An Improved Image-Denoising Technique Using the Whale Optimization Algorithm
<p>The detailed steps for obtaining the optimized output of the denoised image.</p> "> Figure 2
<p>Flowchart of the proposed MWOA-based denoising algorithm.</p> "> Figure 3
<p>The test images.</p> "> Figure 4
<p>The test images for Gaussian noise.</p> "> Figure 5
<p>Results 1 of different denoising techniques for Gaussian noise.</p> "> Figure 6
<p>Results 2 of different denoising techniques for Gaussian noise.</p> "> Figure 7
<p>Results 3 of different denoising techniques for Gaussian noise.</p> "> Figure 8
<p>The test images for hybrid noise.</p> "> Figure 9
<p>Results 1 of different denoising techniques for hybrid noise.</p> "> Figure 10
<p>Results 2 of different denoising techniques for hybrid noise.</p> "> Figure 11
<p>Results 3 of different denoising techniques for hybrid noise.</p> ">
Abstract
:1. Introduction
- We construct a leader pool composed of the best solutions, providing a diverse set of top candidates to guide other individuals in the population. This structure enhances the algorithm’s ability to effectively explore promising regions of the solution space. A hierarchical learning strategy is implemented to systematically improve individual solutions, while random opposite learning is utilized to increase population diversity.
- The modified WOA (MWOA) demonstrates significant improvements in image-denoising performance. Extensive comparisons with several algorithms on benchmark image datasets reveal that the MWOA achieves excellent results in terms of the peak signal-to-noise ratio (PSNR), mean square error (MSE), and structural similarity index (SSIM) when tested on images containing Gaussian and hybrid noise. The proposed MWOA not only achieves better denoising quality on noisy images but also exhibits strong adaptability and stability under different types and noise levels, making it highly suitable for image-denoising tasks.
2. Related Works
3. Proposed MWOA-Based Image-Denoising Model
3.1. Objective Function
3.2. Modified Whale Optimization Algorithm
3.2.1. Construction of the Leader Pool
3.2.2. Position Update
Algorithm 1: Position update |
3.2.3. Population Mutation
3.2.4. Computational Complexity
4. Experimental Results and Analysis
4.1. Experimental Analysis of Gaussian Noise
4.2. Experimental Analysis of Hybrid Noise
4.3. Parameter Sensitivity Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhang, M.; Wang, Z.; Wang, X.; Gong, M.; Wu, Y.; Li, H. Features kept generative adversarial network data augmentation strategy for hyperspectral image classification. Pattern Recognit. 2023, 142, 109701. [Google Scholar] [CrossRef]
- Wu, Y.; Li, J.; Yuan, Y.; Qin, A.K.; Miao, Q.G.; Gong, M.G. Commonality autoencoder: Learning common features for change detection from heterogeneous images. IEEE Trans. Neural Netw. Learn. Syst. 2021, 33, 4257–4270. [Google Scholar] [CrossRef] [PubMed]
