Analysis and Applications of Magnetically Coupled Resonant Circuits
<p>Schematic diagram of two magnetically coupled resonant circuits with mutual inductance <span class="html-italic">M</span>. The configuration is used to analyze coupling effects in wireless power transfer and RF and microwave filters.</p> "> Figure 2
<p>Plot of coupling resonance angular frequencies versus coupling factor for two values of <math display="inline"><semantics> <msub> <mi>q</mi> <mn>2</mn> </msub> </semantics></math>.</p> "> Figure 3
<p>Plots of the RMS value of the secondary circuit current <math display="inline"><semantics> <mrow> <mrow> <mo>|</mo> </mrow> <msub> <mi>I</mi> <mn>2</mn> </msub> <mrow> <mo>|</mo> </mrow> </mrow> </semantics></math> as a function of the relative detuning coefficient <math display="inline"><semantics> <mi>ξ</mi> </semantics></math> under varying coupling conditions: (<b>a</b>) single-peak resonance curves for coupling <math display="inline"><semantics> <mrow> <mi>k</mi> <mo>≤</mo> <msub> <mi>k</mi> <mi>r</mi> </msub> </mrow> </semantics></math>; (<b>b</b>) emergence of dual peaks for over-critical coupling <math display="inline"><semantics> <mrow> <mi>k</mi> <mo>></mo> <msub> <mi>k</mi> <mi>r</mi> </msub> </mrow> </semantics></math>.</p> "> Figure 4
<p>Plots of <math display="inline"><semantics> <mstyle scriptlevel="0" displaystyle="true"> <mfrac> <mrow> <mrow> <mo>|</mo> </mrow> <msub> <mi>Y</mi> <mn>12</mn> </msub> <mrow> <mo>|</mo> </mrow> </mrow> <msub> <mrow> <msub> <mi>Y</mi> <mn>12</mn> </msub> </mrow> <mi>mm</mi> </msub> </mfrac> </mstyle> </semantics></math> for <math display="inline"><semantics> <mrow> <mi>A</mi> <mo>=</mo> <mn>0.5</mn> </mrow> </semantics></math>: (<b>a</b>) 3D plot; (<b>b</b>) contour plot; the straight lines correspond to the considered cases. The plots show how circuit quality factors <math display="inline"><semantics> <msub> <mi>Q</mi> <mn>1</mn> </msub> </semantics></math>, <math display="inline"><semantics> <msub> <mi>Q</mi> <mn>2</mn> </msub> </semantics></math> and resonant frequency tuning <math display="inline"><semantics> <msub> <mi>ω</mi> <mn>1</mn> </msub> </semantics></math>, <math display="inline"><semantics> <msub> <mi>ω</mi> <mn>2</mn> </msub> </semantics></math> influence resonance characteristics.</p> "> Figure 5
<p>Plots of <math display="inline"><semantics> <mstyle scriptlevel="0" displaystyle="true"> <mfrac> <mrow> <mrow> <mo>|</mo> </mrow> <msub> <mi>Y</mi> <mn>12</mn> </msub> <mrow> <mo>|</mo> </mrow> </mrow> <msub> <mrow> <msub> <mi>Y</mi> <mn>12</mn> </msub> </mrow> <mi>mm</mi> </msub> </mfrac> </mstyle> </semantics></math> for <math display="inline"><semantics> <mrow> <mi>A</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>: (<b>a</b>) 3D plot; (<b>b</b>) contour plot; the straight lines correspond to the considered cases. The plots show how circuit quality factors <math display="inline"><semantics> <msub> <mi>Q</mi> <mn>1</mn> </msub> </semantics></math>, <math display="inline"><semantics> <msub> <mi>Q</mi> <mn>2</mn> </msub> </semantics></math> and resonant frequency tuning <math display="inline"><semantics> <msub> <mi>ω</mi> <mn>1</mn> </msub> </semantics></math>, <math display="inline"><semantics> <msub> <mi>ω</mi> <mn>2</mn> </msub> </semantics></math> influence resonance characteristics.</p> "> Figure 6
