for lung cancer patients: A comparison of Cox regression and machine learning models. Int. J. Med. Inform. 2024, 191, 105607. [Google Scholar] [CrossRef]
- Shintani, A.K.; Girard, T.D.; Eden, S.K.; Arbogast, P.G.; Moons, K.G.; Ely, E.W. Immortal time bias in critical care research: Application of time-varying Cox regression for observational cohort studies. Crit. Care Med. 2009, 37, 2939–2945. [Google Scholar] [CrossRef]
- Alzubaidi, L.; Fadhel, M.A.; Al-Shamma, O.; Zhang, J.; Duan, Y. Deep learning models for classification of red blood cells in microscopy images to aid in sickle cell anemia diagnosis. Electronics 2020, 9, 427. [Google Scholar] [CrossRef]
- Paul, A.; Tajin, M.A.S.; Das, A.; Mongan, W.M.; Dandekar, K.R. Energy-efficient respiratory anomaly detection in premature newborn infants. Electronics 2022, 11, 682. [Google Scholar] [CrossRef] [PubMed]
- Acharya, S.; Mongan, W.M.; Rasheed, I.; Liu, Y.; Anday, E.; Dion, G.; Fontecchio, A.; Kurzweg, T.; Dandekar, K.R. Ensemble learning approach via kalman filtering for a passive wearable respiratory monitor. IEEE J. Biomed. Health Inform. 2018, 23, 1022–1031. [Google Scholar] [CrossRef] [PubMed]
- Katzman, J.L.; Shaham, U.; Cloninger, A.; Bates, J.; Jiang, T.; Kluger, Y. DeepSurv: Personalized treatment recommender system using a Cox proportional hazards deep neural network. BMC Med. Res. Methodol. 2018, 18, 24. [Google Scholar] [CrossRef]
- Lee, C.; Zame, W.; Yoon, J.; Van Der Schaar, M. Deephit: A deep learning approach to survival analysis with competing risks. In Proceedings of the AAAI Conference on Artificial Intelligence, New Orleans, LA, USA, 2–7 February 2018; Volume 32. [Google Scholar]
- Nagpal, C.; Li, X.; Dubrawski, A. Deep survival machines: Fully parametric survival regression and representation learning for censored data with competing risks. IEEE J. Biomed. Health Inform. 2021, 25, 3163–3175. [Google Scholar] [CrossRef]
- Chapfuwa, P.; Li, C.; Mehta, N.; Carin, L.; Henao, R. Survival cluster analysis. In Proceedings of the ACM Conference on Health, Inference, and Learning, Toronto, ON, Canada, 2–4 April 2020; pp. 60–68. [Google Scholar]
- Nagpal, C.; Yadlowsky, S.; Rostamzadeh, N.; Heller, K. Deep Cox mixtures for survival regression. In Proceedings of the Machine Learning for Healthcare Conference, Virtual, 6–7 August 2021; pp. 674–708. [Google Scholar]
- Manduchi, L.; Marcinkevičs, R.; Massi, M.C.; Weikert, T.; Sauter, A.; Gotta, V.; Müller, T.; Vasella, F.; Neidert, M.C.; Pfister, M.; et al. A Deep Variational Approach to Clustering Survival Data. arXiv 2021, arXiv:2106.05763. [Google Scholar]
- Cui, C.; Tang, Y.; Zhang, W. Deep Survival Analysis with Latent Clustering and Contrastive Learning. IEEE J. Biomed. Health Inform. 2024, 28, 3090–3101. [Google Scholar] [CrossRef]
- Hong, C.; Yi, F.; Huang, Z. Deep-CSA: Deep Contrastive Learning for Dynamic Survival Analysis with Competing Risks. IEEE J. Biomed. Health Inform. 2022, 26, 4248–4257. [Google Scholar] [CrossRef] [PubMed]
