Band Bending and Trap Distribution along the Channel of Organic Field-Effect Transistors from Frequency-Resolved Scanning Photocurrent Microscopy
<p>Spatial photocurrent <span class="html-italic">I</span><sub>p</sub>(x) as a function of distance x measured from the source edge for the indicated voltages: −5 V (open circles), −6.5 (open triangles), −8 V (orange triangles), −9.5 V (magenta squares), −12 V (blue circles), −15 V (olive diamonds). Increasing the negative <span class="html-italic">V</span><sub>GS</sub> above −6.5 V and keeping the <span class="html-italic">V</span><sub>DS</sub> constant, the transistor gradually transits from the off-state, where <span class="html-italic">I</span><sub>p</sub>(<span class="html-italic">x</span>) is almost zero, to the on-state, in which the <span class="html-italic">I</span><sub>p</sub>(<span class="html-italic">x</span>) signal starts to increase first near the source for <span class="html-italic">V</span><sub>GS</sub> = −8 V and −9.5 V and then at the drain side for more negative gate voltages (<span class="html-italic">V</span><sub>GS</sub> < −9.5 V).</p> "> Figure 2
<p>Schematic representation of the upward band bending at pentacene insulator interface for different positions in the transistor channel. The magnitude of the band bending −e<span class="html-italic">Ψ</span><sub>s</sub> (red arrows) from the negative <span class="html-italic">V</span><sub>GS</sub> voltage is deduced from the listed energy gaps (<span class="html-italic">E</span><sub>tp</sub> − <span class="html-italic">E</span><sub>v</sub>) obtained from the SR-SPCM spectra by placing the laser beam near the source (S), midway between the source and drain (M), and near the drain (D). Note that only the relative positions of <span class="html-italic">E</span><sub>tp</sub> and <span class="html-italic">E</span><sub>v</sub> levels can be determined. Their variation along the channel due to the applied <span class="html-italic">V</span><sub>DS</sub> = −10 V cannot be deduced from our measurements. However, this voltage produces a reduction in −e<span class="html-italic">Ψ</span><sub>s</sub> from source to drain, which is captured by the increase in the energy gap (<span class="html-italic">E</span><sub>tp</sub> − <span class="html-italic">E</span><sub>v</sub>). Due to the band bending, empty hole traps (blue circles) are lifted above the <span class="html-italic">E</span><sub>tp</sub> level and become filled with trapped holes (red circles) in the accumulation layer at the insulator interface, The <span class="html-italic">I</span><sub>p</sub>(<span class="html-italic">x</span>) profile (solid blue line) obtained for <span class="html-italic">V</span><sub>GS</sub> = −20 V and <span class="html-italic">V</span><sub>DS</sub> = −10 V reflects the inhomogeneous profile of trapped holes (red solid circles).</p> "> Figure 3
<p>Photocurrent <span class="html-italic">I</span><sub>p</sub>(x) as a function of distance x from the source edge for the indicated chopper frequencies <span class="html-italic">f</span>: 10 Hz (red circles), 60 Hz (green up triangles), 400 Hz (magenta squares), 800 Hz (red diamonds), 2.2 kHz (black down triangles). An overall reduction in <span class="html-italic">I</span><sub>p</sub>(x) that is relatively stronger on the drain side is produced by increasing <span class="html-italic">f</span>.</p> "> Figure 4