<p>Plots of <math display="inline"><semantics> <mstyle scriptlevel="0" displaystyle="true"> <mfrac> <mrow> <mrow> <mo>|</mo> </mrow> <msub> <mi>Y</mi> <mn>12</mn> </msub> <mrow> <mo>|</mo> </mrow> </mrow> <msub> <mrow> <msub> <mi>Y</mi> <mn>12</mn> </msub> </mrow> <mi>mm</mi> </msub> </mfrac> </mstyle> </semantics></math> for <math display="inline"><semantics> <mrow> <mi>A</mi> <mo>=</mo> <mn>2</mn> </mrow> </semantics></math>: (<b>a</b>) 3D plot; (<b>b</b>) contour plot; the straight lines correspond to the considered cases. The plots show how circuit quality factors <math display="inline"><semantics> <msub> <mi>Q</mi> <mn>1</mn> </msub> </semantics></math>, <math display="inline"><semantics> <msub> <mi>Q</mi> <mn>2</mn> </msub> </semantics></math> and resonant frequency tuning <math display="inline"><semantics> <msub> <mi>ω</mi> <mn>1</mn> </msub> </semantics></math>, <math display="inline"><semantics> <msub> <mi>ω</mi> <mn>2</mn> </msub> </semantics></math> influence resonance characteristics.</p> "> Figure 7
<p>Dependence of normalized admittance <math display="inline"><semantics> <mstyle scriptlevel="0" displaystyle="true"> <mfrac> <mrow> <mrow> <mo>|</mo> </mrow> <msub> <mi>Y</mi> <mn>12</mn> </msub> <mrow> <mo>|</mo> </mrow> </mrow> <msub> <mrow> <msub> <mi>Y</mi> <mn>12</mn> </msub> </mrow> <mi>mm</mi> </msub> </mfrac> </mstyle> </semantics></math> on detuning parameters <math display="inline"><semantics> <msub> <mi>ζ</mi> <mn>1</mn> </msub> </semantics></math> and <math display="inline"><semantics> <msub> <mi>ζ</mi> <mn>2</mn> </msub> </semantics></math> for coupling parameter <math display="inline"><semantics> <mrow> <mi>A</mi> <mo>=</mo> <mn>0.5</mn> </mrow> </semantics></math>: (<b>a</b>) variation along <math display="inline"><semantics> <msub> <mi>ζ</mi> <mn>1</mn> </msub> </semantics></math>; (<b>b</b>) variation along <math display="inline"><semantics> <msub> <mi>ζ</mi> <mn>2</mn> </msub> </semantics></math>. The plots reflect the effects of coupling on resonance behavior.</p> "> Figure 8
<p>Dependence of normalized admittance <math display="inline"><semantics> <mstyle scriptlevel="0" displaystyle="true"> <mfrac> <mrow> <mrow> <mo>|</mo> </mrow> <msub> <mi>Y</mi> <mn>12</mn> </msub> <mrow> <mo>|</mo> </mrow> </mrow> <msub> <mrow> <msub> <mi>Y</mi> <mn>12</mn> </msub> </mrow> <mi>mm</mi> </msub> </mfrac> </mstyle> </semantics></math> on detuning parameters <math display="inline"><semantics> <msub> <mi>ζ</mi> <mn>1</mn> </msub> </semantics></math> and <math display="inline"><semantics> <msub> <mi>ζ</mi> <mn>2</mn> </msub> </semantics></math> for coupling parameter <math display="inline"><semantics> <mrow> <mi>A</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>: (<b>a</b>) variation along <math display="inline"><semantics> <msub> <mi>ζ</mi> <mn>1</mn> </msub> </semantics></math>; (<b>b</b>) variation along <math display="inline"><semantics> <msub> <mi>ζ</mi> <mn>2</mn> </msub> </semantics></math>. The plots reflect the effects of coupling on resonance behavior.</p> "> Figure 9