- Alom, M.Z.; Taha, T.M.; Yakopcic, C.; Westberg, S.; Sidike, P.; Nasrin, M.S.; Hasan, M.; Van Essen, B.C.; Awwal, A.A.; Asari, V.K. A state-of-the-art survey on deep learning theory and architectures. Electronics 2019, 8, 292. [Google Scholar] [CrossRef]
- Abdolrasol, M.G.; Hussain, S.S.; Ustun, T.S.; Sarker, M.R.; Hannan, M.A.; Mohamed, R.; Ali, J.A.; Mekhilef, S.; Milad, A. Artificial neural networks based optimization techniques: A review. Electronics 2021, 10, 2689. [Google Scholar] [CrossRef]
- Ishwaran, H.; Kogalur, U.B.; Blackstone, E.H.; Lauer, M.S. Random survival forests. Ann. Appl. Stat. 2008, 2, 841–860. [Google Scholar] [CrossRef]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Van Belle, V.; Pelckmans, K.; Van Huffel, S.; Suykens, J.A. Support vector methods for survival analysis: A comparison between ranking and regression approaches. Artif. Intell. Med. 2011, 53, 107–118. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Jia, Z.; Mercola, D.; Xie, X. A gradient boosting algorithm for survival analysis via direct optimization of concordance index. Comput. Math. Methods Med. 2013, 2013, 873595. [Google Scholar] [CrossRef] [PubMed]
- Hearst, M.A.; Dumais, S.T.; Osuna, E.; Platt, J.; Scholkopf, B. Support vector machines. IEEE Intell. Syst. Their Appl. 1998, 13, 18–28. [Google Scholar] [CrossRef]
- Ren, K.; Qin, J.; Zheng, L.; Yang, Z.; Zhang, W.; Qiu, L.; Yu, Y. Deep recurrent survival analysis. In Proceedings of the AAAI Conference on Artificial Intelligence, Honolulu, HI, USA, 27 January–1 February 2019; Volume 33, pp. 4798–4805. [Google Scholar]
- Wang, Z.; Sun, J. Survtrace: Transformers for survival analysis with competing events. In Proceedings of the 13th ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, Chicago, IL, USA, 7–10 August 2022; pp. 1–9. [Google Scholar]
- Andrew, G.; Arora, R.; Bilmes, J.; Livescu, K. Deep canonical correlation analysis. In Proceedings of the International Conference on Machine Learning, Atlanta, GA, USA, 16–21 June 2013; pp. 1247–1255. [Google Scholar]
- Xie, Y.; Lin, B.; Qu, Y.; Li, C.; Zhang, W.; Ma, L.; Wen, Y.; Tao, D. Joint deep multi-view learning for image clustering. IEEE Trans. Knowl. Data Eng. 2020, 33, 3594–3606. [Google Scholar] [CrossRef]
- Chen, R.; Tang, Y.; Zhang, W.; Feng, W. Adaptive-weighted deep multi-view clustering with uniform scale representation. Neural Netw. 2024, 171, 114–126. [Google Scholar] [CrossRef]
- Yang, Z.; Zhu, C.; Li, Z. Deep contrastive multi-view clustering with doubly enhanced commonality. Multimed. Syst. 2024, 30, 196. [Google Scholar] [CrossRef]
- Yu, X.; Jiang, Y.; Chao, G.; Chu, D. Deep Contrastive Multi-View Subspace Clustering With Representation and Cluster Interactive Learning. IEEE Trans. Knowl. Data Eng. 2024, 1–12. [Google Scholar] [CrossRef]