<p>Photocurrent spectra of three-terminal pentacene FETs compared with the photocurrent spectra of two-terminal pentacene films on glass substrate. Spectra of photocurrent <span class="html-italic">I</span><sub>p</sub>(<span class="html-italic">ω</span>) (<b>a</b>), <span class="html-italic">I</span><sub>p</sub>(<span class="html-italic">ω</span>)/<span class="html-italic">I</span><sub>pο</sub>(<span class="html-italic">ω</span>) ratio (<b>b</b>), and probed trap depth (<span class="html-italic">E</span><sub>ω</sub> − <span class="html-italic">E</span><sub>v</sub>) (<b>c</b>) of pentacene FETs obtained for probe laser beam placed near the source (S) (red squares), midway the source and drain (M) (olive triangles), and near the drain side (D) (blue circles). Spectra of the MPC amplitude <span class="html-italic">I</span><sub>ac</sub>(<span class="html-italic">ω</span>) (<b>d</b>), <span class="html-italic">I</span><sub>ac</sub>(<span class="html-italic">ω</span>)/I<sub>acο</sub>(<span class="html-italic">ω</span>) ratio (<b>e</b>), and probed trap depth (<span class="html-italic">E</span><sub>ω</sub> − <span class="html-italic">E</span><sub>v</sub>) (<b>f</b>) of pentacene two-terminal devices typically obtained by increasing intensity of the bias light: 1.2 × 10<sup>11</sup> (grey circles), 7.5 × 10<sup>11</sup> (blue circles), 4 × 10<sup>12</sup> (olive triangles), 1.8 × 10<sup>13</sup> (red squares) photons cm<sup>−2</sup> s<sup>−1</sup>. Down and up arrows indicate frequencies <span class="html-italic">ω</span><sub>s</sub> and <span class="html-italic">ω</span><sub>t</sub>, respectively. Horizontal arrows indicate <span class="html-italic">E</span><sub>tp</sub> level. Solid straight lines indicate (<span class="html-italic">E</span><sub>ω</sub> − <span class="html-italic">E</span><sub>v</sub>) calculated from Equation (5).</p> "> Figure 5
<p>The active probed trap distributions <span class="html-italic">N</span>(<span class="html-italic">E</span><sub>ωο</sub> − <span class="html-italic">E</span><sub>v</sub>) of the two- and three-terminal pentacene devices as a function of the probed trap depth (<span class="html-italic">E</span><sub>ωo</sub> − <span class="html-italic">E</span><sub>v</sub>). The trap distributions were calculated from Equation (7) using the <span class="html-italic">I</span><sub>acο</sub>(<span class="html-italic">ω</span>) values of <a href="#electronics-11-01799-f004" class="html-fig">Figure 4</a>d and the <span class="html-italic">I</span><sub>pο</sub>(<span class="html-italic">ω</span>) values of our transistor from <a href="#electronics-11-01799-f004" class="html-fig">Figure 4</a>a and the <span class="html-italic">I</span><sub>pο</sub>(<span class="html-italic">ω</span>) values of the transistor of Westermeir et al. [<a href="#B12-electronics-11-01799" class="html-bibr">12</a>] presented below in Figure 7.</p> "> Figure 6
<p>Valence band edge energy <span class="html-italic">E</span><sub>v</sub> below the <span class="html-italic">E</span><sub>tp</sub> level along the channel of FETs from different laboratories. The energy <span class="html-italic">E</span><sub>v</sub> was calculated from Equation (9) using the crossover frequencies <span class="html-italic">ω</span><sub>s</sub> of the corresponding <span class="html-italic">I</span><sub>p</sub>(<span class="html-italic">ω</span>) spectra in <a href="#electronics-11-01799-f006" class="html-fig">Figure 6</a> of our transistor (circles) and the transistors of Westermeir et al. [<a href="#B12-electronics-11-01799" class="html-bibr">12</a>] (squares) and Fiebig [<a href="#B22-electronics-11-01799" class="html-bibr">22</a>] (triangles), for ν<sub>o</sub> = 10<sup>10</sup> s<sup>−1</sup> (left axis) and ν<sub>o</sub> = 10<sup>8</sup> s<sup>−1</sup> (right axis).</p> "> Figure 7