<p>Dependence of normalized admittance <math display="inline"><semantics> <mstyle scriptlevel="0" displaystyle="true"> <mfrac> <mrow> <mrow> <mo>|</mo> </mrow> <msub> <mi>Y</mi> <mn>12</mn> </msub> <mrow> <mo>|</mo> </mrow> </mrow> <msub> <mrow> <msub> <mi>Y</mi> <mn>12</mn> </msub> </mrow> <mi>mm</mi> </msub> </mfrac> </mstyle> </semantics></math> on detuning parameters <math display="inline"><semantics> <msub> <mi>ζ</mi> <mn>1</mn> </msub> </semantics></math> and <math display="inline"><semantics> <msub> <mi>ζ</mi> <mn>2</mn> </msub> </semantics></math> for coupling parameter <math display="inline"><semantics> <mrow> <mi>A</mi> <mo>=</mo> <mn>2</mn> </mrow> </semantics></math>: (<b>a</b>) variation along <math display="inline"><semantics> <msub> <mi>ζ</mi> <mn>1</mn> </msub> </semantics></math>; (<b>b</b>) variation along <math display="inline"><semantics> <msub> <mi>ζ</mi> <mn>2</mn> </msub> </semantics></math>. The plots reflect the effects of coupling on resonance behavior.</p> "> Figure 10
<p>Considered structures containing SRR-type resonators: (<b>a</b>) an SRR with dimensions marked; (<b>b</b>) two resonators; (<b>c</b>) three resonators.</p> "> Figure 11
<p>Plot of the coupling resonance angular frequencies versus coefficient <math display="inline"><semantics> <mrow> <mover accent="true"> <mi>k</mi> <mo stretchy="false">˜</mo> </mover> <mo>=</mo> <mstyle scriptlevel="0" displaystyle="true"> <mfrac> <mi>M</mi> <mi>L</mi> </mfrac> </mstyle> </mrow> </semantics></math> for <math display="inline"><semantics> <mrow> <mi>M</mi> <mo><</mo> <mn>0</mn> </mrow> </semantics></math>.</p> "> Figure 12
<p>Lumped -element circuit model of two magnetically coupled resonant circuits.</p> "> Figure 13
<p>Frequency characteristics of resonant circuits (case 1), showing the RMS values of currents in (<b>a</b>) the primary circuit (<math display="inline"><semantics> <mrow> <mrow> <mo>|</mo> </mrow> <msub> <mi>I</mi> <mn>1</mn> </msub> <mrow> <mo>|</mo> </mrow> </mrow> </semantics></math>) and (<b>b</b>) the secondary circuit (<math display="inline"><semantics> <mrow> <mrow> <mo>|</mo> </mrow> <msub> <mi>I</mi> <mn>2</mn> </msub> <mrow> <mo>|</mo> </mrow> </mrow> </semantics></math>) under various coupling conditions (<math display="inline"><semantics> <mrow> <mi>A</mi> <mo>=</mo> <mn>0.5</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>A</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>, and <math display="inline"><semantics> <mrow> <mi>A</mi> <mo>=</mo> <mn>2</mn> </mrow> </semantics></math>). Markers corresponding to the theoretical calculations have been placed on the plots.</p> "> Figure 14
<p>Plot of the imaginary part of equivalent impedance <math display="inline"><semantics> <msubsup> <mi>Z</mi> <mn>1</mn> <mo>′</mo> </msubsup> </semantics></math>. Markers corresponding to the theoretical calculations have been placed on the plots.</p> "> Figure 15
<p>Frequency characteristics of resonant circuits (case 2), showing the RMS values of currents in (<b>a</b>) the primary circuit (<math display="inline"><semantics> <mrow> <mrow> <mo>|</mo> </mrow> <msub> <mi>I</mi> <mn>1</mn> </msub> <mrow> <mo>|</mo> </mrow> </mrow> </semantics></math>) and (<b>b</b>) the secondary circuit (<math display="inline"><semantics> <mrow> <mrow> <mo>|</mo> </mrow> <msub> <mi>I</mi> <mn>2</mn> </msub> <mrow> <mo>|</mo> </mrow> </mrow> </semantics></math>) under various coupling conditions (<math display="inline"><semantics> <mrow> <mi>A</mi> <mo>=</mo> <mn>0.5</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>A</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>, and <math display="inline"><semantics> <mrow> <mi>A</mi> <mo>=</mo> <mn>2</mn> </mrow> </semantics></math>). Markers corresponding to the theoretical calculations have been placed on the plots.</p> "> Figure 16