- Yang, X.; Liu, Y.; Zhou, S.; Wang, S.; Tu, W.; Zheng, Q.; Liu, X.; Fang, L.; Zhu, E. Cluster-guided contrastive graph clustering network. In Proceedings of the AAAI Conference on Artificial Intelligence, Washington, DC, USA, 7–14 February 2023; Volume 37, pp. 10834–10842. [Google Scholar]
- MacQueen, J. Some methods for classification and analysis of multivariate observations. In Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability; University of California Press: Berkeley, CA, USA, 1967; Volume 1, pp. 281–297. [Google Scholar]
- Kumar, M.; Packer, B.; Koller, D. Self-paced learning for latent variable models. In Proceedings of the Advances in Neural Information Processing Systems 23: 24th Annual Conference on Neural Information Processing Systems 2010, Vancouver, BC, Canada, 6–9 December 2010; Volume 23. [Google Scholar]
- Guo, X.; Liu, X.; Zhu, E.; Zhu, X.; Li, M.; Xu, X.; Yin, J. Adaptive self-paced deep clustering with data augmentation. IEEE Trans. Knowl. Data Eng. 2019, 32, 1680–1693. [Google Scholar] [CrossRef]
- Curtis, C.; Shah, S.P.; Chin, S.F.; Turashvili, G.; Rueda, O.M.; Dunning, M.J.; Speed, D.; Lynch, A.G.; Samarajiwa, S.; Yuan, Y.; et al. The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups. Nature 2012, 486, 346–352. [Google Scholar] [CrossRef]
- Foekens, J.A.; Peters, H.A.; Look, M.P.; Portengen, H.; Schmitt, M.; Kramer, M.D.; Brünner, N.; Jänicke, F.; Gelder, M.E.M.v.; Henzen-Logmans, S.C.; et al. The urokinase system of plasminogen activation and prognosis in 2780 breast cancer patients. Cancer Res. 2000, 60, 636–643. [Google Scholar] [PubMed]
- Schumacher, M.; Bastert, G.; Bojar, H.; Hübner, K.; Olschewski, M.; Sauerbrei, W.; Schmoor, C.; Beyerle, C.; Neumann, R.; Rauschecker, H. Randomized 2 × 2 trial evaluating hormonal treatment and the duration of chemotherapy in node-positive breast cancer patients. German Breast Cancer Study Group. J. Clin. Oncol. 1994, 12, 2086–2093. [Google Scholar] [CrossRef] [PubMed]
- Knaus, W.A.; Harrell, F.E.; Lynn, J.; Goldman, L.; Phillips, R.S.; Connors, A.F.; Dawson, N.V.; Fulkerson, W.J.; Califf, R.M.; Desbiens, N.; et al. The SUPPORT prognostic model: Objective estimates of survival for seriously ill hospitalized adults. Ann. Intern. Med. 1995, 122, 191–203. [Google Scholar] [CrossRef] [PubMed]
- Harrell, F.E.; Califf, R.M.; Pryor, D.B.; Lee, K.L.; Rosati, R.A. Evaluating the yield of medical tests. JAMA 1982, 247, 2543–2546. [Google Scholar] [CrossRef] [PubMed]
- Antolini, L.; Boracchi, P.; Biganzoli, E. A time-dependent discrimination index for survival data. Stat. Med. 2005, 24, 3927–3944. [Google Scholar] [CrossRef]
- Graf, E.; Schmoor, C.; Sauerbrei, W.; Schumacher, M. Assessment and comparison of prognostic classification schemes for survival data. Stat. Med. 1999, 18, 2529–2545. [Google Scholar] [CrossRef]
- Kvamme, H.; Borgan, Ø.; Scheel, I. Time-to-event prediction with neural networks and Cox regression. J. Mach. Learn. Res. 2019, 20, 1–30. [Google Scholar]
- Van der Maaten, L.; Hinton, G. Visualizing data using t-SNE. J. Mach. Learn. Res. 2008, 9, 2579–2605. [Google Scholar]