- Ji, J.; Wei, J.; Fan, G.; Bai, M.; Huang, J.; Miao, Q. Image patch prior learning based on random neighbourhood resampling for image denoising. IET Image Process. 2020, 14, 838–844. [Google Scholar] [CrossRef]
- Singh, A.; Kushwaha, S.; Alarfaj, M.; Singh, M. Comprehensive Overview of Backpropagation Algorithm for Digital Image Denoising. Electronics 2022, 11, 1590. [Google Scholar] [CrossRef]
- Zhu, M.L.; Zhao, L.L.; Xiao, L. Image Denoising Based on GAN with Optimization Algorithm. Electronics 2022, 11, 2445. [Google Scholar] [CrossRef]
- Taassori, M.; Vizvári, B. Enhancing Medical Image Denoising: A Hybrid Approach Incorporating Adaptive Kalman Filter and Non-Local Means with Latin Square Optimization. Electronics 2024, 13, 2640. [Google Scholar] [CrossRef]
- Hafeth, D.A.; Kollias, S.; Ghafoor, M. Semantic representations with attention networks for boosting image captioning. IEEE Access 2023, 11, 40230–40239. [Google Scholar] [CrossRef]
- Qu, W.; Song, Y.; Chen, J. Denoising Multiscale Back-Projection Feature Fusion for Underwater Image Enhancement. Appl. Sci. 2024, 14, 4395. [Google Scholar] [CrossRef]
- Lee, Y.; Jun, D.; Kim, B.G.; Lee, H. Enhanced single image super resolution method using lightweight multi-scale channel dense network. Sensors 2021, 21, 3351. [Google Scholar] [CrossRef]
- Prasetyo, H.; Hsia, C.H.; Guo, J.M. Improving EDBTC image quality using stationary and decimated wavelet transform. In Proceedings of the 2019 International Symposium on Electronics and Smart Devices (ISESD), Rourkela, India, 16–18 December 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 1–5. [Google Scholar]
- Kim, J.K.; Kim, K.J.; Kang, J.W.; Oh, K.J.; Kim, J.W.; Kim, D.W.; Seo, Y.H. New compression method for full-complex holograms using the modified zerotree algorithm with the adaptive discrete wavelet transform. Opt. Express 2020, 28, 36327–36345. [Google Scholar] [CrossRef] [PubMed]
- Chauhan, S.; Singh, M.; Aggarwal, A.K. Bearing defect identification via evolutionary algorithm with adaptive wavelet mutation strategy. Measurement 2021, 179, 109445. [Google Scholar] [CrossRef]
- Wu, Y.; Ding, H.; Xiang, B.; Sheng, J.; Ma, W.; Qin, K.; Miao, Q.; Gong, M. Evolutionary multitask optimization in real-world applications: A survey. J. Artif. Intell. Technol. 2023, 3, 32–38. [Google Scholar] [CrossRef]
- Wu, Y.; Miao, Q.; Ma, W.; Gong, M.; Wang, S. PSOSAC: Particle swarm optimization sample consensus algorithm for remote sensing image registration. IEEE Geosci. Remote. Sens. Lett. 2017, 15, 242–246. [Google Scholar] [CrossRef]
- Hu, P.; Pan, J.S.; Chu, S.C.; Sun, C. Multi-surrogate assisted binary particle swarm optimization algorithm and its application for feature selection. Appl. Soft Comput. 2022, 121, 108736. [Google Scholar] [CrossRef]
- Pan, J.S.; Hu, P.; Snášel, V.; Chu, S.C. A survey on binary metaheuristic algorithms and their engineering applications. Artif. Intell. Rev. 2022, 1–67. [Google Scholar]
- Fong, S.; Zhuang, Y.; Tang, R.; Yang, X.S.; Deb, S. Selecting Optimal Feature Set in High-Dimensional Data by Swarm Search. J. Appl. Math. 2013, 2013, 590614. [Google Scholar] [CrossRef]