<p>Frequency characteristics of resonant circuits in the general case, illustrating RMS currents in (<b>a</b>) the primary circuit (<math display="inline"><semantics> <mrow> <mrow> <mo>|</mo> </mrow> <msub> <mi>I</mi> <mn>1</mn> </msub> <mrow> <mo>|</mo> </mrow> </mrow> </semantics></math>) and (<b>b</b>) the secondary circuit (<math display="inline"><semantics> <mrow> <mrow> <mo>|</mo> </mrow> <msub> <mi>I</mi> <mn>2</mn> </msub> <mrow> <mo>|</mo> </mrow> </mrow> </semantics></math>) as a function of frequency.</p> "> Figure 17
<p>Plot of the imaginary part of equivalent impedance <math display="inline"><semantics> <msubsup> <mi>Z</mi> <mn>1</mn> <mo>′</mo> </msubsup> </semantics></math> with coupling resonance frequencies marked.</p> "> Figure 18
<p>Resonance curves obtained in the model of two resonators (RMS curves of both currents overlap).</p> "> Figure 19
<p>Resonance curves obtained by analysis of the circuit model of the three resonators: (<b>a</b>) RMS values of the currents in the resonators; (<b>b</b>) imaginary parts of the impedances of the resonators with coupling resonance frequencies marked.</p> "> Figure 20
<p>Transmission coefficient (<math display="inline"><semantics> <mrow> <mrow> <mo>|</mo> </mrow> <msub> <mi>S</mi> <mn>21</mn> </msub> <mrow> <mo>|</mo> </mrow> </mrow> </semantics></math>) obtained via COMSOL simulations, showing a resonance dip at circa 888 GHz. The zoomed-in region represents the frequency range corresponding to the minimum value, reflecting resonator coupling effects.</p> ">
Abstract
:1. Introduction
2. Magnetically Coupled Resonant Circuits—Standard Case
2.1. Fundamental Relationships
2.2. Resonance in Coupled Circuits
2.3. Determination of Resonant Frequencies in the Primary Circuit
2.4. Resonant Curves in Secondary Circuit
2.5. Resonant Characteristics in Coupled Circuits—General Cases
- Case 1: and . Thus, , and the equation describes a straight line passing through the origin of the coordinate system at an angle of 45°. For , a characteristic with a single peak is found. A symmetrical characteristic with two peaks is obtained for any .
- Case 2: and . In this case, (it was assumed that in Figure 4, Figure 5, Figure 6, Figure 7, Figure 8 and Figure 9). A straight line that passes through the origin of the coordinate system at an angle different from 45 degrees is obtained. The characteristic exhibits a single peak for any value (see [5]). Otherwise, a symmetrical characteristic with two peaks exists. The current at these frequencies is lower when in case 1.
- Case 3: and . Equation (31) leads to relation (it was assumed that and in Figure 4, Figure 5, Figure 6, Figure 7, Figure 8 and Figure 9). A straight line that does not pass through the origin and has a slope corresponding to 45 degrees is obtained. The curves are symmetrical and always . Even for , a characteristic may have two peaks.
- Case 4: and . General Equation (31) applies (it was assumed that , , and in Figure 4, Figure 5, Figure 6, Figure 7, Figure 8 and Figure 9). A straight line is obtained that does not pass through the origin, and the slope does not correspond to 45 degrees. The resonance curves are asymmetrical and peaks have different values; for , the characteristic may have two peaks, and it is asymmetrical.