- Lundberg, S. A unified approach to interpreting model predictions. arXiv 2017, arXiv:1705.07874. [Google Scholar]
- Rajan, R.; Poniecka, A.; Smith, T.L.; Yang, Y.; Frye, D.; Pusztai, L.; Fiterman, D.J.; Gal-Gombos, E.; Whitman, G.; Rouzier, R.; et al. Change in tumor cellularity of breast carcinoma after neoadjuvant chemotherapy as a variable in the pathologic assessment of response. Cancer Interdiscip. Int. J. Am. Cancer Soc. 2004, 100, 1365–1373. [Google Scholar] [CrossRef]
- Castelli, G.; Pognani, C.; Cita, M.; Stuani, A.; Sgarbi, L.; Paladini, R. Procalcitonin, C-reactive protein, white blood cells and SOFA score in ICU: Diagnosis and monitoring of sepsis. Minerva Anestesiol. 2006, 72, 69. [Google Scholar] [PubMed]
- Brown, S.M.; Duggal, A.; Hou, P.C.; Tidswell, M.; Khan, A.; Exline, M.; Park, P.K.; Schoenfeld, D.A.; Liu, M.; Grissom, C.K.; et al. Nonlinear imputation of PaO2/FIO2 from SpO2/FIO2 among mechanically ventilated patients in the ICU: A prospective, observational study. Crit. Care Med. 2017, 45, 1317–1324. [Google Scholar] [CrossRef] [PubMed]
Parameter | Search Range | Values | ||
---|---|---|---|---|
METABRIC | GBSG | SUPPORT | ||
K | 3 | 3 | 4 | |
Model | METABRIC | GBSG | SUPPORT | Average |
---|---|---|---|---|
CoxPH [7] | ||||
RSF [23] | ||||
DeepSurv [13] | ||||
DSM [15] | ||||
DeepHit [14] | ||||
DSACC [19] | 0.6722 ± 0.0161 | 0.6793 ± 0.0152 | 0.6350 ± 0.0074 | 0.6621 |
DVC-Surv |
Model | METABRIC | GBSG | SUPPORT | Average |
---|---|---|---|---|
CoxPH [7] | ||||
RSF [23] | 0.1815 | |||
DeepSurv [13] | ||||
DSM [15] | ||||
DeepHit [14] | ||||
DSACC [19] | 0.1616 ± 0.0063 | |||
DVC-Surv | 0.1827 ± 0.0013 | 0.1929 ± 0.0027 |
Model | METABRIC | GBSG | SUPPORT | Average |
---|---|---|---|---|
0.6730 ± 0.0154 | 0.6816 ± 0.0032 | 0.6402 ± 0.0047 | 0.6649 | |
DVC-Surv |
Model | METABRIC | GBSG | SUPPORT | Average |
---|---|---|---|---|
0.1609 ± 0.0058 | 0.1944 ± 0.0027 | 0.1796 | ||
DVC-Surv | 0.1827 ± 0.0013 |
Model | DeepHit | DSACC | DVC-Surv |
---|---|---|---|
C-index ↑ | |||
IBS ↓ | |||
GPU memory (MB) ↓ | 969 | 1199 | 1227 |
Train time (s/10 epoch) ↓ | |||
Test time (s/10 epoch) ↓ | |||
Epoch | 500 | 500 | 500 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cui, C.; Tang, Y.; Zhang, W. Deep Contrastive Survival Analysis with Dual-View Clustering. Electronics 2024, 13, 4866. https://doi.org/10.3390/electronics13244866
Cui C, Tang Y, Zhang W. Deep Contrastive Survival Analysis with Dual-View Clustering. Electronics. 2024; 13(24):4866. https://doi.org/10.3390/electronics13244866
Chicago/Turabian StyleCui, Chang, Yongqiang Tang, and Wensheng Zhang. 2024. "Deep Contrastive Survival Analysis with Dual-View Clustering" Electronics 13, no. 24: 4866. https://doi.org/10.3390/electronics13244866
APA StyleCui, C., Tang, Y., & Zhang, W. (2024). Deep Contrastive Survival Analysis with Dual-View Clustering. Electronics, 13(24), 4866. https://doi.org/10.3390/electronics13244866