- Chauhan, S.; Singh, M.; Aggarwal, A.K. Diversity driven multi-parent evolutionary algorithm with adaptive non-uniform mutation. J. Exp. Theor. Artif. Intell. 2021, 33, 775–806. [Google Scholar] [CrossRef]
- Varga, D. Full-reference image quality assessment based on an optimal linear combination of quality measures selected by simulated annealing. J. Imaging 2022, 8, 224. [Google Scholar] [CrossRef] [PubMed]
- Mirjalili, S.; Song Dong, J.; Sadiq, A.S.; Faris, H. Genetic algorithm: Theory, literature review, and application in image reconstruction. In Nature-Inspired Optimizers: Theories, Literature Reviews and Applications; Springer: Berlin/Heidelberg, Germany, 2020; pp. 69–85. [Google Scholar]
- Cao, Z.; Jia, H.; Wang, Z.; Foh, C.H.; Tian, F. A differential evolution with autonomous strategy selection and its application in remote sensing image denoising. Expert Syst. Appl. 2024, 238, 122108. [Google Scholar] [CrossRef]
- Chauhan, S.; Vashishtha, G.; Zimroz, R.; Kumar, R.; Gupta, M.K. Optimal filter design using mountain gazelle optimizer driven by novel sparsity index and its application to fault diagnosis. Appl. Acoust. 2024, 225, 110200. [Google Scholar] [CrossRef]
- Gautam, D.; Khare, K.; Shrivastava, B.P. A Novel Guided Box Filter Based on Hybrid Optimization for Medical Image Denoising. Appl. Sci. 2023, 13, 7032. [Google Scholar] [CrossRef]
- Jayapal, J.; Subban, R. Automated lion optimization algorithm assisted Denoising approach with multiple filters. Multimed. Tools Appl. 2020, 79, 4041–4056. [Google Scholar] [CrossRef]
- Benhassine, N.E.; Boukaache, A.; Boudjehem, D. Medical image denoising using optimal thresholding of wavelet coefficients with selection of the best decomposition level and mother wavelet. Int. J. Imaging Syst. Technol. 2021, 31, 1906–1920. [Google Scholar] [CrossRef]
- Asokan, A.; Anitha, J. Adaptive Cuckoo Search based optimal bilateral filtering for denoising of satellite images. ISA Trans. 2020, 100, 308–321. [Google Scholar] [CrossRef]
- Golilarz, N.A.; Mirmozaffari, M.; Gashteroodkhani, T.A.; Ali, L.; Dolatsara, H.A.; Boskabadi, A.; Yazdi, M. Optimized wavelet-based satellite image de-noising with multi-population differential evolution-assisted harris hawks optimization algorithm. IEEE Access 2020, 8, 133076–133085. [Google Scholar] [CrossRef]
- Alotaibi, N.S. A Novel Method to Denoise Images Based on a Meta-heuristic Algorithm and Pre-learned Dictionary. Int. J. Intell. Eng. Syst. 2021, 14, 203–211. [Google Scholar] [CrossRef]
- Subhedar, J.; Urooj, S. Retinal Optical Coherence Tomography Image Denoising Using Modified Soft Thresholding Wavelet Transform. Trait. Signal 2023, 40, 1179. [Google Scholar] [CrossRef]
- Aravindan, T.; Seshasayanan, R. Medical image DENOISING scheme using discrete wavelet transform and optimization with different noises. Concurr. Comput. Pract. Exp. 2022, 34, e5540. [Google Scholar] [CrossRef]