3. Some Aspects of Modeling Structures Containing SRRs
3.1. Two Resonators
3.2. Three Resonators
4. Results and Discussion
4.1. Example 1
4.2. Example 2
4.3. Discussion
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
f | Frequency |
I | Phasor of current i |
RMS value of current i | |
k | Coupling coefficient |
M | Mutual inductance |
MCR WPT | Magnetically coupled resonant wireless power transfer |
SRR | Single-split single-ring resonator |
Transmission coefficient | |
U | Phasor of voltage u |
X | Reactance |
Y | Admittance |
WPT | Wireless power transmission |
Z | Impedance |
Angular frequency | |
Resonant coupling angular frequency | |
Relative detuning coefficient | |
Absolute detuning coefficient |
References
- Asiejew, B. Fundamentals of Radio Engineering; PWN: Warsaw, Poland, 1955. (In Polish) [Google Scholar]
- Kotielnikow, W.; Nikolajew, A. Principles of Radio Engineering; PWT: Warsaw, Poland, 1958. (In Polish) [Google Scholar]
- Purington, E. Single- and coupled-circuit systems. Proc. Inst. Radio Eng. 1930, 18, 983–1016. [Google Scholar] [CrossRef]
- Terman, F.E. Radio Engineers Handbook; McGraw-Hill Book Company, Inc.: New York, NY, USA; London, UK, 1943. [Google Scholar]
- Aiken, C. Two-mesh tuned coupled circuit filters. Proc. Inst. Radio Eng. 1937, 25, 230–272. [Google Scholar] [CrossRef]
- Abou Houran, M.; Yang, X.; Chen, W. Magnetically coupled resonance WPT: Review of compensation topologies, resonator structures with misalignment, and EMI diagnostics. Electronics 2018, 7, 296. [Google Scholar] [CrossRef]
- Cannon, B.L.; Hoburg, J.F.; Stancil, D.D.; Goldstein, S.C. Magnetic resonant coupling as a potential means for wireless power transfer to multiple small receivers. IEEE Trans. Power Electron. 2009, 24, 1819–1825. [Google Scholar] [CrossRef]
- Chen, X.; Chen, L.; Ye, W.; Zhang, W. Three-coil magnetically coupled resonant wireless power transfer system with adjustable-position intermediate coil for stable transmission characteristics. J. Power Electron. 2019, 19, 211–219. [Google Scholar] [CrossRef]
- Chen, Z.; Sun, X.; Ren, B.; Wang, Z.; Liu, J. Analysis of four-coil magnetic resonance coupling wireless power transfer system based on LCC-SSS compensation network. Energy Rep. 2023, 9, 419–427. [Google Scholar] [CrossRef]
- Dias Fernandes, R.; Matos, J.N.; Borges Carvalho, N. Resonant electrical coupling: Circuit model and first experimental results. IEEE Trans. Microw. Theory Tech. 2015, 63, 2983–2990. [Google Scholar] [CrossRef]
- He, L.; Lu, P.; Liu, H. Modeling and analysis of magnetic resonance wireless transmission coil. AIP Adv. 2024, 14, 055005. [Google Scholar] [CrossRef]
- Johari, R.; Krogmeier, J.V.; Love, D.J. Analysis and practical considerations in implementing multiple transmitters for wireless power transfer via coupled magnetic resonance. IEEE Trans. Ind. Electron. 2014, 61, 1774–1783. [Google Scholar] [CrossRef]
- Rezmerita, G.; Bobaru, L.; Stanculescu, M.; Iordache, M.; Niculae, D. A self and mutual inductance calculation resonators with finite element analysis. In Proceedings of the 2017 International Conference on Modern Power Systems (MPS), Cluj-Napoca, Romania, 6–9 June 2017; pp. 1–4. [Google Scholar] [CrossRef]
- Sis, S. A circuit model-based analysis of magnetically coupled resonant loops in wireless power transfer systems. Istanb. Univ.-J. Electr. Electron. Eng. 2018, 18, 159–166. [Google Scholar] [CrossRef]