<p>Photocurrent <span class="html-italic">I</span><sub>p</sub>(<span class="html-italic">ω</span>) spectra as a function of the angular modulation frequency of FETs from different laboratories. The <span class="html-italic">I</span><sub>p</sub>(<span class="html-italic">ω</span>) signal is shown for probe laser illumination near the source (S), midway between the source and drain (M), and near the drain side (D). <span class="html-italic">I</span><sub>p</sub>(<span class="html-italic">ω</span>) signal derived by digitizing the SPCM <span class="html-italic">I</span><sub>p</sub>(x) profiles of different modulation frequencies reported by Westermeir et al. [<a href="#B12-electronics-11-01799" class="html-bibr">12</a>] (open squares) and Fiebig [<a href="#B22-electronics-11-01799" class="html-bibr">22</a>] (open triangles). The <span class="html-italic">I</span><sub>p</sub>(<span class="html-italic">ω</span>) spectra of the present work (solid circles) are taken from <a href="#electronics-11-01799-f004" class="html-fig">Figure 4</a>a.</p> ">
Abstract
:1. Introduction
2. Experimental Details
3. Results
3.1. SPCM Profiles
3.2. FR-SPCM Spectra
3.3. Detailed Comparison with the Photocurrent Spectra of Two-Terminal Devices
3.4. Estimation of the Band Bending from the Ip(ω) Spectra
3.5. Application of Our Analysis to the FR-SPCM Data of Other Authors
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Ostroverkhova, O. Organic Optoelectronic Materials: Mechanisms and Applications. Chem. Rev. 2016, 116, 13279. [Google Scholar] [CrossRef] [PubMed]
- Yan, Y.; Zhao, Y.; Liu, Y. Recent progress in organic field-effect transistor-based integrated circuits. J. Polym. Sci. 2022, 60, 311. [Google Scholar] [CrossRef]
- Wang, C.; Zhang, X.; Dong, H.; Chen, X.; Hu, W. Challenges and Emerging Opportunities in High-Mobility and Low-Energy-Consumption Organic Field-Effect Transistors. Adv. Energy Mater. 2020, 10, 2000955. [Google Scholar] [CrossRef]
- Kim, C.H.; Bonnassieux, Y.; Horowitz, G. Charge distribution and contact resistance model for coplanar organic field-effect transistors. IEEE Trans. Electron. Devices 2013, 60, 280. [Google Scholar] [CrossRef] [Green Version]
- Chua, L.L.; Zaumseil, J.; Chang, J.F.; Ou, E.C.W.; Ho, P.K.H.; Sirringhaus, H.; Friend, R.H. General observation of n-type field-effect behaviour in organic semiconductors. Nature 2005, 434, 194. [Google Scholar] [CrossRef]
- Liewald, C.; Reiser, D.; Westermeier, C.; Nickel, B. Photocurrent microscopy of contact resistance and charge carrier traps in organic field-effect transistors. Appl. Phys. Lett. 2016, 109, 53301. [Google Scholar] [CrossRef]
- Mathijssen, S.G.J.; Spijkman, M.J.; Andringa, A.M.; van Hal, P.A.; McCulloch, I.; Kemerink, M.; Janssen, R.A.J.; de Leeuw, D.M. Revealing buried interfaces to understand the origins of threshold voltage shifts in organic field-effect transistors. Adv. Mater. 2010, 22, 5105. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Graham, R.; Yu, D. Scanning photocurrent microscopy in semiconductor nanostructures. Phys. Lett. B 2013, 27, 1330018. [Google Scholar] [CrossRef]
- Jia, Z.; Banu, L.; Kymissis, I. Photocurrent Study of Oxygen-Mediated Doping States in Pentacene Thin-Film Transistors. IEEE Trans. Electron. Devices 2010, 57, 380. [Google Scholar] [CrossRef]
- Fiebig, M.; Erlen, C.; Göllner, M.; Lugli, P.; Nickel, B. Spatially resolved photoresponse measurements on pentacene thin-film transistors. Appl. Phys. A 2009, 95, 113. [Google Scholar] [CrossRef]