- Vaiyapuri, T.; Alaskar, H.; Sbai, Z.; Devi, S. GA-based multi-objective optimization technique for medical image denoising in wavelet domain. J. Intell. Fuzzy Syst. 2021, 41, 1575–1588. [Google Scholar] [CrossRef]
- Narmada, A.; Shukla, M. A novel adaptive artifacts wavelet Denoising for EEG artifacts removal using deep learning with Meta-heuristic approach. MUltim. Tools Appl. 2023, 82, 40403–40441. [Google Scholar] [CrossRef]
- Vineeth, P.; Suresh, S. Performance evaluation and analysis of population-based metaheuristics for denoising of biomedical images. Res. Biomed. Eng. 2021, 37, 111–133. [Google Scholar] [CrossRef]
- Chen, S.; Shi, D.; Sadiq, M.; Cheng, X. Image denoising with generative adversarial networks and its application to cell image enhancement. IEEE Access 2020, 8, 82819–82831. [Google Scholar] [CrossRef]
- Shan, W.; Liu, P.; Mu, L.; Cao, C.; He, G. Hyperspectral image denoising with dual deep CNN. IEEE Access 2019, 7, 171297–171312. [Google Scholar] [CrossRef]
- Wang, C.; Li, M.; Wang, R.; Yu, H.; Wang, S. An image denoising method based on BP neural network optimized by improved whale optimization algorithm. EURASIP J. Wirel. Commun. Netw. 2021, 2021, 141. [Google Scholar] [CrossRef]
- Hu, P.; Pan, J.S.; Chu, S.C. Improved binary grey wolf optimizer and its application for feature selection. Knowl.-Based Syst. 2020, 195, 105746. [Google Scholar] [CrossRef]
- Mirjalili, S.; Lewis, A. The whale optimization algorithm. Adv. Eng. Softw. 2016, 95, 51–67. [Google Scholar] [CrossRef]
- Ramani, R.G.; Shanthamalar, J.J. Improved image processing techniques for optic disc segmentation in retinal fundus images. Biomed. Signal Process. Control. 2020, 58, 101832. [Google Scholar] [CrossRef]
- Xie, S.; Tu, Z. Holistically-nested edge detection. In Proceedings of the IEEE International Conference on Computer Vision, Santiago, Chile, 7–13 December 2015; pp. 1395–1403. [Google Scholar]
Algorithm | Parameters |
---|---|
WOA and MWOA | a = 2; a2 = −1; b = 1; |
ACS | beta = 3/2; |
SSO | fpl = 0.65; fpu = 0.9; |
Image | ACS | SSO | WOA | MWOA |
---|---|---|---|---|
Img1 | 0.6344 | 0.6348 | 0.6343 | 0.6344 |
Img2 | 0.6755 | 0.6764 | 0.6724 | 0.6764 |
Img3 | 0.6268 | 0.6276 | 0.6265 | 0.6270 |
Img4 | 0.6223 | 0.6223 | 0.6224 | 0.6225 |
Img5 | 0.6619 | 0.6623 | 0.6613 | 0.6629 |
Img6 | 0.6730 | 0.6755 | 0.6723 | 0.6752 |
Img7 | 0.6413 | 0.6411 | 0.6412 | 0.6413 |
Img8 | 0.5941 | 0.5947 | 0.5937 | 0.5948 |
Img9 | 0.6382 | 0.6386 | 0.638 | 0.6383 |
Img10 | 0.6115 | 0.6116 | 0.6112 | 0.6115 |
Img11 | 0.6055 | 0.6056 | 0.6047 | 0.6056 |
Img12 | 0.6029 | 0.6025 | 0.6026 | 0.6030 |
Img13 | 0.6047 | 0.6043 | 0.6041 | 0.6048 |
Img14 | 0.6066 | 0.6067 | 0.6064 | 0.6067 |
Img15 | 0.5997 | 0.5997 | 0.5995 | 0.5997 |
Image | ACS | SSO | WOA | MWOA |
---|---|---|---|---|
Img1 | 199.7458 | 209.7178 | 205.4640 | 208.3324 |
Img2 | 186.3825 | 191.6464 | 192.5559 | 194.9633 |
Img3 | 190.3968 | 217.1379 | 197.9497 | 199.2488 |
Img4 | 193.1905 | 205.6128 | 198.1487 | 202.6699 |