- Trivino-Cabrera, A.; Sanchez, J.A.A. A review on the fundamentals and practical implementation details of strongly coupled magnetic resonant technology for wireless power transfer. Energies 2018, 11, 2844. [Google Scholar] [CrossRef]
- Wang, J.; Shen, C.; Zhao, P.; Ou, S.; Xu, Z.; Zhang, R.; Song, Z. A design method for magnetically coupled resonant coils considering transmission objectives and dimension constraints. Energies 2020, 13, 4144. [Google Scholar] [CrossRef]
- Wang, S.; Wei, B.; He, H.; Mu, J.; Cai, C. Research on mutual inductance prediction of resonant magnetic coupling wireless power transmission system based on recursive least square method. IOP Conf. Ser. Mater. Sci. Eng. 2020, 719, 012039. [Google Scholar] [CrossRef]
- Yasar, I.; Shi, L.; Bai, K.; Rong, X.; Liu, Y.; Wang, X. Mobile phone mid-range wireless charger development via coupled magnetic resonance. In Proceedings of the 2016 IEEE Transportation Electrification Conference and Expo (ITEC), Dearborn, MI, USA, 27–29 June 2016; pp. 1–8. [Google Scholar] [CrossRef]
- Zhu, B.; Li, J.; Hu, W.; Gao, X. Review of magnetic coupling resonance wireless energy transmission. Int. J. U- E-Serv. Sci. Technol. 2015, 8, 257–272. [Google Scholar] [CrossRef]
- Awai, I.; Zhang, Y. Coupling coefficient of resonators—An intuitive way of its understanding. Electron. Commun. Jpn. Part II Electron. 2007, 90, 11–18. [Google Scholar] [CrossRef]
- Chen, A.; Kodigala, A.; Lepetit, T.; Kante, B. Multipoles of even/odd split-sing resonators. Photonics 2015, 2, 883–892. [Google Scholar] [CrossRef]
- Duran-Sindreu, M.; Naqui, J.; Paredes, F.; Bonache, J.; Martin, F. Electrically small resonators for planar metamaterial, microwave circuit and antenna design: A comparative analysis. Appl. Sci. 2012, 2, 375–395. [Google Scholar] [CrossRef]
- Hesmer, F.; Tatartschuk, E.; Zhuromskyy, O.; Radkovskaya, A.A.; Shamonin, M.; Hao, T.; Stevens, C.J.; Faulkner, G.; Edwards, D.J.; Shamonina, E. Coupling mechanisms for split ring resonators: Theory and experiment. Phys. Status Solidi (B) 2007, 244, 1170–1175. [Google Scholar] [CrossRef]
- Liu, N.; Giessen, H. Coupling Effects in Optical Metamaterials. Angew. Chem. Int. Ed. 2010, 49, 9838–9852. [Google Scholar] [CrossRef]
- Shamonina, E.; Kalinin, V.; Ringhofer, K.; Solymar, L. Magnetoinductive waves in one, two, and three dimensions. J. Appl. Phys. 2002, 92, 6252–6261. [Google Scholar] [CrossRef]
- Solymar, L.; Shamonina, E. Waves in Metamaterials; Oxford University Press, Inc.: New York, NY, USA, 2009. [Google Scholar]
- Tatartschuk, E.; Gneiding, N.; Hesmer, F.; Radkovskaya, A.; Shamonina, E. Mapping inter-element coupling in metamaterials: Scaling down to infrared. J. Appl. Phys. 2012, 111, 094904. [Google Scholar] [CrossRef]
- Aznar, F.; Gil, M.; Bonache, J.; Jelinek, L.; Baena, J.D.; Marques, R.; Martin, F. Characterization of miniaturized metamaterial resonators coupled to planar transmission lines through parameter extraction. J. Appl. Phys. 2008, 104, 114501. [Google Scholar] [CrossRef]
- Baena, J.; Bonache, J.; Martin, F.; Marques, R.; Falcone, F.; Lopetegi, T.; Laso, M.; Garcia-Garcia, J.; Gil, I.; Portillo, M.; et al. Equivalent-circuit models for split-ring resonators and complementary split-ring resonators coupled to planar transmission lines. Microw. Theory Tech. IEEE Trans. 2005, 53, 1451–1461. [Google Scholar] [CrossRef]
- Bojanic, R.; Milosevic, V.; Jokanovic, B.; Medina-Mena, F.; Mesa, F. Enhanced modelling of split-ring resonators couplings in printed circuits. IEEE Trans. Microw. Theory Tech. 2014, 62, 1605–1615. [Google Scholar] [CrossRef]