- Tsen, A.W.; Cicoira, F.; Malliaras, G.G.; Park, J. Photoelectrical imaging and characterization of point contacts in pentacene thin-film transistors. Appl. Phys. Lett. 2010, 97, 23308. [Google Scholar] [CrossRef]
- Westermeier, C.; Fiebig, M.; Nickel, B. Mapping of Trap Densities and Hotspots in Pentacene Thin-Film Transistors by Frequency-Resolved Scanning Photoresponse Microscopy. Adv. Mater. 2013, 25, 5719. [Google Scholar] [CrossRef]
- Giannopoulou, A.; Kounavis, P. Visualization of channel formation of organic field-effect transistors by scanning photocurrent microscopy. Org. Electron. 2018, 58, 167. [Google Scholar] [CrossRef]
- Gorgolis, S.; Giannopoulou, A.; Kounavis, P. Charge carriers’ trapping states in pentacene films studied by modulated photocurrent. J. Appl. Phys. 2013, 113, 123102. [Google Scholar] [CrossRef]
- Vagenas, N.; Giannopoulou, A.; Kounavis, P. Density and Mobility Effects of the Majority Carriers in Organic Semiconductors under Light Excitation. J. Appl. Phys. 2015, 117, 33105. [Google Scholar] [CrossRef]
- Fraboni, B.; Matteouci, A.; Cavallini, A. Photocurrent studies of stress and aging in pentacene thin film transistors. Appl. Phys. Lett. 2006, 89, 222112. [Google Scholar] [CrossRef]
- Smith, M.B.; Michl, J. Singlet Fission. J. Chem. Rev. 2010, 110, 6891. [Google Scholar] [CrossRef]
- Lloyd-Hughes, J.; Richards, T.; Sirringhaus, H.; Johnston, M.B.; Herz, L.M. Exciton dissociation in polymer field-effect transistors studied using terahertz spectroscopy. Phys. Rev. B 2008, 77, 125203. [Google Scholar] [CrossRef] [Green Version]
- Qiao, X.; Zhao, C.; Chen, B.; Luan, L. Trap-induced photoconductivity in singlet fission pentacene diodes. Appl. Phys. Lett. 2014, 105, 33303. [Google Scholar] [CrossRef]
- Vagenas, N.; Podzorov, V.; Kounavis, P. Modulated-Photocurrent Spectroscopy of Single-Crystal Organic Semiconductor Rubrene with Pristine and Trap-Dominated Surfaces. Phys. Rev. Mater. 2021, 5, 63801. [Google Scholar] [CrossRef]
- Kounavis, P. Analysis of the modulated photocurrent experiment. Phys. Rev. B 2001, 64, 45204. [Google Scholar] [CrossRef]
- Fiebig, M. Spatially Resolved Electronic and Optoelectronic Measurements of Pentacene Thin Film Transistors. Ph.D. Thesis, Ludwig-Maximilians-Universität München, München, Germany, 2010. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kalemai, G.; Vagenas, N.; Giannopoulou, A.; Kounavis, P. Band Bending and Trap Distribution along the Channel of Organic Field-Effect Transistors from Frequency-Resolved Scanning Photocurrent Microscopy. Electronics 2022, 11, 1799. https://doi.org/10.3390/electronics11111799
Kalemai G, Vagenas N, Giannopoulou A, Kounavis P. Band Bending and Trap Distribution along the Channel of Organic Field-Effect Transistors from Frequency-Resolved Scanning Photocurrent Microscopy. Electronics. 2022; 11(11):1799. https://doi.org/10.3390/electronics11111799
Chicago/Turabian StyleKalemai, Gion, Nikolaos Vagenas, Athina Giannopoulou, and Panagiotis Kounavis. 2022. "Band Bending and Trap Distribution along the Channel of Organic Field-Effect Transistors from Frequency-Resolved Scanning Photocurrent Microscopy" Electronics 11, no. 11: 1799. https://doi.org/10.3390/electronics11111799
APA StyleKalemai, G., Vagenas, N., Giannopoulou, A., & Kounavis, P. (2022). Band Bending and Trap Distribution along the Channel of Organic Field-Effect Transistors from Frequency-Resolved Scanning Photocurrent Microscopy. Electronics, 11(11), 1799. https://doi.org/10.3390/electronics11111799