Img5 | 185.0479 | 194.2200 | 192.4226 | 195.4791 |
Img6 | 178.1643 | 199.4078 | 196.6583 | 194.5241 |
Img7 | 178.0879 | 181.2288 | 189.5961 | 187.7872 |
Img8 | 183.8261 | 194.6155 | 195.1808 | 194.1937 |
Img9 | 354.2321 | 382.5654 | 373.0415 | 374.5746 |
Img10 | 360.5241 | 360.1280 | 356.6657 | 369.3679 |
Img11 | 351.1338 | 361.1323 | 384.2498 | 374.1855 |
Img12 | 350.0619 | 361.3373 | 360.4179 | 361.1006 |
Img13 | 353.3241 | 367.6729 | 365.8955 | 366.8991 |
Img14 | 351.8643 | 369.1498 | 361.3729 | 361.7909 |
Img15 | 377.5266 | 386.4970 | 389.4868 | 386.2755 |
Image | ACS | SSO | WOA | MWOA |
---|---|---|---|---|
Img1 | 0.0991 | 0.0986 | 0.0993 | 0.0990 |
Img2 | 0.0618 | 0.0611 | 0.0642 | 0.0611 |
Img3 | 0.1081 | 0.1071 | 0.1086 | 0.1079 |
Img4 | 0.1139 | 0.1139 | 0.1137 | 0.1136 |
Img5 | 0.0722 | 0.0718 | 0.0728 | 0.0714 |
Img6 | 0.0636 | 0.0617 | 0.0642 | 0.0619 |
Img7 | 0.0916 | 0.0917 | 0.0916 | 0.0915 |
Img8 | 0.1576 | 0.1565 | 0.1583 | 0.1564 |
Img9 | 0.0949 | 0.0944 | 0.0950 | 0.0948 |
Img10 | 0.1290 | 0.1288 | 0.1294 | 0.1290 |
Img11 | 0.1382 | 0.1380 | 0.1394 | 0.1380 |
Img12 | 0.1424 | 0.1430 | 0.1429 | 0.1422 |
Img13 | 0.1394 | 0.1402 | 0.1405 | 0.1393 |
Img14 | 0.1365 | 0.1362 | 0.1368 | 0.1363 |
Img15 | 0.1478 | 0.1477 | 0.1481 | 0.1477 |
Image | ACS | SSO | WOA | MWOA |
---|---|---|---|---|
Img1 | 0.8010 | 0.8020 | 0.7973 | 0.8011 |
Img2 | 0.7258 | 0.7324 | 0.6861 | 0.7345 |
Img3 | 0.6084 | 0.6070 | 0.5890 | 0.6193 |
Img4 | 0.7378 | 0.7193 | 0.7297 | 0.7451 |
Img5 | 0.8470 | 0.8459 | 0.8420 | 0.8563 |
Img6 | 0.8426 | 0.8622 | 0.8331 | 0.8608 |
Img7 | 0.6019 | 0.6015 | 0.5991 | 0.6092 |
Img8 | 0.3935 | 0.4023 | 0.3829 | 0.4051 |
Img9 | 0.8305 | 0.8331 | 0.8283 | 0.8316 |
Img10 | 0.4698 | 0.4716 | 0.4713 | 0.4689 |
Img11 | 0.5829 | 0.5835 | 0.5793 | 0.5836 |
Img12 | 0.5972 | 0.5959 | 0.5961 | 0.5977 |
Img13 | 0.5636 | 0.5615 | 0.5604 | 0.5642 |
Img14 | 0.5390 | 0.5407 | 0.5363 | 0.5406 |
Img15 | 0.5483 | 0.5486 | 0.5470 | 0.5484 |
Image | ACS | SSO | WOA | MWOA |
---|---|---|---|---|
Img1 | 0.5079 | 0.5079 | 0.5079 | 0.5079 |
Img2 | 0.4928 | 0.4928 | 0.4928 | 0.4928 |
Img3 | 0.5028 | 0.5029 | 0.5028 | 0.5029 |
Img4 | 0.5139 | 0.5139 | 0.5139 | 0.5139 |
Img5 | 0.5139 | 0.5139 | 0.5139 | 0.5139 |
Img6 | 0.5002 | 0.5002 | 0.5002 | 0.5002 |
Img7 | 0.5011 | 0.5011 | 0.5011 | 0.5011 |
Img8 | 0.4958 | 0.4958 | 0.4958 | 0.4958 |
Img9 | 0.5085 | 0.5085 | 0.5085 | 0.5085 |
Img10 | 0.5057 | 0.5057 | 0.5057 | 0.5057 |
Img11 | 0.5213 | 0.5214 | 0.5213 | 0.5214 |
Img12 | 0.5269 | 0.5269 | 0.5268 | 0.5269 |
Img13 | 0.5219 | 0.5220 | 0.5219 | 0.5220 |
Img14 | 0.5165 | 0.5165 | 0.5165 | 0.5166 |
Img15 | 0.5294 | 0.5295 | 0.5294 | 0.5295 |
Image | ACS | SSO | WOA | MWOA |
---|---|---|---|---|
Img1 | 198.4014 | 200.6925 | 203.4161 | 195.4663 |
Img2 | 186.0418 | 197.8694 | 202.4309 | 198.8629 |
Img3 | 187.7699 | 191.7490 | 197.0326 | 195.0406 |
Img4 | 192.5261 | 201.3504 | 203.0051 | 194.5544 |
Img5 | 185.8746 | 206.9397 | 195.2177 | 192.2871 |