- Naqui, J.; Duran-Sindreu, M.; Martin, F. Modeling split-ring resonator (SRR) and complementary split-ring resonator (CSRR) loaded transmission lines exhibiting cross-polarization effects. IEEE Antennas Wirel. Propag. Lett. 2013, 12, 178–181. [Google Scholar] [CrossRef]
- Su, L.; Naqui, J.; Mata-Contreras, J.; Martin, F. Modeling metamaterial transmission lines loaded with pairs of coupled split-ring resonators. IEEE Antennas Wirel. Propag. Lett. 2015, 14, 68–71. [Google Scholar] [CrossRef]
- Gruenwald, W.; Bhattacharrya, M.; Jansen, D.; Reindl, L. Electromagnetic analysis, characterization and discussion of inductive transmission parameters for titanium based housing materials in active medical implantable devices. Materials 2018, 11, 2089. [Google Scholar] [CrossRef]
- Hong, J.S. Coupling of asynchronously tuned coupled microwave resonators. Microwaves Antennas Propag. IEE Proc. 2000, 147, 354–358. [Google Scholar] [CrossRef]
- Hong, J.S.; Lancaster, M. Microstrip Filters for RFMicrowave Applications; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2001; Volume Chapter 8, pp. 235–272. [Google Scholar] [CrossRef]
- Tal, N.; Morag, Y.; Levron, Y. Magnetic induction antenna arrays for MIMO and multiple-frequency communication systems. Prog. Electromagn. Res. C 2017, 75, 155–167. [Google Scholar] [CrossRef]
- Vallecchi, A.; Radkovskaya, A.; Li, L.; Faulkner, G.; Stevens, C.; Shamonina, E. Superdirective dimers of coupled self-resonant split ring resonators: Analytical modelling and numerical and experimental validation. Sci. Rep. 2020, 10, 274. [Google Scholar] [CrossRef]
- Abdullah, S.; Xiao, G.; Amaya, R.E. A Review on the history and current literature of metamaterials and its applications to antennas & radio frequency identification (RFID) devices. IEEE J. Radio Freq. Identif. 2021, 5, 427–445. [Google Scholar] [CrossRef]
- Kazanskiy, N.L.; Khonina, S.N.; Butt, M.A. Recent development in metasurfaces: A focus on sensing applications. Nanomaterials 2023, 13, 118. [Google Scholar] [CrossRef] [PubMed]
- La Spada, L. Metasurfaces for advanced sensing and diagnostics. Sensors 2019, 19, 355. [Google Scholar] [CrossRef]
- Shamim, S.; Mohsin, A.; Rahman, M.; Bhuian, B. Recent advances in the metamaterial and metasurface-based biosensor in the gigahertz, terahertz, and optical frequency domains. Heliyon 2024, 10, e33272. [Google Scholar] [CrossRef] [PubMed]
- Tabassum, S.; Nayemuzzaman, S.; Kala, M.; Kumar Mishra, A.; Mishra, S.K. Metasurfaces for sensing applications: Gas, bio and chemical. Sensors 2022, 22, 6896. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Chen, Y.; Mao, J.; Yang, F.; Wang, N. Metasurface-assisted terahertz sensing. Sensors 2023, 23, 5902. [Google Scholar] [CrossRef]
- Van Schuylenbergh, K.; Puers, R. Inductive Powering Basic Theory and Application to Biomedical Systems; Springer: Dordrecht, The Netherlands, 2009. [Google Scholar]
- Hałgas, S. Singly split single ring resonator: Fitting of lumped-element circuit model parameters and some aspects of resonator analysis and design. AIP Adv. 2022, 12, 085213. [Google Scholar] [CrossRef]
- Pendry, J.; Holden, A.; Robbins, D.; Stewart, W. Magnetism from conductors and enhanced nonlinear phenomena. IEEE Trans. Microw. Theory Tech. 1999, 47, 2075–2084. [Google Scholar] [CrossRef]
- ICAP4. Working with Model Libraries; Intusoft: San Pedro, CA, USA, 2000.
- IsSPICE4 Users Guides, rev 04/08; Intusoft: San Pedro, CA, USA, 2008; Volume 1–2.
- COMSOL Multiphysics Software. Available online: https://www.comsol.com/ (accessed on 21 November 2024).