Img6 | 179.3382 | 183.7928 | 187.7695 | 184.4568 |
Img7 | 186.6075 | 191.6183 | 186.5130 | 182.5112 |
Img8 | 184.9921 | 192.9573 | 194.5810 | 192.0973 |
Img9 | 342.4972 | 355.0359 | 355.1487 | 350.1446 |
Img10 | 344.9363 | 346.5270 | 359.6982 | 351.4045 |
Img11 | 349.0379 | 357.9138 | 361.4281 | 360.8077 |
Img12 | 343.6023 | 362.5241 | 368.0353 | 368.7195 |
Img13 | 363.5080 | 361.1031 | 365.1787 | 365.4785 |
Img14 | 358.5476 | 377.9083 | 381.8342 | 367.9906 |
Img15 | 367.8351 | 390.6076 | 371.6104 | 381.6882 |
Image | ACS | SSO | WOA | MWOA |
---|---|---|---|---|
Img1 | 0.4251 | 0.4251 | 0.4250 | 0.4250 |
Img2 | 0.5055 | 0.5055 | 0.5055 | 0.5055 |
Img3 | 0.4507 | 0.4505 | 0.4508 | 0.4505 |
Img4 | 0.3969 | 0.3969 | 0.3969 | 0.3969 |
Img5 | 0.3968 | 0.3968 | 0.3968 | 0.3968 |
Img6 | 0.4646 | 0.4646 | 0.4646 | 0.4646 |
Img7 | 0.4596 | 0.4595 | 0.4597 | 0.4595 |
Img8 | 0.4885 | 0.4885 | 0.4886 | 0.4885 |
Img9 | 0.4220 | 0.4220 | 0.4220 | 0.4220 |
Img10 | 0.4361 | 0.4361 | 0.4361 | 0.4361 |
Img11 | 0.3641 | 0.3641 | 0.3644 | 0.3641 |
Img12 | 0.3418 | 0.3417 | 0.3421 | 0.3416 |
Img13 | 0.3617 | 0.3616 | 0.3619 | 0.3616 |
Img14 | 0.3848 | 0.3850 | 0.3849 | 0.3846 |
Img15 | 0.3317 | 0.3316 | 0.3320 | 0.3316 |
Image | ACS | SSO | WOA | MWOA |
---|---|---|---|---|
Img1 | 0.5210 | 0.5208 | 0.5216 | 0.5213 |
Img2 | 0.5475 | 0.5508 | 0.5476 | 0.5476 |
Img3 | 0.3504 | 0.3591 | 0.3481 | 0.3542 |
Img4 | 0.5063 | 0.5061 | 0.5057 | 0.5068 |
Img5 | 0.4120 | 0.4121 | 0.4131 | 0.4130 |
Img6 | 0.5461 | 0.5456 | 0.5459 | 0.5449 |
Img7 | 0.4965 | 0.4979 | 0.4970 | 0.4940 |
Img8 | 0.2587 | 0.2594 | 0.2571 | 0.2589 |
Img9 | 0.3876 | 0.3879 | 0.3876 | 0.3878 |
Img10 | 0.3288 | 0.3286 | 0.3283 | 0.3289 |
Img11 | 0.4281 | 0.4281 | 0.4273 | 0.4282 |
Img12 | 0.4736 | 0.4737 | 0.4731 | 0.4738 |
Img13 | 0.4044 | 0.4044 | 0.4042 | 0.4047 |
Img14 | 0.3423 | 0.3415 | 0.3421 | 0.3430 |
Img15 | 0.4189 | 0.4192 | 0.4183 | 0.4191 |
Combination | Population Size | Iteration | PSNR | MSE | SSIM |
---|---|---|---|---|---|
C1 | 20 | 100 | 12 | 12 | 11 |
C2 | 10 | 200 | 8 | 8 | 11 |
C3 | 40 | 50 | 10 | 10 | 8 |
Mutation | PSNR | MSE | SSIM |
---|---|---|---|
0.25 | 0 | 0 | 2 |
0.5 | 22 | 22 | 17 |
0.75 | 8 | 8 | 11 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, P.; Han, Y.; Pan, J.-S. An Improved Image-Denoising Technique Using the Whale Optimization Algorithm. Electronics 2025, 14, 145. https://doi.org/10.3390/electronics14010145
Hu P, Han Y, Pan J-S. An Improved Image-Denoising Technique Using the Whale Optimization Algorithm. Electronics. 2025; 14(1):145. https://doi.org/10.3390/electronics14010145
Chicago/Turabian StyleHu, Pei, Yibo Han, and Jeng-Shyang Pan. 2025. "An Improved Image-Denoising Technique Using the Whale Optimization Algorithm" Electronics 14, no. 1: 145. https://doi.org/10.3390/electronics14010145
APA StyleHu, P., Han, Y., & Pan, J. -S. (2025). An Improved Image-Denoising Technique Using the Whale Optimization Algorithm. Electronics, 14(1), 145. https://doi.org/10.3390/electronics14010145