- Babic, S.; Sirois, F.; Akyel, C.; Girardi, C. Mutual inductance calculation between circular filaments arbitrarily positioned in space: Alternative to Grover’s formula. IEEE Trans. Magn. 2010, 46, 3591–3600. [Google Scholar] [CrossRef]
Theory | SPICE | Theory | SPICE | Theory | SPICE | |
---|---|---|---|---|---|---|
[kHz] | 100.7 | 100.7 | 100.7 | 100.7 | 100.7 | 100.7 |
[kHz] | – | – | – | – | 108.4 | 108.5 |
[kHz] | – | – | – | – | 94.40 | 94.53 |
[kHz] | 100.7 | 100.7 | 100.7 | 100.8 | 100.7 | 100.9 |
[kHz] | 101.4 | 101.4 | 105.4 | 105.4 | 110.5 | 110.4 |
[kHz] | 99.97 | 99.97 | 96.51 | 96.50 | 93.04 | 92.97 |
@ [mA] | 160.0 | 160.0 | 100.0 | 99.94 | 40.00 | 39.94 |
@ [mA] | 159.6 | 159.7 | 125.6 | 125.6 | 108.4 | 108.5 |
@ [mA] | 160.5 | 160.5 | 128.7 | 128.7 | 111.2 | 111.2 |
[kHz] | 100.7 | 100.7 | 100.7 | 100.7 | 100.7 | 100.1 |
[kHz] | – | – | – | – | 108.4 | 108.5 |
[kHz] | – | – | – | – | 94.40 | 94.54 |
@ [mA] | 80.00 | 80.02 | 100.0 | 100.0 | 80.00 | 79.91 |
@ [mA] | – | – | – | – | 99.93 | 100.00 |
@ [mA] | – | – | – | – | 99.95 | 100.00 |
[mA] | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.00 |
Theory | SPICE | Theory | SPICE | Theory | SPICE | |
---|---|---|---|---|---|---|
[kHz] | 100.7 | 100.7 | 100.7 | 100.7 | 100.7 | 100.7 |
[kHz] | – | – | – | – | 113.2 | 113.4 |
[kHz] | – | – | – | – | 91.54 | 91.66 |
[kHz] | 100.7 | 100.8 | 100.7 | 100.8 | 100.7 | 100.9 |
[kHz] | 104.4 | 104.4 | 108.4 | 108.3 | 115.8 | 115.5 |
[kHz] | 97.27 | 97.22 | 94.40 | 94.30 | 90.22 | 90.06 |
@ [mA] | 80.00 | 79.97 | 50.00 | 49.96 | 20.00 | 19.96 |
@ [mA] | 83.95 | 83.96 | 74.81 | 74.83 | 69.24 | 69.31 |
@ [mA] | 84.96 | 84.96 | 76.30 | 76.31 | 70.60 | 70.63 |
[kHz] | 100.7 | 100.7 | 100.7 | 100.6 | 100.7 | 101.5 |
[kHz] | – | – | – | – | 111.5 | 112.1 |
[kHz] | – | – | – | – | 92.45 | 92.74 |
@ [mA] | 56.57 | 56.59 | 70.71 | 70.71 | 56.57 | 56.42 |
@ [mA] | – | – | – | – | 67.41 | 67.52 |
@ [mA] | – | – | – | – | 67.85 | 67.93 |
[mA] | 70.71 | 70.71 | 70.71 | 70.71 | 70.71 | 70.71 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hałgas, S.; Hausman, S.; Jopek, Ł. Analysis and Applications of Magnetically Coupled Resonant Circuits. Electronics 2025, 14, 312. https://doi.org/10.3390/electronics14020312
Hałgas S, Hausman S, Jopek Ł. Analysis and Applications of Magnetically Coupled Resonant Circuits. Electronics. 2025; 14(2):312. https://doi.org/10.3390/electronics14020312
Chicago/Turabian StyleHałgas, Stanisław, Sławomir Hausman, and Łukasz Jopek. 2025. "Analysis and Applications of Magnetically Coupled Resonant Circuits" Electronics 14, no. 2: 312. https://doi.org/10.3390/electronics14020312
APA StyleHałgas, S., Hausman, S., & Jopek, Ł. (2025). Analysis and Applications of Magnetically Coupled Resonant Circuits. Electronics, 14(2), 312. https://doi.org/10.3390/electronics14020312